
Free denoising

Kamil Szpojankowski

joint work with Maxime Fevrier and Alexandru Nica

arXiv:2412.20792

Probabilistic Operator Algebra Seminar, UC Berkeley

24th March 2025
1



Problem description



Free denoising

Setup

� a, b selfadjoint and free,

� a represents a ”signal”,

� b represents a ”noise”.

� We view a+ b a noisy version of a. More generally, we consider ”noisy observations” of

the form P(a, b), where P is polynomial or expression like a1/2ba1/2.

Goal

Approximate the signal a by a function of the noisy element P(a, b).

Framework

We solve this in the framework of tracial W ∗ probability space (A, φ), where for c ∈ A we

have L2 norm given by ∥c∥22 = φ(cc∗). If we want to minimize ∥a− h(a+ b)∥2, then the

solution is given by h(a+ b) = E (a|a+ b).
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Subordination reversed

Subordination (Biane, Voiculescu)

There exists ω : C+ → C+ such that

E

Å
1

z − a− b
| a
ã
=

1

ω(z)− a

� We reverse the roles of a and a+ b this is, in spirit, a non-commutative version of Bayes’

formula.

� We know that E ((a+ b)n|a) is again a polynomial of degree n in a.

� The above cannot be true for the reversed conditioning. Bożejko and Bryc showed that if

E (a|a+ b) is linear function of a+ b and E (a2|a+ b) is quadratic, then a, b come from

free Meixner family.
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Recap conditional expectation

Conditional expectation

If x , y ∈ A, are selfadjoint then E (x | y) = h(y), where h is a real-valued bounded Borel

function on Spec(y) such that

φ(xg(y)) = φ(h(y)g(y)), for every g bounded Borel function on Spec(y).

How we compute it?

We want to take x = a and y = a+ b and develop a systematic way of calculating

E (f (a)|a+ b) for f bounded Borel functions on Spec(a).

Two methods, both inspired by classical probability approach:

� Suitable point of view on the joint distribution of (a, a+ b) – overlap measure.

� Interpretation of conditional expectation as Radon-Nikodym derivative – conditional

freeness of Bożejko, Leinert and Speicher.
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Overlap measure



Classical probability approach

Classical probability

For (X ,Y ) with joint distribution µ(X ,Y ) in order to find the conditional expectation

E(f (X )|Y ) we need to find the conditional distribution µX |Y=t (aka disintegration of µ(X ,Y ))

and then E(f (X )|Y ) = h(Y ) with

h(t) =

∫
R
f (x)µX |Y=t(dx).

Example

If distribution of (X ,Y ) has a density wrt Lebesgue measure on R2 then

fX |Y=t(x) =
f(X ,Y )(x , t)

fY (t)
.

Moral: joint distribution gives access to conditional expectations!
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Overlap measure

We return to general selfadjoint elements x , y ∈ A.

Definition

Non-commutative joint distribution is the linear functional µ(x,y) : C⟨X1,X2⟩ → C given by

µ(x,y)(P) = φ(P(x , y)).

Observation: µ(x,y) contains more information than what is needed for conditional

expectations. We need to find h such that φ(f (x)g(y)) = φ(h(y)g(y)).

Idea: Is there a probability measure on R2 such that

φ(f (x)g(y)) =

∫∫
R2

f (s)g(t)dµ(s, t) ?
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Overlap measure existence

Proposition

There exists a probability measure µ on the Borel sigma-algebra of R2, uniquely determined,

such that the following holds:®
For every bounded Borel functions f , g

one has that
∫
R2 f (s)g(t)dµ(s, t) = φ(f (x)g(y)).

We will refer to this probability measure µ as the overlap measure of x and y , and we will

denote it as µ
(ov)
x,y .

This was known since long ago in the operator algebra literature (Connes 1976).

Idea of the proof: For any s, t ∈ R define P(s) = 1(−∞,s](x) and Q(t) = 1(−∞,t](y) and

verify that F (s, t) = φ(P(s)Q(t)) is a two dimensional cdf.

Observation: Marginals of µ
(ov)
x,y are equal to µx and µy (to see that take g ≡ 1 and f ≡ 1

respectively). So µ
(ov)
x,y is a coupling of µx and µy .
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Overlap measure for matrices

Consider the case A = MN(C) and φ = trN for some N ∈ N, and x , y ∈ A both selfadjoint.

Case of matrices

Let λ1, . . . , λN be the eigenvalues of x , and let ρ1, . . . , ρN be the

eigenvalues of y , counted with multiplicities.

