Tensor free independence and central limit theorem

Sang-Jun Park ¹ Joint work with Ion Nechita ¹ [arXiv:2504.01782]

¹CNRS, LPT (Laboratoire de Physique Théorique) Toulouse

POAS, May 19th, 2025

Sang-Jun Park (CNRS)

Tensor freeness and CL⁻

Overview

We consider random matrices $X = X_N \in M_N(\mathbb{C})^{\otimes r} \cong M_{N^r}(\mathbb{C})$ satisfying the local unitary invariance (LUI):

$$X =_{\text{prob.distr}} UXU^*, \quad \forall U = \bigotimes_{s=1}^r U_s \in \mathcal{U}_N^{\otimes r}.$$

∃ →

A □ > < ∃</p>

Overview

We consider random matrices $X = X_N \in M_N(\mathbb{C})^{\otimes r} \cong M_{N^r}(\mathbb{C})$ satisfying the local unitary invariance (LUI):

$$X =_{\text{prob.distr}} UXU^*, \quad \forall U = \bigotimes_{s=1}^r U_s \in \mathcal{U}_N^{\otimes r}.$$

Main question

What can be expected about the convergences of LUI random matrices in the limit $N \to \infty$? For example,

 X_N, Y_N : indep, LUI, each having a limit $\implies \exists$ limit of $X_N + Y_N$?

- 4 回 ト 4 ヨ ト 4 ヨ ト

Overview

We consider random matrices $X = X_N \in M_N(\mathbb{C})^{\otimes r} \cong M_{N^r}(\mathbb{C})$ satisfying the local unitary invariance (LUI):

$$X =_{\text{prob.distr}} UXU^*, \quad \forall U = \bigotimes_{s=1}^r U_s \in \mathcal{U}_N^{\otimes r}.$$

Main question

What can be expected about the convergences of LUI random matrices in the limit $N \to \infty$? For example,

 X_N, Y_N : indep, LUI, each having a limit $\implies \exists$ limit of $X_N + Y_N$?

 \longrightarrow Answered via "tensor free probability"!

2/34

Outline

1 Free independence and unitary invariance

2 Tensor free independence and local unitary invariance

3 Tensor free central limit theorem

Outline

1 Free independence and unitary invariance

2 Tensor free independence and local unitary invariance

3 Tensor free central limit theorem

< 🗗 🕨

Unitary invariant random matrices

A family $\mathcal{W} \subset M_N(L^{\infty-}(\mathbb{P}))$ of $N \times N$ random matrices is called unitary invariant if

$$\mathcal{W} =_{\text{prob.distr}} U\mathcal{W}U^* := \left\{ UXU^* \mid X \in \mathcal{W} \right\}, \quad \forall U \in \mathcal{U}_N.$$

$$-X =_{distr} -U - X - U^*$$

• • • • • • • • • •

Unitary invariant random matrices

A family $\mathcal{W} \subset M_N(L^{\infty-}(\mathbb{P}))$ of $N \times N$ random matrices is called unitary invariant if

$$\mathcal{W} =_{\mathrm{prob.distr}} U\mathcal{W}U^* := \left\{ UXU^* \mid X \in \mathcal{W} \right\}, \quad \forall \ U \in \mathcal{U}_N.$$

$$X$$
 =_{distr} U X U^*

EXAMPLE:

- (Independent) GUE matrices,
- (Independent) Haar random unitary matrices,
- UWU^* where U is a Haar random unitary matrix and W is deterministic (or possibly random independent from U).
- $\{U, U^{\top}\}$ is not UI even if both U and U^{\top} are UI.

Let $\operatorname{tr} := \frac{1}{N} \operatorname{Tr}$.

Theorem (Voiculescu 1991, 1998; Collins 2003)

 $\mathcal{W}_{N}^{(1)}, \ldots, \mathcal{W}_{N}^{(L)}$: independent $N \times N$ random matrices such that

- each $W_N^{(i)}$ is unitary invariant (except possibly one),
- each $\mathcal{W}_{N}^{(i)}$ converges in distribution i.e.,

 $\lim_{N\to\infty} \mathbb{E}\left[\operatorname{tr}(P(\mathcal{W}_N^{(i)})\right] \text{ exists for all polynomials } P,$

• factorization property: for $i \in [L]$ and polynomials P_j , $\mathbb{E}\left[\operatorname{tr}(P_1(\mathcal{W}_N^{(i)}))\cdots\operatorname{tr}(P_r(\mathcal{W}_N^{(i)}))\right] = \prod_{j=1}^r \mathbb{E}\left[\operatorname{tr}(P_j(\mathcal{W}_N^{(i)}))\right] + o(1).$ Then $\mathcal{W}_N^{(1)}, \ldots, \mathcal{W}_N^{(L)}$ are asymptotically freely independent as $N \to \infty$.

A (B) (A) (B) (A) (B) (B)

Theorem (Voiculescu 1991, 1998; Collins 2003)

 $\mathcal{W}_N^{(1)},\ldots,\mathcal{W}_N^{(L)}$: independent $N\times N$ random matrices such that

- each $\mathcal{W}_{N}^{(i)}$ is unitary invariant (except possibly one),
- each $\mathcal{W}_{N}^{(i)}$ converges in distribution,
- factorization property: for $i \in [L]$ and polynomials P_j , $\mathbb{E}\left[\operatorname{tr}(P_1(\mathcal{W}_N^{(i)}))\cdots\operatorname{tr}(P_r(\mathcal{W}_N^{(i)}))\right] = \prod_{j=1}^r \mathbb{E}\left[\operatorname{tr}(P_j(\mathcal{W}_N^{(i)}))\right] + o(1).$ Then $\mathcal{W}_N^{(1)}, \dots, \mathcal{W}_N^{(L)}$ are asymptotically freely independent as $N \to \infty$.

