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Sums of random matrices 3/38

� The empirical spectral distribution of a N �N Hermitian matrix is

m[AN] :=
1
N

X
i=1

N

�(li(AN)), where l1(AN)� � � � � lN(AN) are the eigenvalues of AN:

� Let AN, BN be uniformly random Hermitian matrices with deterministic spectra, i.e.

AN =UNANUN
� , BN =VNBNVN

�, where UN ; VN are Haar distributed

and AN ;BN are deterministic and diagonal.

Question. What can we say for the random spectrum of AN +BN?

Theorem (Voiculescu, 1991) Assume that AN ;BN are independent and such that as N!1, m[AN];m[BN]
weakly converge to probability measures �1;�2 respectively. Then the random measure m[AN+BN] converges
weakly, in probability to a deterministic probability measure �1��2 which is the free convolution of �1 and �2.
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� A non-commutative probability space is a pair (A; ') where A is a unital algebra and ':A!C is a linear
functional such that '(1)= 1.

Given Hermitian random matrices AN, global asymptotic results for the spectrum emerge by the limits of the

ncps
�
C[x]; P 7¡!

'AN 1

N
E[TrP (AN)]

�
. A type of limit is the pair (C[x]; P 7¡!

' R
R
P (t)�(dt)) where

lim
N!1

'AN(P )= '(P ):

There is a notion of cumulants which expresses in a simpler way how the limit of 'AN+BN is related to the limits
of 'AN ; 'BN.

� The free cumulants (�n(a))n2N of the random variable a2 (A; ') are uniquely determined by

'(ak)=
X

�2NC(k)

Y
V 2�

�jV j(a), for every k 2N:

where NC(k) denotes the lattice of non-crossing partitions of f1; : : : ; kg.

The R-transform of a is Ra(z)=
P

n�1�n(a)z
n¡1.

We recall that the free convolution is an operation of probability measures characterized by.

�n(�1��2)=�n(�1)+�n(�2); for every n� 1:



Fourier transform 5/38

The Harish-Chandra-Itzykson-Zuber integral is defined by

HC(AN;BN)=

Z
U(N)

exp(Tr(ANUNBNUN�))dUN:

� HC(AN;BN) depends only on the eigenvalues of AN and BN.

� HC(AN;BN) is symmetric in fl1(AN); : : : ; lN(AN)g and fl1(BN); : : : ; lN(BN)g separately.

It is due to Harish-Chandra that

HC(a1; : : : ; aN; b1; : : : ; bN)= cN
det(eaibj)1�i;j�NQ

i<j (ai¡ aj)
Q
i<j (bi¡ bj)

where cN =
Y
i=1

N¡1
i!:

Definition Let AN be Hermitian random matrices of size N. The Harish-Chandra transform of AN is

(x1; : : : ; xN) 7¡!E[HC(AN; x1; : : : ; xN)]:



Theorem (Bufetov-Gorin, 2013) Let AN be Hermitian random matrices such that

lim
N!1

1

N
logE[HC(AN; x1; : : : ; xr; 0N¡r)]=

X
i=1

r

	(xi)

where 	 is analytic and r is arbitrary and it does not depend on N. Then m[N¡1AN] converges as N!1
in probability, in the sense of moments to a probability measure � with moments

�k=
X
m=0

k¡1 �
k
m

�
1

(m+1)!

dm

dxm
(	0(x))k¡m

��������
x=0

:

The R-transform of � is 	0.

Theorem (Bufetov-Z., 2024) Let AN be Hermitian random matrices such that

lim
N!1

1

N l
logE[HC(AN;x1; : : : ; xr; 0N¡r)]=

X
i=1

r

	(xi)

where 	 is analytic, r is arbitrary and does not depend on N and l� 2 fixed. Then m[N¡lAN] converges as
N!1 in probability, in the sense of moments to �	0(0).



� Guionnet-Maida (2004) proved that for matricesAN with deterministic spectrum, convergence of mN[N
¡1AN]

implies asymptotic additivity for the normalized logarithm of the Harish-Chandra integral.

� We can use the previous theorem and the results of Guionnet-Maida to prove the theorem of Voiculescu.

