The Quasicentral Modulus for a New Class of Operators

Alex Glickfield

Indiana University

Probabilistic Operator Algebra Seminar April 21st

Alex Glickfield

Indiana University

History I

- Weyl-von Neumann: T self-adjoint \implies there exists diagonal D such that $T - D \in K(\mathcal{H})$ (vN: \mathfrak{S}_2)
- Kuroda: Can be improved to every ideal larger than \mathfrak{S}_1
- Berg: T can be normal so that $T D \in K(\mathcal{H})$
- Voiculescu: $\tau = (T_1, T_2, \dots, T_n), (n \ge 2)$ commuting, self-adjoint \implies there exists diagonal *n*-tuple Δ so that $\tau - \Delta \in \mathfrak{S}_n$

How "good" can we make our ideal?

Alex Glickfield The Quasicentral Modulus for a New Class of Operators

History II

- Can self-adjoint T (with ac spectral measure) be diagonal modulo \mathfrak{S}_1 ? Kato-Rosenblum[·] No
- What's the largest ideal \mathcal{J} s.t. commuting, self-adjoint *n*-tuple τ with ac spectral measure is *not* diagonal modulo \mathcal{J} ? Bercovici-Voiculescu: \mathfrak{S}_n^- ($\subset \mathfrak{S}_n$)
- What if the spectral measure of the *n*-tuple is *not* ac with respect to Lesbegue measure?

Table of Contents

1 Notation and Preliminaries

2 Obstruction Ideals for $\tau_{\Omega,H_{\ell}}$

- **3** Ampliation Homogeneity for k_o
- **4** Formula for the Quasicentral Modulus

Table of Contents

1 Notation and Preliminaries

2 Obstruction Ideals for au_{Ω,H_f}

3 Ampliation Homogeneity for k_{ρ}

④ Formula for the Quasicentral Modulus

Preliminary notation

- \mathcal{H} a separable, infinite dimensional, complex Hilbert space
- c₀₀ the vector space of real sequences with finitely many nonzero terms
- Denote by SN the set of norms Φ on c_{00} that are permutation invariant and invariant under $|\cdot|$
 - We consider the norms that satisfy $\Phi((1,0,0,\dots)) = 1$
 - These norms are called symmetric norming functions
- F a positive finite rank operator, $\{s_j\}_{j=1}^N$ the singular values of F:

$$|F|_{\Phi} := \Phi((s_1, s_2, \ldots, s_N, 0, 0, \ldots))$$

• T an arbitrary bounded linear operator, \mathcal{P} the directed set of orthogonal projections:

$$|T|_{\Phi} := \sup_{P \in \mathcal{P}} |PT|_{\Phi}$$

- Let $\mathfrak{S}_{\Phi} := \{T \in B(\mathcal{H}) : |T|_{\Phi} < +\infty\}.$
 - 𝔅♠ is an ideal
 - $(\mathfrak{S}_{\Phi}, |\cdot|_{\Phi})$ is a Banach space

Alex Glickfield

Ampliation Homogeneity for

Examples of \mathfrak{S}_{Φ}

Ex. \mathfrak{S}_p , $p \geq 1$

Ex.
$$\{s_k^*\}_{k=1}^{\infty} :=$$
 non-increasing rearrangement of $\{s_k\}_{k=1}^{\infty}$
 $|F|_{\rho}^- := \sum_{k=1}^{\infty} k^{-(1-1/\rho)} s_k^*$
 $\mathfrak{S}_{\rho}^- := \{T \in \mathcal{B}(\mathcal{H}) : |T|_{\rho}^- < +\infty\}, p \ge 1$

Ex.
$$\pi = {\pi_k}_{k=1}^{\infty} \subset \mathbb{R}$$
 so that:
 $-\pi_1 \ge \pi_2 \ge \dots$
 $-\pi_k \to 0$
 $-\sum_{k=1}^{\infty} \pi_k = +\infty$
 $-\sum_{k=1}^{m} \pi_k \le \alpha m \pi_m$ for every $m \in \mathbb{N}$
 $|F|_{\pi} := \sum_{k=1}^{\infty} \pi_k s_k^*$
 $\mathfrak{S}_{\pi} := {T \in B(\mathcal{H}) : |T|_{\pi} < +\infty}$

