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Sums of random matrices 3/38

e The empirical spectral distribution of a N X N Hermitian matrix is
1 N
m[AN] ::WZ d(Ni(AN)), where M (ANn) > --- > Av(AN) are the eigenvalues of Apy.
i=1

e Let Ay, By be uniformly random Hermitian matrices with deterministic spectra, i.e.
AN =UnANUN, By =VwBnNWN, where Up,Vn are Haar distributed

and Apr, By are deterministic and diagonal.
Question. What can we say for the random spectrum of Ay + Bx7?

(Voiculescu, 1991) Assume that Apn, By are independent and such that as N — oo, m[An], m|Bn]
weakly converge to probability measures 1, po respectively. Then the random measure m[AN + Bn| converges
weakly, in probability to a deterministic probability measure pu1 H s which is the free convolution of pq and ps.



Free probability 4/38

e A non-commutative probability space is a pair (A, ¢) where A is a unital algebra and ¢: A— C is a linear
functional such that ¢(1) =1.

Given Hermitian random matrices Ap;, global asymptotic results for the spectrum emerge by the limits of the

ncps (C[ 1, Pmi [TrP(AN)]) A type of limit is the pair (C[x], P»—>f]R )pe(dt)) where

Jim g, (P) = ().

There is a notion of cumulants which expresses in a simpler way how the limit of 4, 1 B, is related to the limits
of YAy, YBy-

e The free cumulants (k,(a)),ecN of the random variable a € (A, o) are uniquely determined by

(a®) = Z H k|v|(a), for every ke N.
TeNC(k) Ver

where NC(k) denotes the lattice of non-crossing partitions of {1,...,k}.
The R-transform of a is Rq(2) =) < kn(a)z™ !

We recall that the free convolution is an operation of probability measures characterized by.

k(1 B p2) = Kkn(p1) + £n(p2), for every n > 1.



Fourier transform 5/38

The Harish-Chandra-ltzykson-Zuber integral is defined by

HC(AN; BN) = /U(N)eXp(TI‘(AN UNBN Uﬂ}))dUN

e HC(AN; Byn) depends only on the eigenvalues of Ax and By.
e HC(An; By) is symmetric in {\1(AN), ..., A\N(AN)} and {\1(BnN),...,A\n(BnN)} separately.

It is due to Harish-Chandra that

N -1

det aibj o
et(e™™)1<i <N where ¢y = H 1!

HC’(al,...,aN;bl,...,bN):cNH

Let An be Hermitian random matrices of size N. The Harish-Chandra transform of Ay is

(z1,...,on) — E[HC(AN; 21, ..., 2N)]-



(Bufetov-Gorin, 2013) Let An be Hermitian random matrices such that

)
logB[HC(AN; 21, ..., 2, 0N ") =Y W(a))
=1

lim l
N — oo N

where W is analytic and r is arbitrary and it does not depend on N. Then m[N ~1Apn] converges as N — oo
in probability, in the sense of moments to a probability measure p with moments

kN 1 d™
= Z: (m> (m+1)! dwm(‘ll ()" =0

The R-transform of p is W',

(Bufetov-Z., 2024) Let AN be Hermitian random matrices such that

1 _ -
ngnoo mlog]E[HC(AN; x1,..., 2,0 ") = ;1 W(x;)

where W is analytic, r is arbitrary and does not depend on N and | > 2 fixed. Then m[N ~'An] converges as
N — oo in probability, in the sense of moments to oy (q)-



e Guionnet-Maida (2004) proved that for matrices A with deterministic spectrum, convergence of my [N_lAN]
implies asymptotic additivity for the normalized logarithm of the Harish-Chandra integral.

e We can use the previous theorem and the results of Guionnet-Maida to prove the theorem of Voiculescu.

Example. Let Ay = (ai,j)lgi,jgN be the Hermitian Gaussian random matrix where a; ; ~N(0,27), Ra; j~
N(0,7), Sa;,; ~N(0,7) and {a;,;}i>,; are independent. Then

N
E[HC(An; x1,...,2n)] = || exp(v?).
i=1

Example. Let Ay = a X1 X{ + -+ + a Xy X3, where (Xi),f\il are independent standard complex Gaussian
vectors. Then,

N
]E[HC(AN; T1,... ,:BN)] = H (1 — ozacz-)_M.
=1

In the previous examples we have additivity for the logarithm of the Harish-Chandra integral, for every NV and not
just asymptotically. These examples are related to ergodic unitarily invariant measures on the space of infinite

Hermitian matrices.