REMARK:

• If X_N is Hermitian and $X_N \xrightarrow{\text{distr}} x$ (in expectation), then

 X_N satisfies the factorization property $\iff X_N \xrightarrow{\text{distr}} x$ in probability.

イロト 不得 トイヨト イヨト 二日

Theorem (Voiculescu 1991, 1998; Collins 2003)

 $\mathcal{W}_N^{(1)},\ldots,\mathcal{W}_N^{(L)}$: independent $N\times N$ random matrices such that

- each $\mathcal{W}_{N}^{(i)}$ is unitary invariant (except possibly one),
- each $\mathcal{W}_{N}^{(i)}$ converges in distribution,
- factorization property: for $i \in [L]$ and polynomials P_j , $\mathbb{E}\left[\operatorname{tr}(P_1(\mathcal{W}_N^{(i)}))\cdots\operatorname{tr}(P_r(\mathcal{W}_N^{(i)}))\right] = \prod_{j=1}^r \mathbb{E}\left[\operatorname{tr}(P_j(\mathcal{W}_N^{(i)}))\right] + o(1).$ Then $\mathcal{W}_N^{(1)}, \ldots \mathcal{W}_N^{(L)}$ are asymptotically freely independent as $N \to \infty$.

REMARK:

• If X_N is Hermitian and $X_N \xrightarrow{\text{distr}} x$ (in expectation), then

 X_N satisfies the factorization property $\iff X_N \xrightarrow{\text{distr}} x$ in probability.

• Variants: a.s. / higher-order / strong convergence, etc.

Theorem (Voiculescu 1991, 1998; Collins 2003)

 $\mathcal{W}_{N}^{(1)},\ldots,\mathcal{W}_{N}^{(L)}$: independent $N \times N$ random matrices such that

- each $\mathcal{W}_{N}^{(i)}$ is unitary invariant (except possibly one),
- each $\mathcal{W}_N^{(i)}$ converges in distribution,
- factorization property: for $i \in [L]$ and polynomials P_j , $\mathbb{E}\left[\operatorname{tr}(P_1(\mathcal{W}_N^{(i)}))\cdots\operatorname{tr}(P_r(\mathcal{W}_N^{(i)}))\right] = \prod_{j=1}^r \mathbb{E}\left[\operatorname{tr}(P_j(\mathcal{W}_N^{(i)}))\right] + o(1).$ Then $\mathcal{W}_N^{(1)}, \ldots, \mathcal{W}_N^{(L)}$ are asymptotically freely independent as $N \to \infty$.
 - The asymptotic freeness remains valid for
 - (Dykema 1993) Wigner matrices,
 - (Collins and Sniady 2006) Orthogonal invariant matrices.
 - (Male 2020; Cebron, Dahlqvist, and Male 2024) Permutation invariant matrices and traffic independence.

Partial order between permutations

Let $|\cdot|: S_p \to \mathbb{Z}_{\geq 0}$ be the length function:

 $|\alpha| := \min \{k \ge 0 \mid \alpha = \tau_1 \cdots \tau_k \text{ for some transpositions } \tau_1, \ldots, \tau_k \}.$

- $|\alpha| = p \#\alpha$ for $\alpha \in S_p$, where $\#\alpha$ is the number of cycles in α .
- (Triangle inequality) $|\alpha\beta| \le |\alpha| + |\beta|$, $\alpha, \beta \in S_p$.
- " $\beta \leq \alpha$ " if $|\beta| + |\beta^{-1}\alpha| = |\alpha|$, i.e., $\mathrm{id}_{p} \to \beta \to \alpha$ is a geodesic.

Partial order between permutations

Let $|\cdot|: S_p \to \mathbb{Z}_{\geq 0}$ be the length function:

 $|\alpha| := \min \{k \ge 0 \mid \alpha = \tau_1 \cdots \tau_k \text{ for some transpositions } \tau_1, \ldots, \tau_k \}.$

- $|\alpha| = p \#\alpha$ for $\alpha \in S_p$, where $\#\alpha$ is the number of cycles in α .
- (Triangle inequality) $|\alpha\beta| \le |\alpha| + |\beta|$, $\alpha, \beta \in S_p$.
- " $\beta \leq \alpha$ " if $|\beta| + |\beta^{-1}\alpha| = |\alpha|$, i.e., $\mathrm{id}_p \to \beta \to \alpha$ is a geodesic.

Proposition (cf. Textbook of Nica and Speicher)

- \leq defines a partial order on S_p .
- $(\{\beta \in S_p \mid \beta \le \gamma_p\}, \le) \cong (NC(p), \le)$ where $\gamma_p := (12 \cdots p)$ and NC(p) is the set of non-crossing partitions of $[p] := \{1, 2, \dots, p\}$.

9/34

イロト 不得 トイヨト イヨト 二日

Partial order between permutations

Let $|\cdot|: S_p \to \mathbb{Z}_{\geq 0}$ be the length function:

 $|\alpha| := \min \{k \ge 0 \mid \alpha = \tau_1 \cdots \tau_k \text{ for some transpositions } \tau_1, \ldots, \tau_k \}.$

- $|\alpha| = p \#\alpha$ for $\alpha \in S_p$, where $\#\alpha$ is the number of cycles in α .
- (Triangle inequality) $|\alpha\beta| \le |\alpha| + |\beta|$, $\alpha, \beta \in S_p$.
- " $\beta \leq \alpha$ " if $|\beta| + |\beta^{-1}\alpha| = |\alpha|$, i.e., $\mathrm{id}_p \to \beta \to \alpha$ is a geodesic.