Alex Glickfield

Ampliation Homogeneity fo

Formula for the Quasicentral Modulus

Operations on *n*-tuples of operators

Let
$$\tau^{(j)} = (T_1^{(j)}, \dots, T_n^{(j)}), j = 0, 1, 2 \text{ with } T_k^{(j)} \in B(\mathcal{H})$$

• $A, B \in B(\mathcal{H}), A\tau^{(0)}B := (AT_1^{(0)}B, \dots, AT_n^{(0)}B)$
• $\tau^{(1)} + \tau^{(2)} := (T_1^{(1)} + T_1^{(2)}, \dots, T_n^{(1)} + T_n^{(2)})$
• $||\tau^{(0)}|| := \max_k ||T_k^{(0)}||, |\tau^{(0)}|_{\Phi} := \max_k |T_k^{(0)}|_{\Phi}$

Alex Glickfield

The quasicentral modulus

Denote by \mathcal{R}_1^+ the directed set of positive, finite rank contractions

Definition

The *quasicentral modulus* is defined as

$$k_{\Phi}(\tau) := \liminf_{A \in \mathcal{R}_1^+} |[A, \tau]|_{\Phi}$$

Note (Voiculescu): τ an *n*-tuple of commuting, SA operators, $k_{\Phi}(\tau) = 0$ iff there exists diagonal Δ s.t. $\tau - \Delta \in \mathfrak{S}^{(0)}_{*}$

Alex Glickfield

Obstruction ideals

Definition

If $k_{\Phi}(\tau) > 0$, \mathfrak{S}_{Φ} is said to be an *obstruction ideal* for τ .

Goal 1

We seek to find the maximum obstruction ideals for a class of tuples.

Fact (Bercovici, Voiculescu): Any obstruction ideal of τ is contained in another obstruction ideal of the form \mathfrak{S}_{π} .

Hausdorff measures

Fix
$$f:[0,\infty)
ightarrow [0,\infty)$$
 so that

- f is increasing

-
$$f((0,+\infty)) \subset (0,+\infty)$$

- $\lim_{t\to 0} f(t) = 0$

Definition

The outer Hausdorff measure corresponding to gauge function f is given by

$$H^*_f(A) := \liminf_{r o 0} \left\{ \sum_{j=1}^\infty f(r_j) : A \subset \bigcup_{j=1}^\infty B(x_j, r_j) \text{ and } r_j < r
ight\}$$

Denote by H_f the restriction of H_f^* to the Borel σ -algebra.

		~			
	ev I	(.	IC	10	d.
/ W	27	5	-		1

Relevant gauge functions

Definition

Given $s \ge 1$, we say that a gauge function $f : [0, \infty) \to [0, \infty)$ has property (R_s) if

- $f \in C^2$

$$- f'(0) = 0$$

- for every $a \in \mathbb{R}$, $\lim_{x \to 0} f(ax)/f(x) = a^s$

Fact: If f is a gauge function with property (R_s) , then

$$\lim_{x \to 0} \frac{f^{-1}(x)}{f^{-1}(ax)} = \frac{1}{a^{1/s}}$$

Construction of relevant fractals

Given a function f with property (R_s) , we construct the following fractal:

Alex Glickfield

Ampliation Homogeneity for 00000000000 Formula for the Quasicentral Modulus

Properites of SGCS

$$C_f = \bigcup_{|w|=L} C_f^w$$

$$0 < H_f(C_f) < +\infty$$

3
$$\xi \cdot 2^{-n|w|} < H_f(C_f^w) < 2^{-n|w|}$$

4 $Cf(r) \leq H_f(C_f \cap B(x,r)) \leq Df(r)$ for every r > 0

Alex Glickfield

Preliminary lemmas I

Lemma

Let $\tau \in (B(\mathcal{H}))^n$ and let $(A_i)_{i=1}^{\infty} \subset \mathcal{R}_1^+$ be a sequence that converges to the identity operator in WOT. Then