Let u1, . . . , uN and v1, . . . , vN be orthonormal bases for CN , such that

x(uk) = λkuk for all 1 ≤ k ≤ N and y(vℓ) = ρℓvℓ for all 1 ≤ ℓ ≤ N.

Then: µ
(ov)
x,y =

∑N
k,ℓ=1

|⟨uk , vℓ⟩|2
N δ(λk ,ρℓ), where “δ(λ,ρ)” stands for

the Dirac mass concentrated at the point (λ, ρ) ∈ R2.

Observation: In this case µ
(ov)
x,y is absolutely continuous with respect to the product measure

µx × µy .
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Absolute continuity

Definition

Suppose that the overlap measure µ
(ov)
x,y is absolutely continuous with respect to the direct

product of its marginals µx and µy . The Radon-Nikodym derivative

ox,y :=
dµ

(ov)
x,y

d(µx × µy )

will be referred to as the overlap function of x and y .

In the matrix example we have ox,y (λk , ρl) = N | ⟨uk , vℓ⟩ |2 .
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Conditional expectation via overlap function

Conditional expectation from the overlap function

Suppose x , y are such that the overlap function exists. Then we have

φ(f (x)g(y)) =

∫∫
R2

f (s)g(t)dµ(ov)
x,y (s, t) =

∫∫
R2

f (s)g(t)ox,y (s, t)µx(ds)µy (dt)

=

∫
R

Å∫
R
f (s)ox,y (s, t)µx(ds)

ã
︸ ︷︷ ︸

:=h(t)

g(t)µy (dt) = φ(h(y)g(y)).

Hence E (f (x)|y) = h(y).

Observation: Overlap measure µ
(ov)
x,y is not always absolutely continuous with respect to

µx × µy , take for example y = x , then µ
(ov)
x,y is concentrated on a subset of the line

{(s, s), s ∈ R} ⊂ R2.
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Overlap measure in the free additive case

Theorem 1

Let a, b be free, with a ∼ µ and b ∼ ν and assume that neither of µ, ν is a point mass. Then

dµ
(ov)
a,a+b(s, t) = oa,a+b(s, t)µ(ds)µ⊞ ν(dt) where

oa,a+b(s, t) =

− 1
π

1
fµ⊞ν(t)

Im
Ä

1
ω(t)−s

ä
if t ∈ U,

1
µ({s})1ω(t)=s if t is an atom of µ⊞ ν

is defined in the µ× (µ⊞ ν) a.e. sense.

Here fµ⊞ν is the density of the absolutely continuous part of µ⊞ ν and U is the set where the

density is positive, ω as before denotes the additive subordination function.
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Overlap measure in the free additive case

Line of proof of Theorem 1, first part: use subordination

� Given additive subordination function ω one defines (Biane 1998) a family of probability

measures ks via ∫
R

1

z − t
ks(dt) =

1

ω(z)− s
, ∀ s ∈ R and z ∈ C+.

� The measures ks together give a Feller-Markov kernel Kg(s) =
∫
R g(t)ks(dt), s ∈ R, with

E (g(a+ b)|a) = Kg(a).

Thus

φ(f (a)g(a+ b)) = φ(f (a)Kg(a)) =

∫
R
f (s)Kg(s)µ(ds) =

∫
R
f (s)

∫
R
g(t)ks(dt)µ(ds).
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Overlap measure in the additive case

Line of proof of Theorem 1, second part.

Repeat equation obtained on preceding slide:

φ(f (a)g(a+ b)) =
∫
R f (s)

∫
R g(t)ks(dt)µ(ds).

?
=

∫
R f (s)

∫
R g(t)o(s, t)µ⊞ ν(dt)µ(ds).

Consequence: in order to show absolute continuity of µ
(ov)
a,a+b with respect to product of

marginals it is enough to show that for µ a.e. s measure ks is absolutely continuous with

respect to µ⊞ ν. Recall that∫
R

1

z − t
ks(dt) =

1

ω(z)− s
, ∀ s ∈ R and z ∈ C+.

Results of Belinschi (2006) about existence and behaviour of continuous continuation of ω to

R together with regularity properties of ⊞ allow to conclude.
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13



Overlap measure in the additive case

Line of proof of Theorem 1, second part.

Repeat equation obtained on preceding slide:

φ(f (a)g(a+ b)) =
∫
R f (s)

∫
R g(t)ks(dt)µ(ds).