Ergodic U (o0o)-invariant probability measures

H = {co x oo Hermitian matrices}
H (00) = {oo X co Hermitian matrices with finitely many entries different from 0}

U(00) = {00 X 0o unitary matrices with finitely many entries different from d; ;}

Olshanski-Vershik (1996) proved that the ergodic U(oo)-invariant Borel probability measures M on H are
characterized by the multiplicativity of the Fourier transform, i.e. for every A € H(oc0)

fn(A) ::/ exp(iTr(AB))M(dB) = H F(a), for some function F:R— C with F(0)=1.
H a€ESpec(A)

The functions F' are of the form
e—iyka

Fla :ei71a—72a2/2 .
(a) 1;[ 1 —1yra

where 71 € R, 72 >0 and (yr)reN is a sequence of real numbers such that Zky% < 0.



The classification of ergodic U(co)-invariant probability measures is related to a limit regime for the Harish-

Ergodic U (o0o)-invariant probability measures

Chandra integral, different from the previous ones.

(Olshanski-Vershik, 1996) We have the following equivalence

In other words,

logHCO (A1, .o, AN T1y -+ oy Ty O 7)) — B (1) + - - - + P(z4)

N
i :
— 231 5(W) — 1, n the sense of moments.
1=

A1 '
W—>yi7“"wl—>y7{7"‘7
)\N )\N—‘ 1
W yi/7"'7 ]\;+ y’l{/?“'

where yr = yi, + yi.. There are also precise expressions for v1, Y2, as limits of (\;) related terms.



Limit regime for the unnormalized trace 10/38

Different limit regimes for the logarithm of the Harish-Chandra transform lead to different type of asymptotic
results for the empirical distribution of the corresponding matrix. The following limit regime leads to asymptotic
results for the unnormalized trace

(Bufetov-Z., 2024) Let AN be Hermitian random matrices such that

r

lim logE[HC(AN; 21, .., %, 0N —7)] = Z D(xz;),

N — oo i1

where ® is analytic and r is arbitrary and does not depend on N. Then for every k € N, the k-th moment of
Nm[N~1Ap] converges in probability to ®)(0)/(k —1)!.

Studying limits of IE[TrAR;] as N — oo, fits into the framework of infinitesimal free probability. The tools of
infinitesimal free probability explain the dependence of the limits from the function ®.



Infinitesimal free probability 11/38

e An infinitesimal ncps is a triple (A, ¢, ¢’) where (A, ¢) is a ncps and ¢’: A— C is a linear functional such
that /(1) =0.

In certain cases the extra functional ¢’ arises naturally when (A, ) is the limit of a sequence (A, pn) but we
also have an infinitesimal limit, i.e.

p(a)= lim pn(a) and ¢'(a)= lim N(pn(a)— ¢(a)), for every a € A.

N — oo N — oo

In this sense ¢’ plays the role of the derivative.

e The infinitesimal free cumulants (x,,(a)),cnN of a random variable a € (A, ¢, ¢’) are uniquely determined by

©'(a®) = Z Z Ky (a) H kyw|(a), for every k€ N.

TeNC(k) Ver Wemn
WAV

The infinitesimal R-transform of a is Ry(2) =Y, < kn(a)z" L.

The sequence (k,,(a))ncN emerges differentiating one time the moment-cumulant relations, e.g.

¢'(a) = (p(a))' = (k1(a)) =k1(a) and ¢'(a®) = (k2(a) +r1(a)k1(a))’ = Ka(a) +2K1(a)k1(a).



The limit regimes

L

Nglog]E[HC(AN; 1, .. T, ON )] — & (1) + - - - + Pe(z), fore=0,1

have concrete and different impacts on the empirical distribution of Ap from the side of infinitesimal free
probability.

We recall

oa(P) = %]E[TrP(ANﬂ, for P € Clx].

e The regime € =1 gives a limit of (C[x], ¢n-14,) Which depends on ®1 concretely, in the sense that df is
the R-transform.

e The regime € =0 implies that the limit of (C[x], pn-14,) is 0 and it also gives an infinitesimal limit which
depends on 3. The dependence from P is also specific because in this case

o' (x") =k (x), for every n.

This means that ®) is the infinitesimal R-transform.