$$k_{\Phi}(\tau) \leq \liminf_{j} |[A_j, \tau]|_{\Phi}$$

Lemma

Let $\tau \in (B(\mathcal{H}))^n$. Then there exists an increasing sequence $(A_i)_{i=1}^{\infty} \subset \mathcal{R}_1^+$ such that converges to the identity operator in WOT. and

$$k_{\Phi}(\tau) = \lim_{j \to \infty} |[A_j, \tau]|_{\Phi}$$

Alex Glickfield

Indiana University

Ampliation Homogeneity fo

Preliminary lemmas II

Lemma (Voiculescu, 1979)

f
$$\{\tau^{(j)}\}_{j=1}^{\infty} \subset B(\mathcal{H})^n$$
, $\lambda^{(j)} \in \mathbb{C}^n$, then:
1 $\max_{j=1,2}\{k_{\Phi}(\tau^{(j)})\} \leq k_{\Phi}(\tau^{(1)} \oplus \tau^{(2)}) \leq k_{\Phi}(\tau^{(1)}) + k_{\Phi}(\tau^{(2)})$
2 $k_{\Phi}(\bigoplus_{j=1}^{\infty} \tau_j) = \lim_{N \to \infty} k_{\Phi}(\bigoplus_{j=1}^{N} \tau_j)$
3 $k_{\Phi}(\tau^{(1)} \oplus \cdots \oplus \tau^{(N)}) = k_{\Phi}((\tau^{(1)} - \lambda^{(1)} \otimes I) \oplus \cdots \oplus (\tau^{(N)} - \lambda^{(N)} \otimes I)).$

Alex Glickfield

Notation and Preliminaries Obstruction Ideals for τ_{Ω,H_f}

Ampliation Homogeneity fo

Formula for the Quasicentral Modulus

Table of Contents

Notation and Preliminaries

2 Obstruction Ideals for τ_{Ω,H_f}

3 Ampliation Homogeneity for k_{ρ}

4 Formula for the Quasicentral Modulus

Alex Glickfield

τ_{Ω,H_f}

The spectral theorem allows a reduction to finding the maximum obstruction ideals for the following:

Notation

Let f have property (R_s) and $\Omega \subset \mathbb{R}^n$ such that $Cf(r) < H_f(B(x,r) \cap \Omega) < Df(r).$

$$au_{\Omega,\mu} := (T_{1,\mu}, T_{2,\mu}, \dots, T_{n,\mu})$$

 $(T_{j,\mu}g)(x) := x_j g(x), g \in L^2(\Omega, \mu)$

Goal 1 (refined)

We seek to find the maximum obstruction ideals for τ_{Ω,H_f} .

lex Glickfield		Indiana University
he Quasicentral Modulus for a New Class of Operators	20 / 42	

When is $0 < k_{\pi}(\tau_{\Omega,H_{\epsilon}}) < +\infty$?

Lemma (Voiculescu, 2021)

If $0 < H_p(\Omega) < +\infty$ for appropriate Ω (ex. Cantor dust), $0 < k_p^-(\tau_{\Omega,H_p}) < +\infty.$

Lemma

Let $f: [0, +\infty) \to [0, +\infty)$ be a non-decreasing function with property (R), and let $\pi = (\pi_k)_{k=1}^{\infty}$ be a regular non-increasing sequence such that $\pi_k \to 0$ and $\sum_{k=1}^{\infty} \pi_k = +\infty$. Suppose that

$$0 < \inf_m m \pi_m f^{-1}(1/m) \le \sup_m m \pi_m f^{-1}(1/m) < +\infty$$

Then $0 < k_{\pi}(\tau_{\Omega,H_f}) < +\infty$.

When is $0 < k_{\pi}(\tau_{\Omega,H_{\ell}}) < +\infty$? II

Sketch of proof: $0 < k_{\pi}(\tau_{\Omega,H_{\ell}})$ follows directly from a result of David and Voiculescu (1990). We show $k_{\pi}(\tau_{\Omega,H_{\ell}}) < +\infty$. We find a sequence of projections P_i so that $\lim_{i\to\infty} |[P_i, \tau_{\Omega, H_f}]|_{\pi} < +\infty$.