?
=

∫
R f (s)

∫
R g(t)o(s, t)µ⊞ ν(dt)µ(ds).

Consequence: in order to show absolute continuity of µ
(ov)
a,a+b with respect to product of

marginals it is enough to show that for µ a.e. s measure ks is absolutely continuous with

respect to µ⊞ ν.

Recall that∫
R

1

z − t
ks(dt) =

1

ω(z)− s
, ∀ s ∈ R and z ∈ C+.

Results of Belinschi (2006) about existence and behaviour of continuous continuation of ω to

R together with regularity properties of ⊞ allow to conclude.

13



Overlap measure in the additive case

Line of proof of Theorem 1, second part.

Repeat equation obtained on preceding slide:

φ(f (a)g(a+ b)) =
∫
R f (s)

∫
R g(t)ks(dt)µ(ds).

?
=

∫
R f (s)

∫
R g(t)o(s, t)µ⊞ ν(dt)µ(ds).

Consequence: in order to show absolute continuity of µ
(ov)
a,a+b with respect to product of

marginals it is enough to show that for µ a.e. s measure ks is absolutely continuous with

respect to µ⊞ ν. Recall that∫
R

1

z − t
ks(dt) =

1

ω(z)− s
, ∀ s ∈ R and z ∈ C+.

Results of Belinschi (2006) about existence and behaviour of continuous continuation of ω to

R together with regularity properties of ⊞ allow to conclude.

13



Free denoiser – additive case

Theorem 2

For every bounded Borel function f we have

E [f (a) | a+ b] = h(a+ b),

where h : Spec(a+ b) → C is defined (in µ⊞ ν-almost everywhere sense) by

h(t) =

− 1
π

1
fµ⊞ν(t)

Im
Ä∫

R f (s) 1
ω(t)−s dµ(s)

ä
if t ∈ U,

f (ω(t)) if t is an atom of µ⊞ ν.

Note the use of ”ω(t)” in the formula, hence we are invoking ω(a+ b) (somewhat different,

from how ω is typically used).
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Tweedie’s formula

Classical case

Take X ,Y independent (in the commutative sense) and Y ∼ N (0, σ2). The well-known

Tweedie’s formula in statistics says that

E(X | X + Y ) = X + Y + σ2g(X + Y ), where g(t) = d
dt log(fX+Y (t)).

Remarkably h(t) = t + σ2 d
dt log(fX+Y (t)) depends only on the distribution of X + Y .

Free case

If a and b are free and b has Wigner semicircle law with variance σ2, then

E (a | a+ b) = a+ b − 2π σ2 Hµ⊞ν(a+ b),

where Hµ⊞ν is the Hilbert transform of the measure µ⊞ ν.

This formula was found before in work of Allez, Bouchaud, Bun and Potters in the context of

matrix denoising.
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Multiplicative case

The multiplicative case works in an analogous way. The formulas are a bit more complicated.

So we only illustrate here the example of free Poisson noise.

Free Poisson noise

If a, b are free, a ≥ 0 and b has free Poisson distribution of parameter λ > 0 then

E (a | a1/2ba1/2) = h(a1/2ba1/2) with

h(t) =


λt

|λ−1+tGµ⊠ν(t)|2
if t ∈ supp(µ⊠ ν) \ {0},

− λ
(1−λ)G(µ⊠ν)ac (0)

if t = 0 when λ < 1,

The above is well known shrinkage estimator of covariance matrix of Ledoit and Peche.
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Free denoiser and conditional

freeness



Free denoiser as a Radon–Nikodym derivative

How to go beyond additive and multiplicative case?

Our ncps is (A, φ). The goal is to find E (f (a) | P(a, b)) = h(P(a, b)) for a non-commutative

polynomial P.

Theorem 3

If f ≥ 0 and φ(f (a)) = 1, then we define a new state χ : A → C by

χ(c) := φ( f (a)c ), c ∈ A.

Then one has
dµχ

P(a,b)

dµφ
P(a,b)

= h (free denoiser).

For general f we consider f = f + − f −.

17



Proof

Proof of Theorem 3∫
R
g(t)µχ

P(a,b)(dt) = χ
(
g(P(a, b)

)
= φ

(
f (a) g(P(a, b)

)
.

Where we only used the definition on χ.

Next taking the conditional expectation inside we get

= φ
(
E
(
f (a) g(P(a, b)) | P(a, b)

) )
= φ

(
E
(
f (a) | P(a, b)

)
· g(P(a, b))

)
.