Proposition (cf. Textbook of Nica and Speicher)

- \leq defines a partial order on S_p .
- $(\{\beta \in S_p \mid \beta \le \gamma_p\}, \le) \cong (NC(p), \le)$ where $\gamma_p := (12 \cdots p)$ and NC(p) is the set of non-crossing partitions of $[p] := \{1, 2, \dots, p\}$.

EXAMPLE: For $\gamma_4 = (1234)$,

 $(14)(23) \leq \gamma_4$ and $(134) \leq \gamma_4$ while $(13)(24) \not\leq \gamma_4$ and $(143) \not\leq \gamma_4$

Moments associated to permutations

Let (\mathcal{A}, φ) be a NC probability space with a tracial state φ . Let us define

$$\varphi_{\alpha}(x_{1},\ldots,x_{p}) = \prod_{\substack{c \in \operatorname{Cycle}(\alpha) \\ c = (i_{1} \ i_{2} \cdots i_{n})}} \varphi(x_{i_{1}} \cdots x_{i_{n}}), \quad \alpha \in S_{p}.$$

• $\varphi_{(13)(624)(5)}(x_1,\ldots,x_6) = \varphi(x_1x_3)\varphi(x_6x_2x_4)\varphi(x_5).$

•
$$\varphi_{\gamma_p}(x_1,\ldots,x_p) = \varphi(x_1\cdots x_p).$$

Free cumulant $\kappa_{\alpha} : \mathcal{A}^{p} \to \mathbb{C}$ is defined from the moment-cumulant relation

$$\varphi_{\alpha}(x_1,\ldots,x_p) = \sum_{\beta \in S_p: \beta \leq \alpha} \kappa_{\beta}(x_1,\ldots,x_p)$$

∃ ≥ >

Image: A match a ma

Free cumulant $\kappa_{\alpha} : \mathcal{A}^{p} \to \mathbb{C}$ is defined from the moment-cumulant relation

$$\varphi_{\alpha}(x_1,\ldots,x_p) = \sum_{\beta \in \mathcal{S}_p: \beta \leq \alpha} \kappa_{\beta}(x_1,\ldots,x_p)$$

• By Möbius inversion, $\kappa_{\alpha}(x_1, \dots, x_p) = \sum_{\beta \leq \alpha} \varphi_{\beta}(x_1, \dots, x_p) \operatorname{Möb}(\beta^{-1}\alpha)$ where $\operatorname{Möb}(\sigma) := \prod_{c \in \operatorname{Cycle}(\sigma)} (-1)^{|c|} \operatorname{Cat}_{|c|}$ is the Möbius function.

•
$$\kappa_p := \kappa_{\gamma_p}$$
.

Free cumulant $\kappa_{\alpha} : \mathcal{A}^{p} \to \mathbb{C}$ is defined from the moment-cumulant relation

$$\varphi_{\alpha}(x_1,\ldots,x_p) = \sum_{\beta \in S_p: \beta \leq \alpha} \kappa_{\beta}(x_1,\ldots,x_p)$$

• By Möbius inversion,
$$\kappa_{\alpha}(x_1, \dots, x_p) = \sum_{\beta \leq \alpha} \varphi_{\beta}(x_1, \dots, x_p) \operatorname{Möb}(\beta^{-1}\alpha)$$

where $\operatorname{Möb}(\sigma) := \prod_{c \in \operatorname{Cycle}(\sigma)} (-1)^{|c|} \operatorname{Cat}_{|c|}$ is the Möbius function.

•
$$\kappa_p := \kappa_{\gamma_p}$$
.

Theorem (Speicher 1994)

 $\mathcal{W}_1, \ldots, \mathcal{W}_L \subset (\mathcal{A}, \varphi)$ are free if and only if every mixed free cumulant vanishes: $\kappa_p(x_{i_1}, \ldots, x_{i_p}) = 0$ whenever $x_j \in \mathcal{W}_{i_j}$ and $i_l \neq i_k$ for some l, k.

RECALL:
$$\varphi(x_1 \cdots x_p) = \sum_{\pi \in NC(p)} \kappa_{\pi}(x_1, \dots, x_p).$$

For a function $f : [p] \rightarrow [L]$, define the partition

$$\operatorname{Ker} f := \left\{ f^{-1}(i) \mid i \in f([p]) \right\} \in \mathcal{P}(p).$$

Corollary (Joint distribution from free cumulants)

 $\mathcal{W}_1, \ldots, \mathcal{W}_L \subseteq (\mathcal{A}, \varphi)$ are freely independent if only if for every function $f : [p] \rightarrow [L]$ and $x_j \in \mathcal{W}_{f(j)}$,

$$\varphi(\mathbf{x}_1\cdots\mathbf{x}_p) = \sum_{\substack{\pi\in \mathsf{NC}(p), \ i=1\\\pi\leq \mathrm{Ker}f}} \prod_{i=1}^L \kappa_{\pi|_{f^{-1}(i)}}((\mathbf{x}_j)_{j\in f^{-1}(i)}).$$

Outline

Free independence and unitary invariance

2 Tensor free independence and local unitary invariance

3 Tensor free central limit theorem

Image: A match a ma

Definition (Collins, Gurau, and Lionni 2023) For $X^{(1)}, \ldots, X^{(p)} \in M_N(\mathbb{C})^{\otimes r}$, define the trace invariant associated to $\underline{\alpha} = (\alpha_1, \ldots, \alpha_r) \in (S_p)^r$ by

$$\operatorname{Tr}_{\underline{\alpha}}(X^{(1)},\ldots,X^{(p)}):=\sum_{\textit{all indices}}\left(\prod_{k=1}^{p}X^{(k)}_{i_{1}^{(k)}\ldots i_{r}^{(k)},j_{1}^{(k)}\ldots j_{r}^{(k)}}\right)\prod_{s=1}^{r}\left(\prod_{k=1}^{p}\delta_{i_{s}^{(\alpha_{s}(k))},j_{s}^{(k)}}\right).$$

