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History I

• Weyl-von Neumann: T self-adjoint =⇒ there exists diagonal
D such that T − D ∈ K (H) (vN: S2)

• Kuroda: Can be improved to every ideal larger than S1

• Berg: T can be normal so that T − D ∈ K (H)

• Voiculescu: τ = (T1,T2, . . . ,Tn), (n ≥ 2) commuting,
self-adjoint =⇒ there exists diagonal n-tuple ∆ so that
τ −∆ ∈ Sn
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Question

How ”good” can we make our ideal?
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History II

• Can self-adjoint T (with ac spectral measure) be diagonal
modulo S1?
Kato-Rosenblum: No.

• What’s the largest ideal J s.t. commuting, self-adjoint
n-tuple τ with ac spectral measure is not diagonal modulo J ?
Bercovici-Voiculescu: S−

n (⊂ Sn)

• What if the spectral measure of the n-tuple is not ac with
respect to Lesbegue measure?
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Preliminary notation

• H a separable, infinite dimensional, complex Hilbert space

• c00 the vector space of real sequences with finitely many
nonzero terms

• Denote by SN the set of norms Φ on c00 that are
permutation invariant and invariant under | · |

- We consider the norms that satisfy Φ((1, 0, 0, . . . )) = 1
- These norms are called symmetric norming functions

• F a positive finite rank operator, {sj}Nj=1 the singular values of
F :

|F |Φ := Φ((s1, s2, . . . , sN , 0, 0, . . . ))
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The ideals SΦ

• T an arbitrary bounded linear operator, P the directed set of
orthogonal projections:

|T |Φ := sup
P∈P

|PT |Φ

• Let SΦ := {T ∈ B(H) : |T |Φ < +∞}.
- SΦ is an ideal
- (SΦ, | · |Φ) is a Banach space
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Examples of SΦ

Ex. Sp, p ≥ 1

Ex. {s∗k}∞k=1 := non-increasing rearrangement of {sk}∞k=1

|F |−p :=
∑∞

k=1 k
−(1−1/p)s∗k

S−
p := {T ∈ B(H) : |T |−p < +∞}, p ≥ 1

Ex. π = {πk}∞k=1 ⊂ R so that:

- π1 ≥ π2 ≥ . . .
- πk → 0
-
∑∞

k=1 πk = +∞
-
∑m

k=1 πk ≤ αmπm for every m ∈ N
|F |π :=

∑∞
k=1 πks

∗
k

Sπ := {T ∈ B(H) : |T |π < +∞}
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Operations on n-tuples of operators

Let τ (j) = (T
(j)
1 , . . . ,T

(j)
n ), j = 0, 1, 2 with T

(j)
k ∈ B(H)

• A,B ∈ B(H), Aτ (0)B := (AT
(0)
1 B, . . . ,AT

(0)
n B)

• τ (1) + τ (2) := (T
(1)
1 + T

(2)
1 , . . . ,T

(1)
n + T

(2)
n )

• ||τ (0)|| := maxk ||T
(0)
k ||, |τ (0)|Φ := maxk |T

(0)
k |Φ
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The quasicentral modulus

Denote by R+
1 the directed set of positive, finite rank contractions

Definition

The quasicentral modulus is defined as

kΦ(τ) := lim inf
A∈R+

1

|[A, τ ]|Φ

Note (Voiculescu): τ an n-tuple of commuting, SA operators,

kΦ(τ) = 0 iff there exists diagonal ∆ s.t. τ −∆ ∈ S
(0)
Φ
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Obstruction ideals

Definition

If kΦ(τ) > 0, SΦ is said to be an obstruction ideal for τ .

Goal 1

We seek to find the maximum obstruction ideals for a class of
tuples.