- Cover Ω by disjoint Borel sets $\{\omega_{\ell,m}\}_{\ell=1}^{m^n}$ such that $H_f(\omega_{\ell m}) < D/m^n$
- Consider $P_m^{(\ell)} v = \langle v, \chi_{\omega_{\ell,m}} \rangle_{\frac{\chi_{\omega_{\ell,m}}}{||\chi_{\omega_{\ell},m}} ||_2^2}^{\chi_{\omega_{\ell,m}}}, v \in L^2(\Omega, H_f)$ and $P_m = \sum_{\ell=1}^{m^n} P_m^{(\ell)}$ • Note: $[P_m^{(\ell)}, T_j]$ has at most rank 2, so $||[P_m^{(\ell)}, T_j]|| =$ $||[P_m^{(\ell)} - \lambda I, T_i]|| \le 2 \operatorname{diam}(\omega_{\ell,m}) \le 2\sqrt{n} Df^{-1}(1/m^n)$

Ampliation Homogeneity fo

Formula for the Quasicentral Modulus

When is $0 < k_{\pi}(\tau_{\Omega,H_f}) < +\infty$? III

$$\begin{split} k_{\pi}(\tau_{\Omega,H_{f}}) &\leq |[P_{m},\tau_{\Omega,H_{f}}]|_{\pi} \leq \max_{j} ||[P_{m}^{(\ell)},T_{j}]|| \Phi_{\pi}(\underbrace{1,1,\ldots,1}_{m^{n} \text{ times}},0,0,\ldots) \\ &\leq 2D\sqrt{n}f^{-1}(1/m^{n}) \Phi_{\pi}(\underbrace{1,1,\ldots,1}_{m^{n} \text{ times}},0,0,\ldots) \\ &= 2D\sqrt{n}f^{-1}(1/m^{n})\sum_{k=1}^{m^{n}}\pi_{k} \\ &\leq 2\alpha D\sqrt{n}\sup_{m}m\pi_{m}f^{-1}(1/m) < +\infty \end{split}$$

Alex Glickfield

Ampliation Homogeneity for

Finding the correct π

Need:
$$f^{-1}(1/m^n) \sum_{k=1}^{m^n} \pi_k < +\infty$$

What if:
$$f^{-1}(1/m^n) \sum_{k=1}^{m^n} \pi_k \to 1$$
?

Note:

$$f^{-1}(1/m^n) \sum_{k=1}^{m^n} \left(\frac{1}{f^{-1}(1/x)}\right)' \Big|_{x=k}$$

$$\leq f^{-1}\left(\frac{1}{m}\right) \int_1^m \left(\frac{1}{f^{-1}(1/x)}\right)' dx$$

$$= f^{-1}\left(\frac{1}{m}\right) \left[\frac{1}{f^{-1}(1/x)}\right]_1^m \longrightarrow 1$$

Alex Glickfield

Ampliation Homogeneity for 00000000000

The sequence ρ

Does the proposed sequence work? Not quite.

Lemma

Let $f: [0, +\infty) \to [0, +\infty)$ be a logarithmically-concave function with property (R_s) . Let $h(x) = 1/f^{-1}(1/x)$ and set $\rho_k := h'(k)$, $k \in \mathbb{N}$. Then for some positive integer N, $\rho := \{\rho_k\}_{k=N}^{\infty}$ defines a symmetric-norming function Φ_{ρ} .

The maximum obstruction ideal for $\tau_{\Omega,H_{\ell}}$

Theorem

Let $f: [0,\infty) \to [0,\infty)$ be a logarithmically-concave function with property (R_s) , and let $\Omega \subset \mathbb{R}^n$ be a Borel set so that $0 < H_f(\Omega) < +\infty$. Then \mathfrak{S}_{ρ} is an obstruction ideal for τ_{Ω, H_f} . Furthermore, if $\Phi \in SN$, then $k_{\Phi}(\tau_{\Omega,H_f}) \neq 0$ if and only if $J_{\Phi} \subset J_{\rho}$.