(Bufetov-Z., 2024) Let An be Hermitian random matrices such that

lim (log]E[HC’(AN; T, ..., T, 0N =) — NZ \I!(xz)> = Z O(z;)
=1

N—o0 i=1
where W, ® are analytic and r is arbitrary and does not depend on N. Then we have that

on-144(P) = 9(P) ++6'(P) + o(N 1),

where (C[x], ¢, ) is an incps such that

i: ( )(m+1)' ddxn:n(‘lf/(x))k_m

=0
and
ooy = 5 (F )L g gyt
— m—+1/m! dx™ .

Moreover the R-transform is U’ and the infinitesimal R-transform is ®’.



Finite-rank perturbations of random matrices and BBP phase transition

It was shown by Shlyakhtenko (2015) that infinitesimal free probability can provide information about outlier
eigenvalues of a random matrix, that are not visible in the limit. Such outlier eigenvalues can emerge by considering
additive perturbations of classical random matrix ensembles by finite-rank matrices. It was proved by Olshanski-
Vershik (1996) that for matrices of finite rank the (unnormalized) logarithms of the Harish-Chandra integrals are

additive asymptotically.

e For 0 € R the fact that (u; j)1<i j<n € U(N)— (Jui1|? ..., |uin|?) has a Dirichlet distribution with
parameters (1,...,1) implies that

,
logHC (21, ..., 2, ON =7, NO,0N ~1) — 3~ log(1 — f;) L.

=1

As a consequence the matrix N - Ay + diag(N6,0" —1), where Ay is a GUE, fits into the framework of our
previous theorem and the 1/ N correction of Ax + diag(6, ON_l) is given by the signed measure

0(t — 20)

p(dt) =1 g o-1(dt) — dt.
Hold) = Hoiz100 00 = g o ) A=




Finite-rank perturbations of random matrices and BBP phase transition

From the 1/ N correction of a rank one perturbation of a GUE, we deduce that the extremal eigenvalue exhibits
a phase transition depending on the magnitude |0|. This is called a BBP transition and this phenomenon was
originally showed by Baik-Ben Arous-Peche (2005) for complex sample covariance matrices.

m.L

|

(1b)

ol

:
(

(1e)

(1d)



Second order infinitesimal free probability and Harish-Chandra transform 16/38

Additional asymptotic conditions for the Harish-Chandra transform of Ajp lead to higher order infinitesimal limits
of (C[x], ¢on-14,) as N — co. This is related to higher order infinitesimal free probability, introduced by Fevrier
(2010).

Given a second order correction to the limit of the logarithm of the Harish-Chandra transform, i.e.
N2<llog]E[HC(AN; T1,..., 2., 0N ") — i W(x;) — izr: <I>(ac@)> —>lzr: T(z;),
N i=1 Ni:l 2i:1
we get a “second order Taylor expansion’

1 o®(P)
NZ T 2

on-143(P) = #O(P) + 1o D(P) + + 120 (P)+o(N7?), PeCh)

where (C[x], 0%, (1), ©(?)) is an incps of order 2.

The function T/ plays the role of the second order infinitesimal R-transform. Second order infinitesimal free
cumulants (k. (a))nen of a€ (A, p, ¢, ") can be defined, differentiating twice the moment cumulant relations.

For example, ¢’ (a) =kx{(a) and

o'(a?) = Kh(a) + 264 ()1 (@) = ©"(a2) = v} () + 25} (@)r1(a) + 2(x] (a))2.



(2)
ox-an(P) = ¢ O(P) + () + L ) L L s@1p) o(n-2), Pecix]

There are explicit formulas for cp(2),

PP =30 (F ) S ) (ko

m+1/m! dz™ e
m=
ey k! am
: ! 2 / k—m-—2
+ Z m!(m+ 1)I(k —m — 2)! dxm(cI> (2))"(¥(2)) 0
m=0 x

e For the extra functional gb<2), there are explicit formulas and the values gb(2)(xk) depend only on W.

e One can thing that for the second order limit regime our random matrix has the form Ay = A](\?) + Ag\}) +AY,
(2)

where Ag\?) is the leading matrix that satisfies the free probability limit regime and Aj(\}), Ay’ are perturbations.