< A > < A > >

Definition (Collins, Gurau, and Lionni 2023) For $X^{(1)}, \ldots, X^{(p)} \in M_N(\mathbb{C})^{\otimes r}$, define the trace invariant associated to $\underline{\alpha} = (\alpha_1, \ldots, \alpha_r) \in (S_p)^r$ by

$$\mathrm{Tr}_{\underline{\alpha}}(X^{(1)},\ldots,X^{(p)}) := \sum_{all \text{ indices}} \left(\prod_{k=1}^{p} X^{(k)}_{i_{1}^{(k)}\ldots i_{r}^{(k)}, j_{1}^{(k)}\ldots j_{r}^{(k)}} \right) \prod_{s=1}^{r} \left(\prod_{k=1}^{p} \delta_{i_{s}^{(\alpha_{s}(k))}, j_{s}^{(k)}} \right).$$

•
$$\operatorname{Tr}_{(12)(3),(1)(23)}(X^{(1)}, X^{(2)}, X^{(3)}) = \sum_{a_{1,2,3},b_{1,2,3} \in [N]} X^{(1)}_{a_1b_1,a_2b_1} X^{(2)}_{a_2b_2,a_1b_3} X^{(3)}_{a_3b_3,a_3b_2}$$

▲ 同 ▶ → ● ▶

Definition (Collins, Gurau, and Lionni 2023) For $X^{(1)}, \ldots, X^{(p)} \in M_N(\mathbb{C})^{\otimes r}$, define the trace invariant associated to $\underline{\alpha} = (\alpha_1, \ldots, \alpha_r) \in (S_p)^r$ by $\operatorname{Tr}_{\underline{\alpha}}(X^{(1)}, \ldots, X^{(p)}) := \sum_{all \text{ indices}} \left(\prod_{k=1}^p X^{(k)}_{i_1^{(k)} \ldots i_r^{(k)}, j_1^{(k)} \ldots j_r^{(k)}}\right) \prod_{s=1}^r \left(\prod_{k=1}^p \delta_{i_s^{(\alpha_s(k))}, j_s^{(k)}}\right).$

• $\operatorname{Tr}_{(12)(3),(12)(3)}(X_1, X_2, X_3) = \operatorname{Tr}(X_1 X_2) \cdot \operatorname{Tr}(X_3) = \operatorname{Tr}_{(12)(3)}(X_1, X_2, X_3).$

Definition (Collins, Gurau, and Lionni 2023) For $X^{(1)}, \ldots, X^{(p)} \in M_N(\mathbb{C})^{\otimes r}$, define the trace invariant associated to $\underline{\alpha} = (\alpha_1, \ldots, \alpha_r) \in (S_p)^r$ by

$$\operatorname{Tr}_{\underline{\alpha}}(X^{(1)},\ldots,X^{(p)}):=\sum_{\textit{all indices}}\left(\prod_{k=1}^{p}X^{(k)}_{i_{1}^{(k)}\ldots i_{r}^{(k)},j_{1}^{(k)}\ldots j_{r}^{(k)}}\right)\prod_{s=1}^{r}\left(\prod_{k=1}^{p}\delta_{i_{s}^{(\alpha_{s}(k))},j_{s}^{(k)}}\right).$$

• $\operatorname{Tr}_{\underline{\alpha}} = \operatorname{Tr}_{\sigma}$ if $\alpha_s \equiv \sigma$. In particular, $\operatorname{Tr}_{\gamma_p}(X_1, \ldots, X_p) = \operatorname{Tr}(X_1 \cdots X_p)$.

・ 「 ト ・ ヨ ト ・ ヨ ト ・

Definition (Collins, Gurau, and Lionni 2023) For $X^{(1)}, \ldots, X^{(p)} \in M_N(\mathbb{C})^{\otimes r}$, define the trace invariant associated to $\underline{\alpha} = (\alpha_1, \ldots, \alpha_r) \in (S_p)^r$ by

$$\operatorname{Tr}_{\underline{\alpha}}(X^{(1)},\ldots,X^{(p)}):=\sum_{\text{all indices}}\left(\prod_{k=1}^{p}X^{(k)}_{i_{1}^{(k)}\ldots i_{r}^{(k)},j_{1}^{(k)}\ldots j_{r}^{(k)}}\right)\prod_{s=1}^{r}\left(\prod_{k=1}^{p}\delta_{i_{s}^{(\alpha_{s}(k))},j_{s}^{(k)}}\right).$$

- $\operatorname{Tr}_{\underline{\alpha}} = \operatorname{Tr}_{\sigma}$ if $\alpha_s \equiv \sigma$. In particular, $\operatorname{Tr}_{\gamma_p}(X_1, \ldots, X_p) = \operatorname{Tr}(X_1 \cdots X_p)$.
- $\operatorname{Tr}_{\underline{\alpha}}$ is invariant under local unitaries: $\operatorname{Tr}_{\underline{\alpha}}(UX^{(1)}U^*, \dots, UX^{(p)}U^*) = \operatorname{Tr}_{\underline{\alpha}}(X^{(1)}, \dots, X^{(p)}), \quad U = \bigotimes_{s=1}^r U_s.$
- Tensor distribution = data of $(\mathbb{E} \circ \operatorname{tr}_{\underline{\alpha}} := \frac{1}{N^{\#\alpha_1 + \dots + \#\alpha_r}} \mathbb{E} \circ \operatorname{Tr}_{\underline{\alpha}})_{\underline{\alpha} \in \bigcup_{p=1}^{\infty} (S_p)^r}$ for a family of random matrices $\mathcal{W}_N \subset M_N^{\otimes r}(L^{\infty-}(\mathbb{P})).$