Fact (Bercovici, Voiculescu): Any obstruction ideal of τ is
contained in another obstruction ideal of the form Sπ.
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Hausdorff measures

Fix f : [0,∞) → [0,∞) so that

- f is increasing

- f ((0,+∞)) ⊂ (0,+∞)

- limt→0 f (t) = 0

Definition

The outer Hausdorff measure corresponding to gauge function f is
given by

H∗
f (A) := lim inf

r→0

{ ∞∑
j=1

f (rj) : A ⊂
∞⋃
j=1

B(xj , rj) and rj < r

}

Denote by Hf the restriction of H∗
f to the Borel σ-algebra.
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Relevant gauge functions

Definition

Given s ≥ 1, we say that a gauge function f : [0,∞) → [0,∞) has
property (Rs) if

- f ∈ C 2

- f ′(0) = 0

- for every a ∈ R, limx→0 f (ax)/f (x) = as

Fact: If f is a gauge function with property (Rs), then

lim
x→0

f −1(x)

f −1(ax)
=

1

a1/s
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Construction of relevant fractals

Given a function f with property (Rs), we construct the following
fractal:
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Properites of SGCS

1 Cf =
⋃

|w |=L C
w
f

2 0 < Hf (Cf ) < +∞

3 ξ · 2−n|w | < Hf (C
w
f ) < 2−n|w |

4 Cf (r) ≤ Hf (Cf ∩ B(x , r)) ≤ Df (r) for every r > 0
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Preliminary lemmas I

Lemma

Let τ ∈ (B(H))n and let (Aj)
∞
j=1 ⊂ R+

1 be a sequence that
converges to the identity operator in WOT. Then

kΦ(τ) ≤ lim inf
j

|[Aj , τ ]|Φ

Lemma

Let τ ∈ (B(H))n. Then there exists an increasing sequence
(Aj)

∞
j=1 ⊂ R+

1 such that converges to the identity operator in
WOT, and

kΦ(τ) = lim
j→∞

|[Aj , τ ]|Φ
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Preliminary lemmas II

Lemma (Voiculescu, 1979)

If {τ (j)}∞j=1 ⊂ B(H)n, λ(j) ∈ Cn, then:

1 maxj=1,2{kΦ(τ (j))} ≤ kΦ(τ
(1) ⊕ τ (2)) ≤ kΦ(τ

(1)) + kΦ(τ
(2))

2 kΦ(
⊕∞

j=1 τj) = limN→∞ kΦ(
⊕N

j=1 τj)

3 kΦ(τ
(1) ⊕ · · · ⊕ τ (N)) =

kΦ((τ
(1) − λ(1) ⊗ I )⊕ · · · ⊕ (τ (N) − λ(N) ⊗ I )).
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τΩ,Hf

The spectral theorem allows a reduction to finding the maximum
obstruction ideals for the following:

Notation

Let f have property (Rs) and Ω ⊂ Rn such that
Cf (r) ≤ Hf (B(x , r) ∩ Ω) ≤ Df (r).

τΩ,µ := (T1,µ,T2,µ, . . . ,Tn,µ)

(Tj ,µg)(x) := xjg(x), g ∈ L2(Ω, µ)

Goal 1 (refined)

We seek to find the maximum obstruction ideals for τΩ,Hf
.
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When is 0 < kπ(τΩ,Hf
) < +∞? I

Lemma (Voiculescu, 2021)

If 0 < Hp(Ω) < +∞ for appropriate Ω (ex. Cantor dust),
0 < k−p (τΩ,Hp) < +∞.

Lemma

Let f : [0,+∞) → [0,+∞) be a non-decreasing function with
property (R), and let π = (πk)

∞
k=1 be a regular non-increasing

sequence such that πk → 0 and
∑∞

k=1 πk = +∞. Suppose that

0 < inf
m

mπmf
−1(1/m) ≤ sup

m
mπmf

−1(1/m) < +∞

Then 0 < kπ(τΩ,Hf
) < +∞.
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When is 0 < kπ(τΩ,Hf
) < +∞? II

Sketch of proof: 0 < kπ(τΩ,Hf
) follows directly from a result of

David and Voiculescu (1990). We show kπ(τΩ,Hf
) < +∞. We find

a sequence of projections Pj so that limj→∞ |[Pj , τΩ,Hf
]|π < +∞.