The perturbations A](\}), A](\?) are not visible in the limit, but in the 1 /N and 1/N2 correction respectively.

e The leading matrix A](\(,)) gives rise to ¢>(2) because the free probability limit regime leads to an expansion

1 0 0 1 2
WE[TT(AJ(\/))’“} M<)+N2 ()+N4 ()+



The intermediate limit regime 18/38

The limit regime for the 1 /N correction detects if there are finitely many outliers in the spectrum, possibly
coming from finite rank perturbations.

Perturbations of rank that depend on N may cause infinitely many outliers. This phenomenon cannot be captured
by the 1/ N correction and the corresponding limit regime. Instead, we have

(Bufetov-Z., 2024) Let An be Hermitian random matrices and 0 <e <1, such that

Nlim N’s(%log]E[HC(AN; T1,..., 2., 0N 7] — Z \Il(azz)> = Z D (z;)
e i=1 i=1

where W, ® are analytic and r is arbitrary and does not depend on N. Then we have that

N1 4n(P) = 9(P) + 5720/ (P) +0o(N ),

where (C[x], ¢, ') is an incps such that (¢(x¥)) are as before and

k—1

T E o\ 1 d™ _, ) o
0= 30 (1 e @@ @)Y




The intermediate limit regime gives an interpolation between the free probability limit regime and the Olshanski-
Vershik limit regime.

Example. The | N!~¢]-rank perturbation of the GUE

[Nt==]
An =N -GUE+0 Z X; X7, where (X;) are independent standard complex Gaussian vectors,

=1

fits into the intermediate limit regime.

Our theorem implies that the 1/ N¢ correction of N 1Ay is given by the same signed measure as for the 1/ N
correction of GUE + diag(6, 0V —1).

This leads to the same BBP phase transition for N =1 Ay, where depending on |0| we might have N1 ¢ outliers
6+6-1.

Higher order generalizations of the intermediate limit regime can describe the situation where we have finitely
many perturbations. The first one will have rank N1 ~¢ and the outliers that creates will be visible from the 1/ N¢
correction. The second one will have rank N1 ~2¢ and the outliers that creates will be visible from the 1/ N2¢
correction, and so forth.



Higher order infinitesimal free probability and the intermediate limit regime

(Bufetov-Z., 2024) Let Ay be Hermitian random matrices and 0 <& <n~!, such that

1 5 v L @) | n(w)
3 . N — . J\L _ n\4L1
Jim e ~ogE[HC (AN; 1, -, 2, OV 7)) Z Z N S Z I
7=0 2=1 =1
where Wy, ..., W, are analytic and r is arbitrary and does not depend on N. Then, we have that

1 1 n —n
on-145(P) = 9 O(P) + 1z (P) + -+ M (P) + o(N ),

where (C[x], 00, M gp<”)) is an incps of order n. The values go(i)(xk) can be computed explicitly and
the function W/ is the i-th order infinitesimal R-transform.



Discrete setting and representations of U (V)

A signature of length N is a N-tuple of integers A= (A1,...,An). We denote by Sign(N) the set of such
N-tuples. For example A= (5,3,3,1,—2,—2) is a signature of length 6.

e It is known that all irreducible representations of U (IN) are parametrized by signatures. Let 7> be an irreducible
representation of U(IN) corresponding to .

A

e The character 7w is the Schur function

det(x?j+N_j)1§¢,j§N

sx(z1,...,xN) = IO Oy

e We will encode a representation 7 and a signature \ by the counting measure m[A]:

mA] %i 5(%)



Decomposition into irreducibles 22/38

e Given a finite-dimensional representation 7 of U(/N) we can decompose it into irreducible components

™= @ ey, where the non-negative integers ¢y are multiplicities.
veSign(N)

e This decomposition can be identified with a probability measure p™ on signatures of length IV, such that

vy cxdim(m?)
PN = dim(7)

e The pushforward of p™ with respect to the map A— m/[\] is a random probability measure on R. We denote
this by m/[]].

Example. Let 7 =7(32) @ x(31), Because dim(w*2)) =2, dim(x(®1)) = 3, m/[r] is the random probability
measure which takes values

26(2)+48(1), with probability 2,

1 1 1 . - 3
50(2) + 55(5), with probability —.



Tensor products 23/38

e Let )\, u be signatures of length N. The decomposition of the tensor product 7 ® 7# is given by the
Littlewood-Richardson coefficients.

e One can write the decomposition of tensor products in terms of Schur functions

A
sa(@1,...,aN)su(z1, ..., oN) = Z cn’“ sn(x1,...,ZN).

e The explicit formula for the measure on signatures

)\
p7r>‘®7r“(n): ?7 877(1 1)

sa(1 ,...,1)SM(1,...,1)'

We are interested in the asymptotic behaviour of the decomposition of the tensor product into irreducibles. We
will extract information studying the asymptotic behaviour of m[r* ® 7#].