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Algebraic tensor probability space

Definition (Nechita and P., 2025+)

An r-partite (algebraic) tensor probability space is a triple $(\mathcal{A}, \varphi, (\varphi_{\underline{\alpha}}))$:

- (\mathcal{A}, φ) is a NC probability space with a tracial state φ ,
- for each p ≥ 1 and <u>α</u> ∈ (S_p)^r, φ_{<u>α</u>} : A^p → C is a multilinear functional satisfying "reasonable conditions", e.g. φ_{<u>α</u>} = φ_σ whenever α_s ≡ σ.

Algebraic tensor probability space

Definition (Nechita and P., 2025+)

An r-partite (algebraic) tensor probability space is a triple $(\mathcal{A}, \varphi, (\varphi_{\underline{\alpha}}))$:

- (\mathcal{A}, φ) is a NC probability space with a tracial state φ ,
- for each p ≥ 1 and <u>α</u> ∈ (S_p)^r, φ_{<u>α</u>} : A^p → C is a multilinear functional satisfying "reasonable conditions", e.g. φ_{<u>α</u>} = φ_σ whenever α_s ≡ σ.

EXAMPLE:

- $(M_N(\mathbb{C})^{\otimes r}, \operatorname{tr}, (\operatorname{tr}_{\underline{\alpha}})).$
- $(\mathcal{A}^{\otimes r}, \varphi^{\otimes r}, (\bigotimes_{s=1}^{r} \varphi_{\alpha_s})) \text{ where } (\mathcal{A}, \varphi) \text{ is a NC probability space.}$

Definition (Nechita and P., 2025+)

• The tensor free cumulants $\kappa_{\underline{\alpha}} : \mathcal{A}^p \to \mathbb{C}$ for $\underline{\alpha} \in (S_p)^r$ is defined by

$$\varphi_{\underline{\alpha}}(x_1,\ldots,x_p) = \sum_{\beta:\,\beta_s \leq \alpha_s\,\,\forall\,s} \kappa_{\underline{\beta}}(x_1,\ldots,x_p).$$

< A > < A > >

Definition (Nechita and P., 2025+)

• The tensor free cumulants $\kappa_{\underline{\alpha}} : \mathcal{A}^p \to \mathbb{C}$ for $\underline{\alpha} \in (S_p)^r$ is defined by

$$\varphi_{\underline{\alpha}}(x_1,\ldots,x_p) = \sum_{\underline{\beta}:\,\beta_s \leq \alpha_s \,\,\forall\,s} \kappa_{\underline{\beta}}(x_1,\ldots,x_p).$$

Onital subalgebras A⁽¹⁾,..., A^(L) of A are called tensor freely independent (or tensor free) if every mixed tensor free cumulant vanishes, i.e.,

$$\begin{aligned} \kappa_{\underline{\alpha}}(x_1,\ldots,x_p) &= 0 \text{ whenever } x_j \in \mathcal{A}_{f(j)}, \ f(k) \neq f(l) \text{ for some} \\ k,l \in [p], \text{ and } \Pi(\alpha_1) \lor_{\mathcal{P}} \cdots \lor_{\mathcal{P}} \Pi(\alpha_r) = 1_p \end{aligned}$$

where $\Pi : S_p \to \mathcal{P}(p)$ is the natural projection.

EXAMPLE: if $x, y \in \mathcal{A}$ are tensor free, then

$$\kappa_{(12)(3),(1)(23)}(x,y,x) = \kappa_{(12)(3),(1)(23)}(x,x,y) = 0.$$

Definition (Nechita and P., 2025+)

•
$$\varphi_{\underline{\alpha}}(x_1,\ldots,x_p) = \sum_{\underline{\beta}:\,\beta_s \leq \alpha_s \,\,\forall\,s} \kappa_{\underline{\beta}}(x_1,\ldots,x_p).$$

A⁽¹⁾,..., *A*^(L) are tensor free if κ_α(x₁,..., x_p) = 0 for every mixed tensor free cumulant.

REMARK:

•
$$\kappa_{\underline{\alpha}}(x_1,\ldots,x_p) := \sum_{\underline{\beta}: \ \beta_s \leq \alpha_s \ \forall \ s} \varphi_{\underline{\beta}}(x_1,\ldots,x_p) \left(\prod_{s=1}^r \mathsf{M\"ob}(\beta_s^{-1}\alpha_s)\right).$$

 Tensor freeness → the joint tensor distribution depends only on the marginal tensor distributions : for every <u>a</u> ∈ (S_p)^r and x_j ∈ A^{(f(j))},

$$\varphi_{\underline{\alpha}}(x_1,\ldots,x_p) = \sum_{\substack{\forall s: \beta_s \leq \alpha_s, \\ \bigvee_{\mathcal{P}} \Pi(\beta_s) \leq \mathrm{Ker}f}} \prod_{i \in [L]} \kappa_{\underline{\beta}|_{f^{-1}(i)}}((x_j)_{j \in f^{-1}(i)}).$$

19/34

- 4 回 ト 4 三 ト 4 三 ト

Definition (Nechita and P., 2025+)

A⁽¹⁾,..., A^(L) are tensor free if κ_α(x₁,..., x_p) = 0 for every mixed tensor free cumulant.