Since E
(
f (a) | P(a, b)

)
= h(P(a, b)) we get

= φ
(
h(P(a, b)) · g(P(a, b))

)
=

∫
R
h(t)g(t)µφ

P(a,b)(dt).

Thus ∫
R
g(t)µχ

P(a,b)(dt) =

∫
R
g(t)h(t)µφ

P(a,b)(dt).
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From freeness to c-freeness

Proposition

Let (A, φ) be a non-commutative probability space and (Ai )i∈I be freely independent unital

subalgebras in (A, φ). Fix i0 ∈ I and a positive element x ∈ Ai0 such that φ(x) = 1. Define

another state χ : A → C by

χ(y) := φ(xy), ∀y ∈ A.

Then the subalgebras (Ai )i∈I are conditionally freely independent in (A, φ, χ).
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Proof

Proof Let n ≥ 2, i1 ̸= i2 ̸= . . . ̸= in in I and a1 ∈ Ai1 , . . . , an ∈ Ain be such that

φ(a1) = . . . = φ(an) = 0.

We want to show that

χ(a1 · · · an) = χ(a1) · · ·χ(an).

There is k ∈ {1, . . . , n} such that ik ̸= i0. Then, by free independence of

χ(ak) = φ(xak) = φ(x)φ(ak) = 0 so that the RHS vanishes.

To prove that the LHS of vanishes, there are two cases: i0 ̸= i1 or i0 = i1.

Consider i0 ̸= i1, then

χ(a1 · · · an) = φ(xa1 · · · an)
= φ((x − 1)a1 · · · an) + φ(a1 · · · an)
= 0,

where we used twice in the last line free independence of (Ai )i∈I .
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Free denoiser for general polynomials

Theorem 4

Let a, b be free with distributions µ, ν. Let P be a selfadjoint polynomial then

E (f (a) | P(a, b)) =
d
(
(µ, f · µ)□P

c (ν, ν)
)

d (µ□Pν)
(P(a, b)).

Proof: Let h be the free denoiser, that is, the bounded Borel-measurable function h : R → R
such that

E (f (a) | P(a, b)) = h(P(a, b)).

It is given by the Radon-Nikodym derivative

h =
dµχ

P(a,b)

dµφ
P(a,b)

.

Observe that a ∼ (µ, f · µ) while by freeness b ∼ (ν, ν). Then, according to Proposition

(µφ
P(a,b), µ

χ
P(a,b)) = (µ□Pν, (µ, f · µ)□P

c (ν, ν)).
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Convergence of overlap measure

Brief comments on how our work relates to matrix denoising.

Proposition

Let (A, φ) and, for each N ∈ N, (xN , yN) be a pair of selfadjoint non-commutative random

variables in some non-commutative probability space (AN , φN). If ((xN , yN))N∈N converges in

non-commutative distribution to (x , y) ∈ A2, then the sequence (µ
(ov)
xN ,yN )N∈N of probability

measures on R2 converges weakly to µ
(ov)
x,y .

Corollary

If ((xN , yN))N∈N converges in non-commutative distribution to (x , y) and h : R → R is

bounded Borel-measurable µy -almost everywhere continuous, then

φN((xN − h(yN))
2) −→

N→∞
φ((x − h(y)2).

22



Convergence of overlap measure

Brief comments on how our work relates to matrix denoising.

Proposition

Let (A, φ) and, for each N ∈ N, (xN , yN) be a pair of selfadjoint non-commutative random

variables in some non-commutative probability space (AN , φN). If ((xN , yN))N∈N converges in

non-commutative distribution to (x , y) ∈ A2, then the sequence (µ
(ov)
xN ,yN )N∈N of probability

measures on R2 converges weakly to µ
(ov)
x,y .

Corollary

If ((xN , yN))N∈N converges in non-commutative distribution to (x , y) and h : R → R is

bounded Borel-measurable µy -almost everywhere continuous, then

φN((xN − h(yN))
2) −→

N→∞
φ((x − h(y)2).

22



Additive noise for matrices

Matrix case

In particular if we have a sequence of random matrices AN ,BN , where:

� AN ,BN are almost surely asymptotically free, i.e. converge in nc-distribution to (a, b).

� AN is signal and BN is noise,

� we observe AN + BN and want to approximate AN .

Then (if h is almost surely continuous with respect to distribution of a+ b) then application

the free additive denoiser to AN + BN is asymptotically optimal in the sense that

tr
(
(AN − h(AN + BN))

2
)
→ φ

(
(a− h(a+ b))2

)
.
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Thank you!
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