• Cover Ω by disjoint Borel sets {ωℓ,m}m
n

ℓ=1 such that
Hf (ωℓ,m) ≤ D/mn

• Consider P
(ℓ)
m v = ⟨v , χωℓ,m

⟩
χωℓ,m

||χωℓ,m
||22
, v ∈ L2(Ω,Hf )

and Pm =
∑mn

ℓ=1 P
(ℓ)
m

• Note: [P
(ℓ)
m ,Tj ] has at most rank 2, so ||[P(ℓ)

m ,Tj ]|| =
||[P(ℓ)

m − λI ,Tj ]|| ≤ 2diam(ωℓ,m) ≤ 2
√
nDf −1(1/mn)
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When is 0 < kπ(τΩ,Hf
) < +∞? III

kπ(τΩ,Hf
) ≤ |[Pm, τΩ,Hf

]|π ≤ max
j

||[P(ℓ)
m ,Tj ]||Φπ(1, 1, . . . , 1︸ ︷︷ ︸

mn times

, 0, 0, . . . )

≤ 2D
√
nf −1(1/mn)Φπ(1, 1, . . . , 1︸ ︷︷ ︸

mn times

, 0, 0, . . . )

= 2D
√
nf −1(1/mn)

mn∑
k=1

πk

≤ 2αD
√
n sup

m
mπmf

−1(1/m) < +∞
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Finding the correct π

Need: f −1(1/mn)
∑mn

k=1 πk < +∞

What if: f −1(1/mn)
∑mn

k=1 πk → 1?

Note:

f −1(1/mn)
mn∑
k=1

( 1

f −1(1/x)

)′∣∣∣∣
x=k

≤ f −1
( 1

m

)∫ m

1

( 1

f −1(1/x)

)′
dx

= f −1
( 1

m

)[ 1

f −1(1/x)

∣∣∣∣∣
m

1

−→ 1
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The sequence ρ

Does the proposed sequence work? Not quite.

Lemma

Let f : [0,+∞) → [0,+∞) be a logarithmically-concave function
with property (Rs). Let h(x) = 1/f −1(1/x) and set ρk := h′(k),
k ∈ N. Then for some positive integer N, ρ := {ρk}∞k=N defines a
symmetric-norming function Φρ.
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The maximum obstruction ideal for τΩ,Hf

Theorem

Let f : [0,∞) → [0,∞) be a logarithmically-concave function with
property (Rs), and let Ω ⊂ Rn be a Borel set so that
0 < Hf (Ω) < +∞. Then Sρ is an obstruction ideal for τΩ,Hf

.
Furthermore, if Φ ∈ SN , then kΦ(τΩ,Hf

) ̸= 0 if and only if
JΦ ⊂ Jρ.
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Motivation

Theorem (Voiculescu, 2021)

Let τ be an n-tuple of commuting self-adjoint operators. If m is
the multiplicity function for τ , then

(k−p (τ))p = C

∫
σ(τ)

m(x)dHp(x).

Goal 2

Is there a similar formula for kρ?
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Ampliation homogeneity for k−p I

One of the main ingredients of the proof for the exact formula for
k−p is the following ampliation homogeneity result:

Theorem (Voiculescu, 2021)

If τ is an n-tuple of commuting, self-adjoint operators, then for
1 ≤ p ≤ +∞

k−p (τ ⊗ Im) = m1/pk−p (τ)

Note: T ∈ S−
p ,

|T ⊗ Im|−p =1−(1−1/p)s1 + 2−(1−1/p)s1 + · · ·+m−(1−1/p)s1

+(m + 1)−(1−1/p)s2 + · · ·+ (2m)−(1−1/p)s2

+(2m + 1)−(1−1/p)s3 + . . .
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Ampliation homogeneity for k−p II

|T ⊗ Im|−p =
∞∑
k=1

sk

km∑
ℓ=(k−1)m+1

ℓ−(1−1/p)

=
∞∑
k=1

sk

(
km∑
ℓ=1

ℓ−(1−1/p) −
(k−1)m∑
ℓ=1

ℓ−(1−1/p)

)

=
∞∑
k=1

(sk+1 − sk)
km∑
ℓ=1

ℓ−(1−1/p)
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Ampliation homogeneity for k−p III

|T ⊗ Im|−p ≤
∞∑
k=1

(sk+1 − sk)

∫ mk

1
x−(1−1/p)dx

≈
∞∑
k=1

(sk+1 − sk)(mk)1/p

= m1/p
∞∑
k=1

(sk+1 − sk)k
1/p

= . . .

= m1/p|T |−p
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Moral of the story: multiplicativity of the gauge function was
central, but multiplicativity of f was not assumed.
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Motivation for ρ(ε)

... but ”approximate multiplicativity” is!