Example. Let AN =(ai;j)1�i;j�N be the Hermitian Gaussian random matrix where ai;isN (0; 2), <ai;js
N (0; ), =ai;jsN (0; ) and fai;jgi�j are independent. Then

E[HC(AN; x1; : : : ; xN)]=
Y
i=1

N

exp( xi2):

Example. Let AN = �X1X1
�+ � � � + �XMXM

� , where (Xi)i=1M are independent standard complex Gaussian
vectors. Then,

E[HC(AN; x1; : : : ; xN)]=
Y
i=1

N

(1¡�xi)¡M:

In the previous examples we have additivity for the logarithm of the Harish-Chandra integral, for every N and not
just asymptotically. These examples are related to ergodic unitarily invariant measures on the space of infinite
Hermitian matrices.



Ergodic U(1)-invariant probability measures 8/38

H = f1�1 Hermitian matricesg

H(1)= f1�1 Hermitian matrices with finitely many entries different from 0g

U(1)= f1�1 unitary matrices with finitely many entries different from �i;jg

Olshanski-Vershik (1996) proved that the ergodic U(1)-invariant Borel probability measures M on H are
characterized by the multiplicativity of the Fourier transform, i.e. for every A2H(1)

fM (A) :=

Z
H
exp(iTr(AB))M(dB)=

Y
a2Spec(A)

F (a), for some function F :R!C with F (0)= 1:

The functions F are of the form

F (a)= ei1a¡2a
2/2
Y
k

e¡iyka

1¡ iyka

where 12R, 2� 0 and (yk)k2N is a sequence of real numbers such that
P

k yk
2<1.



Ergodic U(1)-invariant probability measures 9/38

The classification of ergodic U(1)-invariant probability measures is related to a limit regime for the Harish-
Chandra integral, different from the previous ones.

Theorem (Olshanski-Vershik, 1996) We have the following equivalence

logHC(�1; : : : ; �N;x1; : : : ; xr; 0N¡r)¡!�(x1)+ � � �+�(xr)

()
X
i=1

N

�

�
�i
N

�
¡! �; in the sense of moments.

In other words,

�1
N
¡! y1

0 ; : : : ;
�i
N
¡! yi

0; : : : ;

�N
N
¡! y1

00; : : : ;
�N¡i+1

N
¡! yi

00; : : :

where yk= yk
0 + yk

00. There are also precise expressions for 1; 2, as limits of (�i) related terms.



Limit regime for the unnormalized trace 10/38

Different limit regimes for the logarithm of the Harish-Chandra transform lead to different type of asymptotic
results for the empirical distribution of the corresponding matrix. The following limit regime leads to asymptotic
results for the unnormalized trace

Theorem (Bufetov-Z., 2024) Let AN be Hermitian random matrices such that

lim
N!1

logE[HC(AN; x1; : : : ; xr; 0N¡r)] =
X
i=1

r

�(xi);

where � is analytic and r is arbitrary and does not depend on N. Then for every k 2N, the k-th moment of
Nm[N¡1AN] converges in probability to �(k)(0)/(k¡ 1)!.

Studying limits of E[TrANk ] as N!1, fits into the framework of infinitesimal free probability. The tools of
infinitesimal free probability explain the dependence of the limits from the function �.



Infinitesimal free probability 11/38

� An infinitesimal ncps is a triple (A; '; '0) where (A; ') is a ncps and '0:A!C is a linear functional such
that '0(1)= 0.

In certain cases the extra functional '0 arises naturally when (A; ') is the limit of a sequence (A; 'N) but we
also have an infinitesimal limit, i.e.

'(a)= lim
N!1

'N(a) and '0(a)= lim
N!1

N('N(a)¡ '(a)), for every a2A:

In this sense '0 plays the role of the derivative.

� The infinitesimal free cumulants (�n0 (a))n2N of a random variable a2(A; '; '0) are uniquely determined by

'0(ak)=
X

�2NC(k)

X
V 2�

�jV j
0 (a)

Y
W2�
W=/V

�jW j(a), for every k 2N:

The infinitesimal R-transform of a is Ra
0 (z)=

P
n�1�n

0 (a)zn¡1.

The sequence (�n
0 (a))n2N emerges differentiating one time the moment-cumulant relations, e.g.

'0(a)= ('(a))0=(�1(a))
0=�1

0 (a) and '0(a2)= (�2(a)+�1(a)�1(a))
0=�2

0 (a)+ 2�1
0 (a)�1(a):



The limit regimes

1
N" logE[HC(AN;x1; : : : ; xr; 0

N¡r)]¡!�"(x1)+ � � �+�"(xr), for "=0; 1

have concrete and different impacts on the empirical distribution of AN from the side of infinitesimal free
probability.

