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Introduction

In a few papers, Liu noticed that by tweaking the definition of
bi-free independence, one could define other types of multi-algebra
independences. He developed the several common tools, like
central limit theorems and cumulants for these new independences.

But we do not discard bi-free independence. In fact, bi-free
probability remains robust in its ability to model these
independences. We will show that one can embed many of these
multi-algebra independences into bi-free families.
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Notations and Setup

▶ B will always denote a unital algebra over C.
▶ Triples of the form (A,E , ε) will denote B-B-probability

spaces, where ε : B ⊗ Bop → A is a unital homomorphism,
and E is the corresponding expectation.

▶ Triples of the form (X ,
◦
X , p) will denote B-B-bimodules with

specified B-projections

X = B ⊕
◦
X

▶ L(X ) will denote the C-linear operators on X , while Lℓ and
Lr denote the left and right algebras of L(X ). EL(X ) is the
expectation given by

EL(X )(T ) = pT1B



Product Spaces

Given {(Xk ,
◦
Xk , pk)}k∈K , form their reduced free product

(X ,
◦
X , p), where

X = B ⊕
⊕
n≥1

⊕
k1,...,kn∈K
k1 ̸=···̸=kn

◦
Xk1 ⊗B · · · ⊗B

◦
Xkn .

Then we have the following projections, for each k ∈ K

▶ the kth Boolean projection, P⊎,k which projects onto the
subspace

X⊎(k) = B ⊕
◦
Xk ⊆ X

▶ the kth monotone projection, P◁,k , if K is ordered, which
projects onto the subspace

X (◁, k) = B ⊕
⊕
n≥1

⊕
k1<···<kn=k

◦
Xk1 ⊗B · · · ⊗B

◦
Xkn



Bi-Free Independence (when B = C)

Definition
A family of pairs Γ = {(Ck ,Dk)}k∈K of unital subalgebras of A is

bi-free if for each k ∈ K , there are (Xk ,
◦
Xk , pk) and unital

homomorphisms

lk : Ck → L(Xk) and rk : Dk → L(Xk)

and the joint distribution of Γ is equal to the joint distribution of
the family

{λk(lk(Ck)), ρk(rk(Dk))}k∈K
in (L(X ),EL(X )).



Liu’s Multi-Algebra Independences (B = C)

Definition (Liu, 2019)

In (A, φ), let Γ = {(Ck ,Dk)}k∈K be a family of pairs of

subalgebras of A. Suppose for each k ∈ K there are (Xk ,
◦
Xk , pk)

and maps ℓi : Ck → L(Xk), ri : Dk → L(Xk), and projections Pk

and Qk such that the joint distribution of Γ equals the joint
distribution of the family

{(Pkλk(ℓk(Ck))Pk ,Qkρk(rk(Dk))Qk)}k∈K

in the the space (L(X ),EL(X )). Say Γ is

▶ free-Boolean independent if Pk = IX and Qk = P⊎,k for all
k ∈ K ,

▶ free-monotone independent if Pk = IX and Qk = P◁,k for all
k ∈ K .



Free-Free-Boolean Independence (B = C)

Definition
(A, φ) a non-commutative probability space. A family
Γ = {(Aℓ

k ,A
r
k ,A

b
k)}k∈K of triples of subalgebras of A is

free-free-Boolean independent if for each k ∈ K

▶ Aℓ
k , A

r
k , are unital, Ab

k is not necessarily.

▶ there are (Xk ,
◦
Xk , pk) and homomorphisms

lk : Aℓ
k → L(Xk), rk : Ar

k → L(Xk), and mk : Ab
k → L(Xk),

where ℓk and rk are unital,

the joint distribution of Γ equals the joint distribution of the family

{(λk(lk(A
ℓ
k)), ρk(rk(A

r
k)),P⊎,kλk(mk(A

b
k))P⊎,k)}k∈K

in (L(X ),EL(X )).