Alex Glickfield

Table of Contents

3 Ampliation Homogeneity for k_{ρ}

4 Formula for the Quasicentral Modulus

Alex Glickfield

Motivation

Theorem (Voiculescu, 2021)

Let τ be an *n*-tuple of commuting self-adjoint operators. If *m* is the multiplicity function for τ , then

$$(k_p^-(\tau))^p = C \int_{\sigma(\tau)} m(x) dH_p(x).$$

Goal 2

Is there a similar formula for k_o ?

	~			
Alex (GI	ıcł	<†ie	ld

Ampliation homogeneity for $k_{\rm p}^{-}$ I

One of the main ingredients of the proof for the exact formula for k_p^- is the following ampliation homogeneity result:

Theorem (Voiculescu, 2021)

If τ is an *n*-tuple of commuting, self-adjoint operators, then for 1 $k_p^-(\tau \otimes I_m) = m^{1/p} k_p^-(\tau)$

Note:
$$T \in \mathfrak{S}_p^-$$
,
 $|T \otimes I_m|_p^- = 1^{-(1-1/p)} s_1 + 2^{-(1-1/p)} s_1 + \dots + m^{-(1-1/p)} s_1$
 $+ (m+1)^{-(1-1/p)} s_2 + \dots + (2m)^{-(1-1/p)} s_2$
 $+ (2m+1)^{-(1-1/p)} s_3 + \dots$

Alex Glickfield

Ampliation homogeneity for k_p^- II

$$|T \otimes I_m|_p^- = \sum_{k=1}^\infty s_k \sum_{\ell=(k-1)m+1}^{km} \ell^{-(1-1/p)}$$
$$= \sum_{k=1}^\infty s_k \left(\sum_{\ell=1}^{km} \ell^{-(1-1/p)} - \sum_{\ell=1}^{(k-1)m} \ell^{-(1-1/p)} \right)$$
$$= \sum_{k=1}^\infty (s_{k+1} - s_k) \sum_{\ell=1}^{km} \ell^{-(1-1/p)}$$

Alex Glickfield

Ampliation Homogeneity for k_{ρ} Formula for the Quasicentral Modulus

Ampliation homogeneity for k_p^- III

$$T \otimes I_m|_p^- \le \sum_{k=1}^{\infty} (s_{k+1} - s_k) \int_1^{mk} x^{-(1-1/p)} dx$$
$$\approx \sum_{k=1}^{\infty} (s_{k+1} - s_k) (mk)^{1/p}$$
$$= m^{1/p} \sum_{k=1}^{\infty} (s_{k+1} - s_k) k^{1/p}$$
$$= \dots$$
$$= m^{1/p} |T|_p^-$$

Alex Glickfield

Moral of the story: multiplicativity of the gauge function was central, but multiplicativity of f was not assumed.

Motivation for $\rho^{(\varepsilon)}$

... but "approximate multiplicativity" is!

Definition

Let $f: [0,\infty) \to [0,\infty)$ be a logarithmically-concave function with property (R_s). For a fixed $\varepsilon > 0$, define $\rho^{(\varepsilon)} = \{\rho_k\}_{k=N}^{\infty}$ with N chosen so that for every k > N and for every positive integer m we have

$$\left|\frac{f^{-1}(1/k)}{f^{-1}(1/mk)} - m^{1/s}\right| < \varepsilon.$$

Alex Glickfield

A homogeneity lemma

Lemma

If X_i is a sequence of operators such that $||X_i|| \rightarrow 0$ and $|X_i|_{o^{(\varepsilon)}} < C < +\infty$, then

$$\lim_{j\to\infty}\left||X_j\otimes I_m|_{\rho^{(\varepsilon)}}-m^{1/s}|X_j|_{\rho^{(\varepsilon)}}\right|\leq \varepsilon C.$$

Note: From this lemma, we see that

$$|k_{
ho^{(arepsilon)}}(au\otimes I_m)-m^{1/s}k_{
ho^{(arepsilon)}}(au)|$$

...but this isn't k_{ρ} .