We recall

'AN(P )=
1

N
E[TrP (AN)], for P 2C[x]:

� The regime "=1 gives a limit of (C[x]; 'N¡1AN) which depends on �1 concretely, in the sense that �1
0 is

the R-transform.

� The regime "=0 implies that the limit of (C[x]; 'N¡1AN) is 0 and it also gives an infinitesimal limit which
depends on �0. The dependence from �0 is also specific because in this case

'0(xn)=�n
0 (x), for every n:

This means that �0
0 is the infinitesimal R-transform.



Theorem (Bufetov-Z., 2024) Let AN be Hermitian random matrices such that

lim
N!1

 
logE[HC(AN; x1; : : : ; xr; 0N¡r)]¡N

X
i=1

r

	(xi)

!
=
X
i=1

r

�(xi)

where 	;� are analytic and r is arbitrary and does not depend on N. Then we have that

'N¡1AN(P )= '(P )+
1

N
'0(P )+ o(N¡1);

where (C[x]; '; '0) is an incps such that

'(xk)=
X
m=0

k¡1 �
k
m

�
1

(m+1)!

dm

dxm
(	0(x))k¡m

��������
x=0

and

'0(xk)=
X
m=0

k¡1 �
k

m+1

�
1

m!

dm

dxm
�0(x)(	0(x))k¡m¡1

��������
x=0

:

Moreover the R-transform is 	0 and the infinitesimal R-transform is �0.
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It was shown by Shlyakhtenko (2015) that infinitesimal free probability can provide information about outlier
eigenvalues of a randommatrix, that are not visible in the limit. Such outlier eigenvalues can emerge by considering
additive perturbations of classical random matrix ensembles by finite-rank matrices. It was proved by Olshanski-
Vershik (1996) that for matrices of finite rank the (unnormalized) logarithms of the Harish-Chandra integrals are
additive asymptotically.

� For � 2R the fact that (ui;j)1�i;j�N 2 U(N) 7! (ju11j2; : : : ; ju1N j2) has a Dirichlet distribution with
parameters (1; : : : ; 1) implies that

logHC(x1; : : : ; xr; 0N¡r; N�; 0N¡1)¡!
X
i=1

r

log(1¡ �xi)¡1:

As a consequence the matrix N �AN+diag(N�; 0N¡1), where AN is a GUE, fits into the framework of our
previous theorem and the 1/N correction of AN +diag(�; 0N¡1) is given by the signed measure

��
0 (dt)=1j�j�1��+�¡1(dt)¡

�(t¡ 2�)
2p(�(t¡ �)¡ 1) 4¡ t2

p dt:



Finite-rank perturbations of random matrices and BBP phase transition 15/38

From the 1/N correction of a rank one perturbation of a GUE, we deduce that the extremal eigenvalue exhibits
a phase transition depending on the magnitude j�j. This is called a BBP transition and this phenomenon was
originally showed by Baik-Ben Arous-Peche (2005) for complex sample covariance matrices.

(1a) (1b)

(1c) (1d)

Figure 1. In this simulation 40 complex Gaussian 100 × 100 random ma-
trices were chosen at random; each was perturbed by a deterministic rank 1
matrix with eigenvalue 4 (in figures 1a, 1b) and 0.4 (in figures 2a, 2b). Eigen-
value distributions of the resulting matrices were averaged. Green represents
predicted eigenvalue density assuming the semicircle law (rescaled by 0.99 to
account for the loss of one eigenvector in figure 1a). Orange represents pre-
dicted eigenvalue density using (4.1). Note that our correction (4.2) has most
of its mass near the edges of the continuous spectrum, giving an improved
prediction for the number of eigenvalues near those edges.

where

(4.2) ν̂j =
θj(t− 2θj)

(2θj(t− θj)− 1)
√

2− t2
χ[−
√
2,
√
2]dt

is a probability measure if θj > 1/
√

2 and is a signed measure of total mass zero otherwise

(in the latter case, νj is the difference of two positive measures supported on [−
√

2, 2θj] and

[2θj,
√

2], respectively).

4.1.2. GUE matrices. Exactly the same computation works if we replace the matrix AN by
a random Gaussian Hermitian matrix; indeed, because the entries of AN are complex, we
have

1

N
ETr(p(AN)) = τ(p) +O(1/N2)

where τ is the semicircle law (cf. [Joh98, DE06]).
Figure 1 presents the results of numerical simulations.