REMARK:

•
$$\kappa_{\underline{\alpha}}(x_1,\ldots,x_p) := \sum_{\underline{\beta}: \beta_s \leq \alpha_s \ \forall \ s} \varphi_{\underline{\beta}}(x_1,\ldots,x_p) \left(\prod_{s=1}^r \mathsf{M\"ob}(\beta_s^{-1}\alpha_s) \right).$$

- Tensor freeness → the joint tensor distribution depends only on the marginal tensor distributions.
- If r = 1, $\kappa_{\underline{\alpha}} = \kappa_{\alpha}$ and free = tensor free.
- If s_1, s_2 are free semicircular elements, then $s_1 \otimes s_1$ and $s_2 \otimes s_2$ are tensor free while they are not free.

A D > A B > A B > A B >

Result 1: Local unitary invariance and tensor freeness

RECALL:
$$\operatorname{tr}_{\underline{\alpha}} = \frac{1}{N^{\#\alpha_1 + \dots + \#\alpha_r}} \operatorname{Tr}_{\underline{\alpha}}$$
.

Theorem (Nechita and P., 2025+)

$$\begin{split} & \mathcal{W}_{N}^{(1)}, \dots, \mathcal{W}_{N}^{(L)} : \text{ independent families of } N^{r} \times N^{r} \text{ random matrices s.t.} \\ & \text{ each } \mathcal{W}_{N}^{(i)} \text{ is local unitary invariant (except possibly one),} \\ & \text{ each } \mathcal{W}_{N}^{(i)} \text{ converges in tensor distribution:} \\ & \lim_{N \to \infty} \mathbb{E} \left[\operatorname{tr}_{\underline{\alpha}}(X_{1}, \dots, X_{p}) \right] \text{ exists for all } X_{j} \in \mathcal{W}_{N}^{(i)} \text{ and } \underline{\alpha} \in (S_{p})^{r}, \\ & \text{ "tensor" factorization property: for } \underline{\alpha} \in (S_{p})^{r}, \ \underline{\beta} \in (S_{q})^{r}, \text{ and} \end{split}$$

 $\begin{array}{l} X_1, \dots, X_p, Y_1, \dots, Y_q \in \mathcal{W}_N^{(i)}, \\ \mathbb{E}\left[\operatorname{tr}_{\underline{\alpha} \sqcup \underline{\beta}}(\underline{X}, \underline{Y})\right] = \mathbb{E}[\operatorname{tr}_{\underline{\alpha}}(\underline{X})]\mathbb{E}[\operatorname{tr}_{\underline{\beta}}(\underline{Y})] + o(1). \end{array}$ $Then \ \mathcal{W}_N^{(1)}, \dots \mathcal{W}_N^{(L)} \text{ are asymptotically tensor free as } N \to \infty.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Result 1: Local unitary invariance and tensor freeness

Theorem (Nechita and P., 2025+)

$$\begin{split} & \mathcal{W}_{N}^{(1)}, \dots, \mathcal{W}_{N}^{(L)} : \text{ independent families of } N^{r} \times N^{r} \text{ random matrices s.t.} \\ & \bullet \text{ each } \mathcal{W}_{N}^{(i)} \text{ is local unitary invariant (except possibly one),} \\ & \bullet \text{ each } \mathcal{W}_{N}^{(i)} \text{ converges in tensor distribution:} \\ & \lim_{N \to \infty} \mathbb{E} \left[\operatorname{tr}_{\underline{\alpha}}(X_{1}, \dots, X_{p}) \right] \text{ exists for all } X_{j} \in \mathcal{W}_{N}^{(i)} \text{ and } \underline{\alpha} \in (S_{p})^{r}, \\ & \bullet + \text{ "tensor" factorization property.} \\ \text{Then } \mathcal{W}_{N}^{(1)}, \dots \mathcal{W}_{N}^{(L)} \text{ are asymptotically tensor free as } N \to \infty. \end{split}$$

Idea of proof: apply (graphical) Weingarten calculus to show that

$$\lim_{N\to\infty} \mathbb{E}\left[\operatorname{tr}_{\underline{\alpha}}(X_{N,1}^{(f(1))},\ldots,X_{N,p}^{(f(p))})\right] = \sum_{\substack{\forall s:\beta_s\leq\alpha_s,\\ \Pi(\beta_s)\leq\operatorname{Ker}f}}\prod_{i=1}^L \kappa_{\underline{\beta}|_{f^{-1}(i)}}((x_j)_{j\in f^{-1}(i)}).$$

22 / 34

Partial transpose and free independence

QUESTION: Can we find examples of non-independent random matrices which are asymptotically tensor free?

< A□
 < A□
 < A□

Partial transpose and free independence

QUESTION: Can we find examples of non-independent random matrices which are asymptotically tensor free?

Examples for free independence:

• (Mingo and Popa 2016) If X is UI, then X and X^{\top} are asymp. free.

Partial transpose and free independence

QUESTION: Can we find examples of non-independent random matrices which are asymptotically tensor free?

Examples for free independence:

- (Mingo and Popa 2016) If X is UI, then X and X^{\top} are asymp. free.
- (Mingo and Popa 2019) If $X = GG^*$ is an $N^2 \times N^2$ Wishart matrix, then all the partial transposes

 $X, \ (\top \otimes \operatorname{id}_N)(X), \ (\operatorname{id}_N \otimes \top)(X), \ X^{\top} = (\top \otimes \top)(X)$

of X are asymptotically free.

• (Mingo and Popa 2024) The same holds if $X \in M_N^{\otimes 2}(L^{\infty-}(\mathbb{P}))$ is UI.