The key lemma

Lemma

Let τ be an *n*-tuple of commuting self-adjoint operators, and let π be a regular sequence. Then $k_{\pi}(\tau) = k_{S\pi}(\tau)$.

Proof sketch of lemma

Sketch of proof: $T \in \mathfrak{S}_{\pi}$

$$|T|_{\pi} = \sum_{k=1}^{\infty} s_k \pi_k \ge \sum_{k=1}^{\infty} s_k \pi_{k+1} = |T|_{S\pi}$$

Likewise, choose A_i so that $k_{S\pi}(\tau) = \lim_{i \to \infty} |[A_i, \tau]|_{S\pi}$

$$k_{\pi}(\tau) \leq \lim_{j} |[A_{j},\tau]|_{\pi} = \lim_{j} \sum_{k=1}^{\infty} s_{k}^{(j)} \pi_{k} = \lim_{j} \left(s_{1}^{(j)} \pi_{1} + \sum_{k=2}^{\infty} s_{k}^{(j)} \pi_{k} \right)$$

$$\leq \lim_{j} \left(s_{1}^{(j)} \pi_{1} + \sum_{k=1}^{\infty} s_{k}^{(j)} \pi_{k+1} \right) = \lim_{j} \sum_{k=1}^{\infty} s_{k}^{(j)} \pi_{k+1} = k_{S\pi}(\tau)$$

Thus $k_{\pi}(\tau) = k_{S\pi}(\tau)$.

Alex Glickfield

Ampliation Homogeneity for k_{a}

Theorem

Let $f : [0, \infty) \to [0, \infty)$ be a function with property (R_s) for some s > 1. Then

$$k_{
ho}(au_{\Omega,H_f}\otimes I_m)=m^{1/s}k_{
ho}(au_{\Omega,H_f}).$$

Alex Glickfield

Table of Contents

3 Ampliation Homogeneity for k_{α}

4 Formula for the Quasicentral Modulus

Voiculescu's formula

Recall:

Theorem (Voiculescu, 2021)

Let τ be an *n*-tuple of commuting self-adjoint operators. If *m* is the multiplicity function for τ , then

$$(k_p^-(\tau))^p = C \int_{\sigma(\tau)} m(x) dH_p(x).$$

Alex Glickfield

Formula for k_o

Theorem

Let τ be an *n*-tuple of commuting self-adjoint operators. If *m* is the multiplicity function for τ , then

$$(k_{\rho}(\tau))^{s} = C \int_{C_{f}} m(x) dH_{f}(x)$$

Lemma

Let f be a logarithmically-concave gauge function with property (R_s) , and let τ be an *n*-tuple of commuting self-adjoint operators with $\sigma(\tau) \subset \Omega$. If E_{τ} is singular with respect to H_f , then $k_{\rho}(\tau)=0.$

Proof sketch for formula

Sketch of proof: We can assume $\tau = \tau_{\Omega, H_f}$ for some $\Omega \subset C_f$. The "cutting-up" trick used before allows us to reduce to the case of showing $(k_{\rho}(\tau_{C_{\ell}^{w},H_{f}}))^{s} = C \cdot H_{f}(C_{f}^{w})$ for every w. Note that:

$$k_{\rho}(\tau_{C_{f},H_{f}}) = k_{\rho}(\tau_{C_{f}^{w},H_{f}} \otimes I_{2^{nL}}) = 2^{nL/s}k_{\rho}(\tau_{C_{f}^{w},H_{f}})$$

Letting $\kappa_{s}^{(f)} := (k_{\rho}(\tau_{C_{f},H_{f}}))^{s}/H_{f}(C_{f})$

 $(k_{\rho}(\tau_{C_{c}^{w},H_{f}}))^{s} = (2^{-nL/s}k_{\rho}(\tau_{C_{f},H_{f}}))^{s} = 2^{-nL}\kappa_{s}^{(f)}H_{f}(C_{f}) = \kappa_{s}^{(f)}H_{f}(C_{f}^{w})$

Alex Glickfield

THANK YOU!!!!!!!

Alex Glickfield The Quasicentral Modulus for a New Class of Operators