(Bufetov-Gorin, 2013) Let \', 22 € Sign(N), N € N, which satisfy some technical assumptions
including that

m[)@]Lui, as N — oo.

Let mny = N @’ Then, m[m | converges in probability, in the sense of moments to a deterministic probability
measure 1 ® p2 such that

(1 ® p2) Bul0, 1] = pog B po

where u[0, 1] is the uniform measure on [0, 1].

e The operation (w1, u2) — 11 ® pe is defined by the linearization of an analytic function. This analytic function
is not the usual R-transform but its quantized version:

RI“™(2) := Ry (2) — Ryjo,11(2)-
In other words

Rzggt(z> :Rg’uant(z> + Rguant(z)‘



Schur generating functions 25/38

e Comparing the theorems of Voiculescu (1991)and Bufetov-Gorin (2013), there is the following parallelism
between the frameworks of Hermitian random matrices and representations of U (NN): In the discrete setting,
uniformly random Hermitian matrices with deterministic spectrum are replaced by irreducible representations
of U(N), the sum is replaced by the tensor product and H is replaced by ®.

e There is a notion of Fourier transform for discrete N-particle systems. Analogously to random matrices, the
transform of the tensor product of irreducibles should be the product of the corresponding transforms.

Recall that

sx(®1, -, zN) Su(@1,. ., TN) @rig N Su(T1, .., TN)
sx(L,.. 1) sy, 1) > P (v) so(l,...,1)

veSign(N)



Schur generating functions 26/38

Given probability measures pn on Sign(/N) the Schur generating function is given by

S\\T1,...,ZT
SpN(xl, ce ,xN) = Z pN()\) Z( (11 1J)V) .
A€Sign(N) AL

(Bufetov-Gorin, 2013) Let pn be a sequence of probability measures on Sign(N) such that

lim ilogSpN(azl, o e, AN T = () - U (),
N — oo N

where V s analytic and r does not depend on N. Then m[pn] converges in probability, in the sense of moments
to a probability measure with moments

k m
m 35 (S ewern]

m=0

and R-transform

R,(2) =eW'(e®) + Ryjo,1)(2)-



Schur generating functions and extreme characters of U(o0)

The Olshanski-Vershik limit regime for Ay € Sign(/N) will be

San (X1, ey, 1V 7T

San(l, .., 1)

d(x1)...P(zp).

e Similarly to random matrices, the Olshanski-Vershik limit regime for discrete \j is related to the classification
of extreme characters of U(oo) (Vershik-Kerov (1982), Okounkov-Olshanski (1998)).

A character x: U(co) — C is a central and positive-definite function that maps unit to the unit.

For a character x: U(oc0) — C, there exist probability measures gy on Sign(/N) such that

x(diag(zl, AN 1, 1, oo )) = SQN(Zl, ceey ZN).

The classification of the extreme characters is due to the Edrei-Voiculescu theorem (Edrei (1953), Voiculescu
(1976), Vershik-Kerov (1982), Okounkov-Olshanski (1998), Borodin-Olshanski (2012)). Each extreme character
corresponds to a unique w € (R)4 x (R4)2. For arbitrary w, the extreme character x*: U(co) — C has the
multiplicative form

x“(U) = 11 (u).
u€Spectrum (U)

The function ®“: {u € C: |u|=1} — C is called Voiculescu function and it has an explicit form.



Infinitesimal free probability limit regime 28/38

e Similarly to random matrices, a generalization of the Olshanski-Vershik limit regime for random A\ € Sign(N)
can lead to asymptotic results for the 1/ N correction to the Law of Large Numbers of Bufetov-Gorin (2013).
This 1/ N correction can reveal outliers and has an interpretation from the side of infinitesimal free probability.

Given a sequence py of probability measures on Sign(/N), consider

bor(P) =Ban | [ PO, PeCix

From asymptotics of Schur generating functions we extract infinitesimal limits for (C[x], ¢,,) and a quantized
analogoue of the infinitesimal free convolution.