12
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Additional asymptotic conditions for the Harish-Chandra transform of AN lead to higher order infinitesimal limits
of (C[x]; 'N¡1AN) as N!1. This is related to higher order infinitesimal free probability, introduced by Fevrier
(2010).

Given a second order correction to the limit of the logarithm of the Harish-Chandra transform, i.e.

N2

 
1
N
logE[HC(AN; x1; : : : ; xr; 0N¡r)]¡

X
i=1

r

	(xi)¡
1
N

X
i=1

r

�(xi)

!
¡! 1

2

X
i=1

r

T(xi);

we get a �second order Taylor expansion�

'N¡1AN(P )= '(0)(P )+
1
N
'(1)(P )+

1

N2

'(2)(P )
2

+
1

N2
�(2)(P )+ o(N¡2), P 2C[x];

where (C[x]; '(0); '(1); '(2)) is an incps of order 2.

The function T0 plays the role of the second order infinitesimal R-transform. Second order infinitesimal free
cumulants (�n

00(a))n2N of a2(A; '; '0; '00) can be defined, differentiating twice the moment cumulant relations.

For example, '00(a)=�1
00(a) and

'0(a2)=�2
0 (a)+2�1

0 (a)�1(a)=) '00(a2)=�2
00(a)+ 2�1

00(a)�1(a)+ 2(�1
0 (a))2:



'N¡1AN(P )= '(0)(P )+
1
N
'(1)(P )+

1

N2

'(2)(P )
2

+
1

N2
�(2)(P )+ o(N¡2), P 2C[x]:

There are explicit formulas for '(2),

'(2)(xk)=
X
m=0

k¡1 �
k

m+1

�
1
m!

dm

dxm
T0(x)(	0(x))k¡m¡1

��������
x=0

+
X
m=0

k¡2
k!

m!(m+1)!(k¡m¡ 2)!
dm

dxm
(�0(x))2(	0(x))k¡m¡2

��������
x=0

:

� For the extra functional �(2), there are explicit formulas and the values �(2)(xk) depend only on 	.

� One can thing that for the second order limit regime our randommatrix has the formAN=AN
(0)
+AN

(1)
+AN

(2),

whereAN
(0) is the leading matrix that satisfies the free probability limit regime andAN

(1)
;AN

(2) are perturbations.
The perturbations AN

(1)
; AN

(2) are not visible in the limit, but in the 1/N and 1/N2 correction respectively.

� The leading matrix AN
(0) gives rise to �(2) because the free probability limit regime leads to an expansion

1

Nk+1
E
�
Tr
¡
AN
(0)�k�=MN;k

(0)
+

1

N2
MN;k
(1)

+
1

N4
MN;k

(2)
+ � � �:



The intermediate limit regime 18/38

The limit regime for the 1/N correction detects if there are finitely many outliers in the spectrum, possibly
coming from finite rank perturbations.

Perturbations of rank that depend onN may cause infinitely many outliers. This phenomenon cannot be captured
by the 1/N correction and the corresponding limit regime. Instead, we have

Theorem (Bufetov-Z., 2024) Let AN be Hermitian random matrices and 0� "� 1, such that

lim
N!1

N"

 
1
N
logE[HC(AN; x1; : : : ; xr; 0N¡r)]¡

X
i=1

r

	(xi)

!
=
X
i=1

r

�(xi)

where 	;� are analytic and r is arbitrary and does not depend on N. Then we have that

'N¡1AN(P )= '(P )+
1

N"'
0(P )+ o(N¡");

where (C[x]; '; '0) is an incps such that ('(xk)) are as before and

'0(xk)=
X
m=0

k¡1 �
k

m+1

�
1
m!

dm

dxm
�0(x)(	0(x))k¡m¡1

��������
x=0

:



The intermediate limit regime gives an interpolation between the free probability limit regime and the Olshanski-
Vershik limit regime.

Example. The bN1¡"c-rank perturbation of the GUE

AN =N �GUE+�
X
i=1

bN1¡"c
XiXi

�; where (Xi) are independent standard complex Gaussianvectors;

fits into the intermediate limit regime.

Our theorem implies that the 1/N" correction of N¡1AN is given by the same signed measure as for the 1/N
correction of GUE+diag(�; 0N¡1).