Definition

Let f : [0,∞) → [0,∞) be a logarithmically-concave function with
property (Rs). For a fixed ε > 0, define ρ(ε) = {ρk}∞k=N with N
chosen so that for every k > N and for every positive integer m we
have ∣∣∣∣ f −1(1/k)

f −1(1/mk)
−m1/s

∣∣∣∣ < ε.
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A homogeneity lemma

Lemma

If Xj is a sequence of operators such that ||Xj || → 0 and
|Xj |ρ(ε) < C < +∞, then

lim
j→∞

∣∣∣∣|Xj ⊗ Im|ρ(ε) −m1/s |Xj |ρ(ε)
∣∣∣∣ ≤ εC .

Note: From this lemma, we see that

|kρ(ε)(τ ⊗ Im)−m1/skρ(ε)(τ)| < ε

...but this isn’t kρ.
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The key lemma

Lemma

Let τ be an n-tuple of commuting self-adjoint operators, and let π
be a regular sequence. Then kπ(τ) = kSπ(τ).
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Proof sketch of lemma

Sketch of proof: T ∈ Sπ

|T |π =
∞∑
k=1

skπk ≥
∞∑
k=1

skπk+1 = |T |Sπ

Likewise, choose Aj so that kSπ(τ) = limj→∞ |[Aj , τ ]|Sπ

kπ(τ) ≤ lim
j
|[Aj , τ ]|π = lim

j

∞∑
k=1

s
(j)
k πk = lim

j

(
s
(j)
1 π1 +

∞∑
k=2

s
(j)
k πk

)

≤ lim
j

(
s
(j)
1 π1 +

∞∑
k=1

s
(j)
k πk+1

)
= lim

j

∞∑
k=1

s
(j)
k πk+1 = kSπ(τ)

Thus kπ(τ) = kSπ(τ).
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Ampliation Homogeneity for kρ

Theorem

Let f : [0,∞) → [0,∞) be a function with property (Rs) for some
s ≥ 1. Then

kρ(τΩ,Hf
⊗ Im) = m1/skρ(τΩ,Hf

).

Alex Glickfield Indiana University

The Quasicentral Modulus for a New Class of Operators 37 / 42



Notation and Preliminaries Obstruction Ideals for τΩ,Hf
Ampliation Homogeneity for kρ Formula for the Quasicentral Modulus

Table of Contents

1 Notation and Preliminaries

2 Obstruction Ideals for τΩ,Hf

3 Ampliation Homogeneity for kρ

4 Formula for the Quasicentral Modulus

Alex Glickfield Indiana University

The Quasicentral Modulus for a New Class of Operators 38 / 42



Notation and Preliminaries Obstruction Ideals for τΩ,Hf
Ampliation Homogeneity for kρ Formula for the Quasicentral Modulus

Voiculescu’s formula

Recall:

Theorem (Voiculescu, 2021)

Let τ be an n-tuple of commuting self-adjoint operators. If m is
the multiplicity function for τ , then

(k−p (τ))p = C

∫
σ(τ)

m(x)dHp(x).
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Formula for kρ

Theorem

Let τ be an n-tuple of commuting self-adjoint operators. If m is
the multiplicity function for τ , then

(kρ(τ))
s = C

∫
Cf

m(x)dHf (x)

Lemma

Let f be a logarithmically-concave gauge function with property
(Rs), and let τ be an n-tuple of commuting self-adjoint operators
with σ(τ) ⊂ Ω. If Eτ is singular with respect to Hf , then
kρ(τ) = 0.
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Proof sketch for formula

Sketch of proof: We can assume τ = τΩ,Hf
for some Ω ⊂ Cf . The

”cutting-up” trick used before allows us to reduce to the case of
showing (kρ(τCw

f ,Hf
))s = C · Hf (C

w
f ) for every w . Note that:

kρ(τCf ,Hf
) = kρ(τCw

f ,Hf
⊗ I2nL) = 2nL/skρ(τCw

f ,Hf
)

Letting κ
(f )
s := (kρ(τCf ,Hf

))s/Hf (Cf )

(kρ(τCw
f ,Hf

))s = (2−nL/skρ(τCf ,Hf
))s = 2−nLκ

(f )
s Hf (Cf ) = κ

(f )
s Hf (C

w
f )
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THANK YOU!!!!!!!
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