Result 1': Partial transpose and tensor freeness

Theorem (Nechita and P., 2025+)

Let X_N be an $N^r \times N^r$ random matrix such that

• X_N is (globally) unitary invariant,

• X_N converges in distribution and satisfies the factorization property. Then, the family of 2^r partial transposes of X_N

 $\{(\Phi_1\otimes\cdots\otimes\Phi_r)(X_N) \mid \Phi_s \in \{\mathrm{id}_N, \top\} \forall s\},\$

becomes both asymp. free and asymp. tensor free as $N \rightarrow \infty$.

Result 1': Partial transpose and tensor freeness

Theorem (Nechita and P., 2025+)

Let X_N be an $N^r \times N^r$ random matrix such that

• X_N is (globally) unitary invariant,

• X_N converges in distribution and satisfies the factorization property. Then, the family of 2^r partial transposes of X_N

 $\{(\Phi_1\otimes\cdots\otimes\Phi_r)(X_N) \mid \Phi_s\in \{\mathrm{id}_N, \top\} \,\forall\, s\},\$

becomes both asymp. free and asymp. tensor free as $N \to \infty$.

In particular, for a UI matrix X_N having (usual) distribution limit,

- X_N converges in tensor distribution,
- All partial transposes (Φ₁ ⊗ · · · ⊗ Φ_r)(X_N) converges in tensor distribution.

Similar statement can be shown for orthogonal invariant random matrix.

Outline

Free independence and unitary invariance

2 Tensor free independence and local unitary invariance

3 Tensor free central limit theorem

Image: A match a ma

Free CLT

Theorem (Voiculescu 1983; 1985)

Let $\{x_i\}_{i=1}^{\infty} \subset (\mathcal{A}, \varphi)$ be a sequence of centered, identically distributed, and free elements. Then $\frac{1}{\sqrt{N}}(x_1 + \cdots + x_N)$ converges in distribution to a semicircular element of variance $\sigma^2 = \varphi(x_1^2)$:

$$\lim_{N\to\infty}\varphi\Big(\Big(\frac{1}{\sqrt{N}}(x_1+\cdots x_N)\Big)^p\Big)=\sigma^p\int x^pd\mu_{SC}(x),\quad p\ge 1.$$

・ 何 ト ・ ヨ ト ・ ヨ ト …

Free CLT

Theorem (Voiculescu 1983; 1985)

Let $\{x_i\}_{i=1}^{\infty} \subset (\mathcal{A}, \varphi)$ be a sequence of centered, identically distributed, and free elements. Then $\frac{1}{\sqrt{N}}(x_1 + \cdots + x_N)$ converges in distribution to a semicircular element of variance $\varphi(x_1^2)$.

Simple argument using free cumulants:

$$\kappa_p\left(\frac{x_1+\cdots+x_N}{\sqrt{N}}\right) = N^{-p/2} \cdot N\kappa_p(x_1) \to \begin{cases} \kappa_2(x_1) = \varphi(x_1^2) & \text{if } p = 2, \\ 0 & \text{otherwise.} \end{cases}$$

Free CLT

Theorem (Voiculescu 1983; 1985)

Let $\{x_i\}_{i=1}^{\infty} \subset (\mathcal{A}, \varphi)$ be a sequence of centered, identically distributed, and free elements. Then $\frac{1}{\sqrt{N}}(x_1 + \cdots + x_N)$ converges in distribution to a semicircular element of variance $\varphi(x_1^2)$.

Simple argument using free cumulants:

$$\kappa_p\left(\frac{x_1+\cdots+x_N}{\sqrt{N}}\right) = N^{-p/2} \cdot N\kappa_p(x_1) \to \begin{cases} \kappa_2(x_1) = \varphi(x_1^2) & \text{if } p = 2, \\ 0 & \text{otherwise.} \end{cases}$$

RECALL: $\Pi : S_p \to \mathcal{P}(p)$, the natural projection.

Proposition

If x_1, \ldots, x_k are tensor free and $\underline{\alpha} \in (S_p)^r$ satisfies

$$\Pi(\alpha_1) \vee_{\mathcal{P}} \cdots \vee_{\mathcal{P}} \Pi(\alpha_r) = 1_p, \text{ then } \kappa_{\underline{\alpha}}(x_1 + \cdots + x_k) = \sum_{i=1}^{k} \kappa_{\underline{\alpha}}(x_i).$$

k

Theorem (Nechita and P., 2025+)

Let $\{x_i\}_{i=1}^{\infty} \subset (\mathcal{A}, \varphi, (\varphi_{\underline{\alpha}}))$ be a sequence of centered, identically tensor distributed, and tensor free elements. Then

$$\frac{1}{\sqrt{N}}(x_1 + \cdots + x_N) \to \sum_{\underline{\alpha} \in (S_2)^r \setminus \{\underline{\mathrm{id}}_2\}} \sqrt{\kappa_{\underline{\alpha}}(x_1)} \, s_{\underline{\alpha}}$$

in tensor distribution as $N \to \infty$, where $(s_{\underline{\alpha}})$ are tensor free family of semicircular elements with

$$\kappa_{\underline{\beta}}(\underline{s}_{\underline{\alpha}}) = \begin{cases} \delta_{\underline{\alpha},\underline{\beta}} & \text{if } p = 2, \\ 0 & \text{otherwise,} \end{cases}, \quad \underline{\beta} \in (S_p)^r.$$

In particular, the corresponding limit is universally governed by $2^r - 1$ semicircular elements.