Free-Free-Boolean Independence with Amalgamation

For general B, we work in (A,EA, ε). The definition remains the
same, but we require in addition for each k ∈ K ,

ε(B ⊗ 1B) A
ℓ
k ε(B ⊗ 1B) ⊆ Aℓ

k and lk : Aℓ
k → Lℓ(Xk),

ε(B ⊗ 1B) A
b
k ε(B ⊗ 1B) ⊆ Ab

k and mk : Ab
k → Lℓ(Xk),

and

ε(1B ⊗ Bop) Ar
k ε(1B ⊗ Bop) ⊆ Ar

k and rk : Ar
k → Lr (Xk).



Lingering Independences

Note that if {(Aℓ
k ,A

r
k ,A

b
k)}k∈K is free-free-Boolean over B, then

▶ {(Aℓ
k ,A

r
k)}k∈K is bi-free over B,

▶ {Ab
k}k∈K is Boolean independent over B, and

▶ {(Aℓ
k ,A

b
k)}k∈K is free-Boolean over B, in the sense of Liu +

Zhong.



Bi-Free Representation of Boolean Independence

Skoufranis (2015) had the following construction to represent
Boolean independence with bi-free operators. Starting with a
B-valued probability space (A,Φ), consider

(A⊕A,
◦
A⊕A,Φ⊕ 0). For Z ∈ A consider

TZ (Z1 ⊕ Z2) = ZZ2 ⊕ 0,

and
S1B (Z1 ⊕ Z2) = 0⊕ Z1.

Then if {Ab
k}k∈K is Boolean over B, for each Z ∈ Ab

k , send

Z 7−→ λk(TZ )ρk(S1B ).



Bi-Free Boolean B-Systems

Definition (Skoufranis, 2015)

Let {(Ck ,Dk)}k∈K be bi-free in (A,E , ε). For each k ∈ K , let

C ′
k ⊆ Ck and D ′

k ⊆ Dk ∩ Aℓ

be subsets such that LbC
′
k ,C

′
kLb ⊆ C ′

k for all b ∈ B. Then
{C ′

k ,D
′
k}k∈K is a bi-free Boolean B-system if for all k ∈ K and

n ≥ 0,

1. (C ′
k)

2 = {0} = (D ′
k)

2,

2. E (C ′
k(D

′
kC

′
k)

n) = {0}, and
3. E (D ′

k(C
′
kD

′
k)

n) = {0}.

Skoufranis showed that for such a structure, the family
{alg(C ′

kD
′
k)}k∈K is Boolean independent over B.



Embedding Result for Boolean Independence

Theorem (Skoufranis, 2015)

Given a Boolean independent family {Ak}k∈K in (A,Φ), there is a
bi-free Boolean B-system {C ′

k ,D
′
k}k∈K in some (A0,E , ε) and

injective B-linear maps βk → C ′
kD

′
k such that

E (βk1(Z1) · · ·βkn(Zn)) = Φ(Z1 · · ·Zn)

for all Zm ∈ Akm , km ∈ K.

We build a close analog of this process, and aim for an analogous
result for free-free-Boolean independence.



Adjusting for free-free-Boolean Independence

The construction works almost the same, except we need to keep
track of lefts and rights simultaneously. So we need a proper
faithful representation of A as operators. We use the following
construction from [Nelson, Charlesworth, Skoufranis, 2015]:

Given (A,E , ε), let

Ã = B ⊕ (ker(E )/span{TLb − TRb|T ∈ A, b ∈ B})

Now let θ : A → L(Ã) be the homomorphism such that

θ(T )(b) = E (TLb)⊕ q(TLb − LE(TLb))

and
θ(T )(q(A)) = E (TA)⊕ q(TA− LE(TA))



Operator Representation

Now consider the space (Ã ⊕ Ã,
◦

Ã ⊕ Ã, Ẽ ⊕ 0), and as before,
define for each Z ∈ A, let

TZ (a1 ⊕ a2) = θ(Z )a2 ⊕ 0,

and
S1B (a1 ⊕ a2) = 0⊕ a1.

But now we also consider operators DZ defined by

DZ (a1 ⊕ a2) = θ(Z )a1 ⊕ θ(Z )a2.

Given a free-free-Boolean independent family {(Aℓ
k ,A

r
k ,A

b
k)}k∈K ,

for each Z1 ∈ Aℓ
k ,Z2 ∈ Ar

k , and Z3 ∈ Ab
k send

Z1 7→ λk(DZ1), Z2 7→ ρk(DZ2), and Z3 7→ λk(TZ3)ρk(S1B ).