This leads to the same BBP phase transition for N¡1AN, where depending on j�j we might have N1¡" outliers
�+ �¡1.

Higher order generalizations of the intermediate limit regime can describe the situation where we have finitely
many perturbations. The first one will have rankN1¡" and the outliers that creates will be visible from the 1/N"

correction. The second one will have rank N1¡2" and the outliers that creates will be visible from the 1/N2"

correction, and so forth.



Higher order infinitesimal free probability and the intermediate limit regime 20/38

Theorem (Bufetov-Z., 2024) Let AN be Hermitian random matrices and 0<"<n¡1, such that

lim
N!1

Nn"

0@ 1

N
logE[HC(AN;x1; : : : ; xr; 0N¡r)]¡

X
j=0

n¡1 X
i=1

r
1

N j"

	j(xi)

j!

1A=X
i=1

r
	n(xi)

n!
;

where 	0; : : : ;	n are analytic and r is arbitrary and does not depend on N. Then, we have that

'N¡1AN(P )= '(0)(P )+
1
N"'

(1)(P )+ � � �+ 1
Nn"'

(n)(P )+ o(N¡n");

where (C[x]; '(0); '(1); : : : ; '(n)) is an incps of order n. The values '(i)(xk) can be computed explicitly and
the function 	i

0 is the i-th order infinitesimal R-transform.



Discrete setting and representations of U(N) 21/38

� A signature of length N is a N -tuple of integers �= (�1; : : : ; �N). We denote by Sign(N) the set of such
N-tuples. For example �=(5; 3; 3; 1;¡2;¡2) is a signature of length 6.

� It is known that all irreducible representations of U(N) are parametrized by signatures. Let �� be an irreducible
representation of U(N) corresponding to �.

� The character �� is the Schur function

s�(x1; : : : ; xN)=
det
¡
xi
�j+N¡j�

1�i;j�NQ
1�i<j�N (xi¡ xj)

:

� We will encode a representation �� and a signature � by the counting measure m[�]:

m[�] =
1

N

X
i=1

N

�

�
�i+N ¡ i

N

�
:



Decomposition into irreducibles 22/38

� Given a finite-dimensional representation � of U(N) we can decompose it into irreducible components

�=
M

�2Sign(N)
c��

�; where the non-negative integers c� are multiplicities:

� This decomposition can be identified with a probability measure �� on signatures of length N , such that

��(�) :=
c�dim(��)
dim(�)

:

� The pushforward of �� with respect to the map � 7!m[�] is a random probability measure on R. We denote
this by m[�].

Example. Let �= �(3;2)� �(3;1). Because dim(�(3;2)) = 2; dim(�(3;1)) = 3, m[�] is the random probability
measure which takes values 8>><>>:

1

2
�(2)+

1

2
�(1), with probability 2

5
;

1

2
�(2)+

1

2
�
�
1

2

�
, with probability 3

5
:



Tensor products 23/38

� Let �; � be signatures of length N . The decomposition of the tensor product ��
 �� is given by the
Littlewood-Richardson coefficients.

� One can write the decomposition of tensor products in terms of Schur functions

s�(x1; : : : ; xN)s�(x1; : : : ; xN)=
X
�

c�
�;� s�(x1; : : : ; xN):

� The explicit formula for the measure on signatures

��
�
��(�)=

c�
�;� s�(1; : : : ; 1)

s�(1; : : : ; 1)s�(1; : : : ; 1)
:

We are interested in the asymptotic behaviour of the decomposition of the tensor product into irreducibles. We
will extract information studying the asymptotic behaviour of m[��
��].



Theorem (Bufetov-Gorin, 2013) Let l1; l2 2 Sign(N), N 2N, which satisfy some technical assumptions
including that

m[li]¡!
w
�i, as N!1:

Let �N=�l
1
�l2. Then,m[�N] converges in probability, in the sense of moments to a deterministic probability

measure �1
�2 such that

(�1
�2)�u[0; 1]=�1��2

where u[0; 1] is the uniform measure on [0; 1].

� The operation (�1; �2) 7!�1
�2 is defined by the linearization of an analytic function. This analytic function
is not the usual R-transform but its quantized version:

R�
quant(z) :=R�(z)¡Ru[0;1](z):

In other words

R�
�
quant(z)=R�

quant(z)+R�
quant(z):



Schur generating functions 25/38

� Comparing the theorems of Voiculescu (1991)and Bufetov-Gorin (2013), there is the following parallelism
between the frameworks of Hermitian random matrices and representations of U(N): In the discrete setting,
uniformly random Hermitian matrices with deterministic spectrum are replaced by irreducible representations
of U(N), the sum is replaced by the tensor product and � is replaced by 
.