Theorem (Nechita and P., 2025+)

Let $\{x_i\}_{i=1}^{\infty} \subset (\mathcal{A}, \varphi, (\varphi_{\underline{\alpha}}))$ be a sequence of centered, identically tensor distributed, and tensor free elements. Then

$$\frac{1}{\sqrt{N}}(x_1 + \cdots + x_N) \to \sum_{\underline{\alpha} \in (S_2)^r \setminus \{\underline{\mathrm{id}}_2\}} \sqrt{\kappa_{\underline{\alpha}}(x_1)} \, s_{\underline{\alpha}}$$

in tensor distribution as $N \to \infty$, where $(s_{\underline{\alpha}})$ are tensor free family of $2^r - 1$ semicircular elements.

• r = 1: Free CLT.

• r = 2: governed by three semicircular elements

$$s_1 := s_{\gamma_2, \mathrm{id}_2}, \quad s_2 := s_{\mathrm{id}_2, \gamma_2}, \quad s_{12} := s_{\gamma_2, \gamma_2},$$

where $\begin{cases} s_1 \text{ and } s_2 \text{ are (classically) independent,} \\ s_{12} \text{ and } \{s_1, s_2\} \text{ are free.} \end{cases}$

• Indeed, $s_1 := s_{\gamma_2, id_2}$, $s_2 := s_{id_2, \gamma_2}$, $s_{12} := s_{\gamma_2, \gamma_2}$ can be understood as a tensor distribution limit of tensor GUE models:

$$G_1 \otimes I_N, \ I_N \otimes G_2, \ G_{12} \xrightarrow{\otimes \text{-distr}} s_1, \ s_2, \ s_{12}$$

< 47 ▶

• Indeed, $s_1 := s_{\gamma_2, id_2}$, $s_2 := s_{id_2, \gamma_2}$, $s_{12} := s_{\gamma_2, \gamma_2}$ can be understood as a tensor distribution limit of tensor GUE models:

$$G_1 \otimes I_N, \ I_N \otimes G_2, \ G_{12} \xrightarrow{\otimes \text{-distr}} s_1, \ s_2, \ s_{12}$$

• For general $r \ge 2$, the family $(s_{\underline{\alpha}})_{\underline{\alpha} \in (S_2)^r \setminus \{\underline{id}_2\}}$ are ε -free wrt the graph $\varepsilon = (V, E)$: $V = \{I \subseteq [r] \mid I \neq \emptyset\}$; $(I, J) \in E$ iff $I \cap J = \emptyset$.

Application: CLT for tensor products of free variables

Suppose that $\{a_i\}_{i=1}^{\infty} \subset (\mathcal{A}, \varphi)$ is a family of self-adjoint, identically distributed free elements with mean $\varphi(a_i) = \lambda$ and variance $\operatorname{var}(a_i) = \sigma^2$. Consider the identically tensor distributed and tensor free elements

$$x_i := a_i \otimes a_i \in (\mathcal{A}^{\otimes 2}, \varphi^{\otimes 2}, (\varphi_{\alpha_1} \otimes \varphi_{\alpha_2})).$$

Application: CLT for tensor products of free variables

Suppose that $\{a_i\}_{i=1}^{\infty} \subset (\mathcal{A}, \varphi)$ is a family of self-adjoint, identically distributed free elements with mean $\varphi(a_i) = \lambda$ and variance $\operatorname{var}(a_i) = \sigma^2$. Consider the identically tensor distributed and tensor free elements

$$x_i := a_i \otimes a_i \in (\mathcal{A}^{\otimes 2}, \varphi^{\otimes 2}, (\varphi_{\alpha_1} \otimes \varphi_{\alpha_2})).$$

Corollary (Lancien, Santos, and Youssef 2024; Skoufranis 2024+) The normalized sum $\frac{1}{\sqrt{N}}(x_1 + \dots + x_N - N\lambda^2)$ converges in distribution to $\sigma\lambda(s_1 + s_2) + \sigma^2 s_{12} \sim_{\text{distr}} (D_{\sigma\lambda}[\mu_{SC}] * D_{\sigma\lambda}[\mu_{SC}]) \boxplus D_{\sigma^2}[\mu_{SC}]$ where $\begin{cases} * = (classical) \text{ convolution}, \\ \boxplus = \text{ free convolution}, \\ D_c[\mu_{SC}] = \text{ push-forward measure of } \mu_{SC} \text{ wrt the map } t \mapsto ct. \end{cases}$

イロト 不得 トイヨト イヨト 二日

Conclusions and outlook

In this work, we provided

- Convergence of LUI random matrices in the framework of tensor free probability.
- Asymptotic behavior of local orthogonal invariant random matrices.
- CLT for tensor free elements and its applications.

Conclusions and outlook

In this work, we provided

- Convergence of LUI random matrices in the framework of tensor free probability.
- Asymptotic behavior of local orthogonal invariant random matrices.
- CLT for tensor free elements and its applications.

Recent works on random tensors + free probability:

Kunisky, Moore, and Wein: [arXiv:2404.18735], Bonnin and Bordenave: [arXiv:2407.18881]

Collins, Gurau, and Lionni: [arXiv:2410.00908]

Conclusions and outlook

In this work, we provided

- Convergence of LUI random matrices in the framework of tensor free probability.
- Asymptotic behavior of local orthogonal invariant random matrices.
- CLT for tensor free elements and its applications.

Future works:

- Any possible integrated theory of random tensors:
 - Kunisky, Moore, and Wein: arXiv:2404.18735,
 - Bonnin and Bordenave: arXiv:2407.18881,
 - Collins, Gurau, and Lionni: arXiv:2410.00908.
- Higher-order / strong behavior of random tensors.
- Application to Quantum Information Theory.

33 / 34

Thank you for your attention!

< □ > < 同 > < 三 > < 三 >