Bi-Free ffb B-systems

The abstract structures we get then look like

Definition
Consider a family {(Aℓ

k ,A
r
k ,Ck ,Dk)}k∈K of quadruples of

subalgebras of A such that (Aℓ
k ,A

r
k) is a pair of B-faces for each

k ∈ K , and the family {(alg(Aℓ
k ,Ck), alg(A

r
k ,Dk)}k∈K is bi-free.

For each k ∈ K , let C ′
k ⊆ Ck and D ′

k ⊆ Dk ∩ Aℓ be subsets such
that LbC

′
k ,C

′
kLb ⊆ C ′

k for all b ∈ B. Then {Aℓ
k ,A

r
k ,C

′
k ,D

′
k}k∈K is

a bi-free ffb B-system if for all k ∈ K and n ≥ 0,

1. C ′
kAkC

′
k = {0} = D ′

kAkD
′
k ,

2. E (AkC
′
kAk(D

′
kAkC

′
k)

nAk) = {0}, and
3. E (AkD

′
kAk(C

′
kAkD

′
k)

nAk) = {0}
where Ak = alg(Aℓ

k ,A
r
k).



Towards a Complete Embedding Result

Our construction above gives an embedding of a free-free-Boolean
independent family {(Aℓ

k ,A
r
k ,A

b
k)}k∈K into a bi-free ffb B-system

that preserves the individual joint distributions (for fixed k ∈ K ).

To guarantee total joint distribution preservation, we need to know
that for a bi-free ffb B system {(Aℓ

k ,A
r
k ,C

′
k ,D

′
k)}k∈K , that the

family {(Aℓ
k ,A

r
k , alg(C

′
kD

′
k))}k∈K is free-free-Boolean independent.

.
We turn to some combinatorics for help.



Interval Bi-Non-Crossing Partitions

Liu observed that the appropriate partitions to use for the
free-free-Boolean cumulants are the interval bi-non-crossing
partitions. They arise from labelings χ : {1, · · · , n} → {ℓ, r , b}.
For example, n = 6 and χ−1({ℓ}) = {1, 6} and χ−1({b}) = {3, 5},
then consider

1

2

3

4

5

6

π

1

2

3

4

5

6

σ

π is an interval bi-non-crossing partition, while σ is not.



Comparison with Bi-Non-Crossing Diagrams

Replacing each Boolean-labeled number a connected left and right
should give us the same combinatorial behaviour.

1

2

3

4

5

6

1

2
3

3′

4
5

5′

6



BNCffb(χ̂)

Given n ∈ N and χ̂ : {1, . . . , n} → {ℓ, r , b}, let
χ : {1, . . . , n + |χ̂−1({b})|} → {ℓ, r} be the labeling obtained by
replacing all instances of b in χ̂ with ℓr in that order. Let
f (i) = i + |χ̂−1({b}) ∩ [1, i − 1]| for each i ∈ {1, . . . , n}.

Let BNCffb(χ̂) ⊆ BNC (χ) such that whenever π ∈ BNCffb(χ̂) and
i ∈ χ̂−1({b}), then f (i) and f (i + 1) share a block of π.

It follows that BNCffb(χ̂) is an interval of BNC (χ) with maximum
element 1χ. So we can restrict µBNC to BNCffb(χ̂) to get the
Möbius inversion on BNCffb(χ̂).



Operator-Valued Bi-Multiplicative Functions

Definition
In (A,E , ε), fix χ : {1, . . . , n} → {ℓ, r}, π ∈ BNC (χ), and
Z1, . . . ,Zn ∈ A. Define Eπ(Z1, . . . ,Zn) ∈ B recursively. Let V be
the block of π with largest minimum element.

▶ If π = 1χ, then Eπ(Z1, . . . ,Zn) = E (Z1 · · ·Zn).