� There is a notion of Fourier transform for discrete N-particle systems. Analogously to random matrices, the
transform of the tensor product of irreducibles should be the product of the corresponding transforms.

Recall that

s�(x1; : : : ; xN)
s�(1; : : : ; 1)

s�(x1; : : : ; xN)

s�(1; : : : ; 1)
=

X
�2Sign(N)

��
�
��(�)

s�(x1; : : : ; xN)
s�(1; : : : ; 1)

:



Schur generating functions 26/38

Given probability measures �N on Sign(N) the Schur generating function is given by

S�N(x1; : : : ; xN)=
X

�2Sign(N)
�N(�)

s�(x1; : : : ; xN)

s�(1; : : : ; 1)
:

Theorem (Bufetov-Gorin, 2013) Let �N be a sequence of probability measures on Sign(N) such that

lim
N!1

1
N
logS�N(x1; : : : ; xr; 1

N¡r)=	(x1)+ � � �+	(xr);

where 	 is analytic and r does not depend on N. Then m[�N] converges in probability, in the sense of moments
to a probability measure with moments

�k=
X
m=0

k �
k
m

�
1

(m+1)!
dm

dxm
(xk(	0(x))k¡m)

����������
x=1

;

and R-transform

R�(z)= ez	0(ez)+Ru[0;1](z):



Schur generating functions and extreme characters of U(1) 27/38

The Olshanski-Vershik limit regime for �N 2Sign(N) will be

s�N(x1; : : : ; xr; 1
N¡r)

s�N(1; : : : ; 1)
¡!�(x1): : :�(xr):

� Similarly to random matrices, the Olshanski-Vershik limit regime for discrete �N is related to the classification
of extreme characters of U(1) (Vershik-Kerov (1982), Okounkov-Olshanski (1998)).

A character �:U(1)!C is a central and positive-definite function that maps unit to the unit.

For a character �:U(1)!C, there exist probability measures %N on Sign(N) such that

�(diag(z1; : : : ; zN ; 1; 1; : : : ))=S%N(z1; : : : ; zN):

The classification of the extreme characters is due to the Edrei-Voiculescu theorem (Edrei (1953), Voiculescu
(1976), Vershik-Kerov (1982), Okounkov-Olshanski (1998), Borodin-Olshanski (2012)). Each extreme character
corresponds to a unique ! 2 (R+

1)4� (R+)
2. For arbitrary !, the extreme character �!:U(1)!C has the

multiplicative form

�!(U)=
Y

u2Spectrum(U)
�!(u):

The function �!: fu2C : juj=1g!C is called Voiculescu function and it has an explicit form.



Infinitesimal free probability limit regime 28/38

� Similarly to randommatrices, a generalization of the Olshanski-Vershik limit regime for random �N 2Sign(N)
can lead to asymptotic results for the 1/N correction to the Law of Large Numbers of Bufetov-Gorin (2013).
This 1/N correction can reveal outliers and has an interpretation from the side of infinitesimal free probability.

Given a sequence �N of probability measures on Sign(N), consider

��N(P )=E�s�N

�Z
R
P (t)m[�](dt)

�
, P 2C[x]:

From asymptotics of Schur generating functions we extract infinitesimal limits for (C[x]; ��N) and a quantized
analogoue of the infinitesimal free convolution.



Theorem (Bufetov-Z., 2024) Let %N be a sequence of probability measures on Sign(N) such that

lim
N!1

 
logS%N(x1; : : : ; xr; 1

N¡r)¡N
X
i=1

r

	(xi)

!
=
X
i=1

r

�(xi);

where 	;� are analytic and r is arbitrary and does not depend on N. Then we have that

�%N(P )= �(P )+
1
N
�0(P )+ o(N¡1); P 2C[x];

where (C[x]; �; �0) is an incps such that

�(xk)=
X
m=0

k �
k
m

�
1

(m+1)!
dm

dxm
(xk(	0(x))k¡m)

��������
x=1

;

and

�0(xk)=
X
m=0

k¡1 �
k

m+1

�
1
m!

dm

dxm

�
xk
�
�0(x)¡ 1

2x

�
(	0(x))k¡m¡1

���������
x=1

:

Moreover, the infinitesimal R-transform of (C[x]; �; �0) is z 7! ez�0(ez)¡ 1

2
.
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Example. Consider the extreme character in U(1) that creates the Schur generating function

S�N(x1; : : : ; xN)=
Y
i=1

N

exp(N(ui¡ 1))
1

1¡�(ui¡ 1)
:

Such a character is the product of the one-sided Plancherel character (discrete analog of a GUE) and another
character that plays the role of a rank-one matrix.