(Bufetov-Z., 2024) Let o be a sequence of probability measures on Sign(N) such that

-
lim <logSQN(a:1,...,acr,1N_r NZ ) Z b (x;),

N — oo i1

where W, ® are analytic and r is arbitrary and does not depend on N. Then we have that

Pon(P) = ¢(P) + == ¢() o(N7%), PeC[]|

where (C[x], ¢, ¢') is an incps such that

k

66 = 3 () e @ (@)™

m=0

)
x=1

and

=5 (o (w0 3 o)

m=0

Moreover, the infinitesimal R-transform of (C[x], ¢, @) is z+ e*®’(e?) — %



Discrete BBP 30/38

Example. Consider the extreme character in U(c0) that creates the Schur generating function

N
Spu a1, ron) = [ exp(yN (s = 1)1 — a(z 5
i=1 v

Such a character is the product of the one-sided Plancherel character (discrete analog of a GUE) and another
character that plays the role of a rank-one matrix.

The limit shape is known from Biane (2001) and Bufetov-Borodin-Olshanski (2015).

The 1/ N correction of m[pn] is given by the signed measure

! - Yy 1 ol
Ma,’y(dt)_la>\/75(a+1+a+’}’)+§1a:ﬁ5(a+1+a+’}’)

+< alt—2a—~y—1) _t+1—’7> dt
y+a2+ay+a—at 2t 27T\/(y-|—1—|—2\/§—t)(t—’>’—1+2\/§>

We see that depending on whether e > /7, the outlier does or does not appear in the model.



Domino tilings of Aztec diamond 31/38

e The Aztec diamond of size N is all lattice squares which are fully contained in {(z,y):|z|+ |y| <N +1}.

e Domino tilings of Aztec diamond where introduced by Elkies-Kuperberg-Larsen-Propp (1992). They proved
that the number of tilings is equal to oN(N+1)/2,

Aztec diamond of size 3




Let us consider a chessboard coloring of Aztec diamond. It is useful to distinguish not two, but four different
types of dominoes.

e Each domino tiling is uniquely determined by dominoes of two types (one vertical and one horizontal).

How does a uniformly random domino tiling of a large Aztec diamond look like?



e Random tilings of the Aztec diamond is a very well studied model Jockusch-Propp-Schor (1998), Johansson
(2005), ....

(Jockusch-Propp-Schor, 1998) Asymptotically a uniformly random tiling becomes frozen outside
of a certain circle.



e We say that a signature A of length N and a signature p of length N — 1 interlace (A > p) if

A Zp12A2> p22 - ZAN—12 UN—1 =2 AN.

Example. (6,3,2,0) > (3,3,2).

e We say that signatures A, p of length N differ by a vertical strip (A >, ) if

Ai—pi€{0,1}, foranyi=1,...,N.

Example. (3,3,2,1,1,1)>,(3,3,1,0,0,0).

MLl T he set of collection of signatures
(O A w N T A st < N2 2 < <A =, (0,...,0)),

is is bijection with domino tilings of Aztec diamond of size N.

Each signature \" describes the positions of domino tilings along a one-dimensional slice of the Aztec diamond.



/5
/ 4 3
a 5 1 X
o< || -
O |
X O X
1 m
e

On each level boxes are numbered starting from 0. Distinct particles are in positions
1;15(1,3);(0,2); (0, 1,3); (0, 1,2).
Making shifts we obtain signatures:

1%-,1<(1,2)=,(0,1)<(0,0,1) =, (0,0, 0).



BBP for domino tilings of Aztec diamond

e \We consider a perturbation of the uniform measure. This is
]P[domino tiling] — Z@number of horizontal dominoes in the up level’
where 6 > 1.
e In terms of sequences of signatures (A, p™¥ ~1 AN =1 A1), this is
_ N
IP[(ANa :uN 19 SR Al)] - Z@p\ |

e For a <1, the Schur generating function of the distribution of AN can be computed explicitly and it
satisfies the infinitesimal free probability limit regime.



BBP for domino tilings of Aztec diamond

The 1/ N correction to the limit of AN s given by the sighed measure

/ B —1+2a0 -0 1 —1+42a6 -0
Har o (dE) = _10‘>—(299;i)22 d af? —« B §1a= (29931)22 g af? — «
—2a+1 2a2—a 2a20% —ah?—2a0+2a2% -« dt

G 4t _4at—4+—204t—|—20402t—4049—|—2—|—20 71-\/1_(205_1)2_(20475_1)2'
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