▶ If there is some k such that V = {k + 1, . . . , n}, then

Eπ(Z1, . . . ,Zn) = Eπ|Vc (Z1, . . . ,ZkLE(Zk+1···Zn))

▶ Otherwise min(V ) is adjacent to a spine, say of the block W .
Let k be the smallest element of W such that k > minV ,
define

Eπ(Z1, . . . ,Zn) = Eπ|Vc (Z1, . . . , cVZk , . . . ,Zn),

where cV = LEπ|V (Z1,...,Zn) if χ(min(V )) = ℓ and

cV = REπ|V (Z1,...,Zn) otherwise.



A Simple Example

Consider the partition given by the diagram

1

2

3

4

5

6

π

Then
Eπ(Z1, . . . ,Zn) = E (Z1Z2RE(Z3Z5)LE(Z4)Z6).



Vanishing of non-BNCffb(χ̂) moments

Theorem
Let {(Aℓ

k ,A
r
k ,C

′
k ,D

′
k)}k∈K be a bi-free ffb B-system in (A,E , ε).

With n ∈ N, χ̂, χ, f , as before, n′ = n + |χ̂−1({b})|, and let
ϵ : {1, . . . , n′} → K such that ϵ(i) = ϵ(i + 1) whenever
i ∈ f (χ̂−1({b})). Let

Zi ∈


A
χ(i)
ϵ(i) if i ∈ f ({1, . . . , n} \ χ̂−1({b})

C ′
ϵ(i) if i ∈ f (χ̂−1({b})

D ′
ϵ(i) otherwise

.

Then
Eπ(Z1, . . . ,Zn′) = 0

Unless π ∈ BNCffb(χ̂).



Sketch of Proof - I

We simply show that if i ∈ χ̂−1({b}) with f (i) and f (i) + 1 not
sharing a block of π, then

Eπ(Z1, · · · ,Zn′) = 0.

The argument is inductive, but largely illustrated by a base case.
Let f (χ̂−1({b}) = {i1 < · · · < im}. Let i1 ∈ V ∈ π and suppose
i1 + 1 ∈ W ̸= V .
Consider two cases corresponding to V . Either there is some j > i1
such that χ(j) = r and j ∈ V , or there is no such j .



Sketch of Proof - Case 1

In the first case, we have a diagram that looks like

i1
i1 + 1

j

V

W

...

...

π

iα

In which case, Eπ|W (Z1, . . . ,Zn) = 0 by definition of bi-free ffb
B-system. This implies that Eπ(Z1, . . . ,Zn) = 0.



Sketch of Proof - Case 2

Otherwise we get a diagram like this

i1
i1 + 1

iα + 1

V
...

...

π

iα

In which case Eπ|V (Z1, . . . ,Zn) = 0, so our moment

Eπ(Z1, . . . ,Zn) = 0.



The Final Stretch

Our goal is to show that given a bi-free ffb B-system
{(Aℓ

k ,A
r
k ,C

′
k ,D

′
k)}k∈K , it should follow that the family

{(Aℓ
k ,A

r
k , alg(C

′
kD

′
k))}k∈K is free-free-Boolean independent over B.

To do so, we need to be able to associate our representation with
the definition. That is, if Z = SCSD ∈ alg(C ′

kD
′
k) then how do

λk(SC )ρk(SD) and P⊎,kλk(mk(Z ))P⊎,k compare in expectation,
when mixed in with other operators?

The most convenient tool for the job appears to be the LR
diagrams.



LR diagrams

LR-diagrams are combinatorial tools, similar to the bi-non-crossing
partitions, but where spines are allowed to reach the top gap.
Consider for example

1

2

3

4

D1

1

2

3

4

D2



The LR Diagram Calculus - I

The most useful property for our purposes is that these diagrams
used to keep track of the vector components of the left and right
actions of operators on free product. Suppose we have (C ′,D ′)
and (C ′′,D ′′) which are bi-free. Let

µi (Zi ) =

{
λϵ(i)(ℓϵ(i)(Zi )) if Zi ∈ C ϵ(i)

ρϵ(i)(rϵ(i)(Zi )) otherwise

Then

µ1(Z1) · · ·µn(Zn)1B =
∑

D∈LR(χ,ϵ)

cDED(µ1(Z1), . . . , µn(Zn)),

for some constants cD .