The limit shape is known from Biane (2001) and Bufetov-Borodin-Olshanski (2015).

The 1/N correction of m[�N] is given by the signed measure

��;
0 (dt)=1�> 

p �
�
�+1+


�
+ 

�
+
1
2
1�= 

p �
�
�+1+


�
+ 

�

+

�
�(t¡ 2�¡  ¡ 1)

+ a2+�+�¡�t ¡
t+1¡ 

2t

�
dt

2� (+1+2 
p ¡ t)(t¡  ¡ 1+2 

p
)

q :

We see that depending on whether �> 
p

, the outlier does or does not appear in the model.
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� The Aztec diamond of size N is all lattice squares which are fully contained in f(x; y) : jxj+ jy j �N +1g:
� Domino tilings of Aztec diamond where introduced by Elkies-Kuperberg-Larsen-Propp (1992). They proved

that the number of tilings is equal to 2N(N+1)/2.

Aztec diamond of size 3



Let us consider a chessboard coloring of Aztec diamond. It is useful to distinguish not two, but four different
types of dominoes.

� Each domino tiling is uniquely determined by dominoes of two types (one vertical and one horizontal).

How does a uniformly random domino tiling of a large Aztec diamond look like?



� Random tilings of the Aztec diamond is a very well studied model Jockusch-Propp-Schor (1998), Johansson
(2005),. . . .

Theorem (Jockusch-Propp-Schor, 1998) Asymptotically a uniformly random tiling becomes frozen outside
of a certain circle.



� We say that a signature � of length N and a signature � of length N ¡ 1 interlace (�� �) if

�1� �1��2� �2� � � � ��N¡1� �N¡1��N:

Example. (6; 3; 2; 0)� (3; 3; 2).

� We say that signatures �; � of length N differ by a vertical strip (����) if

�i¡ �i2f0; 1g, for any i=1; : : : ; N:

Example. (3; 3; 2; 1; 1; 1)�� (3; 3; 1; 0; 0; 0).

Theorem The set of collection of signatures

f(�1; : : : ; �N ; �1; : : : ; �N¡1) :�1���1��2���2� � � � ��N �� (0; : : : ; 0)g;

is is bijection with domino tilings of Aztec diamond of size N.

Each signature �r describes the positions of domino tilings along a one-dimensional slice of the Aztec diamond.



�1���1��2���2� � � � ��N �� (0; : : : ; 0):

4 3

2 1

5

On each level boxes are numbered starting from 0. Distinct particles are in positions

1; 1; (1; 3); (0; 2); (0; 1; 3); (0; 1; 2):

Making shifts we obtain signatures:

1�� 1� (1; 2)�� (0; 1)� (0; 0; 1)�� (0; 0; 0):
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� We consider a perturbation of the uniform measure. This is

P[domino tiling] =Z�number of horizontal dominoes in the up level;

where � > 1.

� In terms of sequences of signatures (�N ; �N¡1; �N¡1; : : : ; �1), this is

P[(�N ; �N¡1; : : : ; �1)] =Z�j�
N j:

� For � < 1, the Schur generating function of the distribution of �b�Nc can be computed explicitly and it
satisfies the infinitesimal free probability limit regime.
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The 1/N correction to the limit of �b�Nc is given by the signed measure

��;
0 (dt)=¡1

�>
(�+1)2

2�2+2

�

�
¡1+2��¡ �
��2¡�

�
¡ 1

2
1
�=

(�+1)2

2�2+2

�

�
¡1+2��¡ �
��2¡�

�

+

�
�+

¡2�+1
4t

¡ 2�2¡�
4�t¡ 4 +

2�2�2¡��2¡ 2��+2�2¡�
¡2�t+2��2t¡ 4��+2+2�

�
dt

� 1¡ (2�¡ 1)2¡ (2�t¡ 1)2
p :
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