The LR Diagram Calculus - II

Here the ED correspond to the vector components as follows. Take
for example the diagram D1 before, and let n = 4, ϵ(4) =′′ and
ϵ(1) = ϵ(2) = ϵ(3) =′ Then

ED1(µ1(Z1), µ2(Z2),µ3(Z3), µ4(Z4)) =

(1− p′)Z1Z21B ⊗ (1− p′′)Z41B ⊗ (1− p′)Z31B



Boolean Projections with LR diagrams

Boolean projections annihilate many diagrams when they are first
applied. Consider for example the product

µ1(Z1)P
′′µ2(Z2)µ3(Z3)µ4(Z4)1B ,

then looking at diagrams that appear therein,

1

P ′′

2

3

4

D1

1

P ′′

2

3

4

D2

Here ED1 would get annihilated by the projection P ′′, while ED2

would not.



Showing Free-Free-Boolean Independence - I
We need an arbitrary moment of elements of
{(Aℓ

k ,A
r
k , alg(C

′
kD

′
k)}k∈K . So pick Z1, . . . ,Zn such that

Zi ∈

A
χ̂(i)
ϵ̂(i) if χ̂(i) ̸= b

alg(C ′
ϵ̂(i)D

′
ϵ̂(i)) otherwise

.

If χ̂(i) = b then let Zi = SC ,iSDi
where SCi

∈ C ′
ϵ̂(i) and

SD,i ∈ D ′
ϵ̂(i).

For each k ∈ K let (Xk ,
◦
Xk , pk) be a copy of (Ã,

◦

Ã, Ẽ ) and let

ℓk , rk ,mk be restrictions of the map θ. Let (X ,
◦
X , p) be their

reduced free product. Let

µ̃i (Zi ) =


λϵ̂(i)(ℓϵ̂(i)(Zi )) if χ̂(i) = ℓ

ρϵ̂(i)(rϵ̂(i)(Zi )) if χ̂(i) = r

P⊎,ϵ̂(i)λϵ̂(i)(mϵ̂(i)(Zi ))P⊎,ϵ̂(i) if χ̂(i) = b



Showing Free-Free-Boolean Independence - II
We only need to see that

EA(Z1 · · ·Zn) = EL(X )(µ̃1(Z1) · · · µ̃n(Zn)).

Let Tf (i) = Zi if i /∈ χ̂−1({b}), Tf (i) = SC ,i if i ∈ χ̂−1({b}), and
Tf (i)+1 = SD,i for i ∈ χ̂−1({b}). Then

T1 · · ·Tn′ = Z1 · · ·Zn.

So we get

EA(Z1 · · ·Zn) = EA(T1 · · ·Tn′) = EL(X )(µ1(T1) · · ·µn′(Tn′)),

which equals

pµ1(T1) · · ·µn′(Tn′)1B = p
∑
D∈LR

cDED(µ1(T1), . . . , µn′(Tn′)

Idea is then to add in the Boolean projections and separate the
diagrams into those which respect the Boolean projections and
those which get annihilated by them.



Showing Free-Free-Boolean Independence - III

Note that if i ∈ χ̂−1({b}) then

P⊎,ϵ(f (i))µf (i)(Tf (i))µf (i)+1(Tf (i)+1) = µ̃i (Zi )

Let A ⊆ LR(χ, ϵ) be the collection of diagrams which get
annihilated by any of the Boolean projections when added in the
correct location.
So that

µ1(T1) · · ·µn′(Tn′)1B = µ̃1(Z1) · · · µ̃n(Zn)1B + η

where
η =

∑
D∈A

cDED(µ1(T1), . . . , µn′(Tn′)).

But it is easy to see that pη1B = 0 since we get only those
diagrams corresponding to bi-non-crossing partitions which aren’t
in BNCffb(χ̂), which we know have expectation 0.



Concluding Remarks

As noted earlier, representing free-free-Boolean independence gives
us a representation of free-Boolean independence.

Skoufranis also had a representation of monotone independence
between two algebras. Though the finer details haven’t yet been
checked, it seems likely that a similar process yields an embedding
of free-monontone for two pairs of algebras.



Thank you for listening!


