Asymptotics of Harish-Chandra transform and Infinitesimal Free Probability

Panagiotis Zografos

Institute of Mathematics, Leipzig University

joint work with Alexey Bufetov

arXiv:2412.09290

Probabilistic Operator Algebras Seminar

March 17, 2025

Outline

- Unitarily invariant random matrices and the Fourier transform approach
- Infinitesimal free probability via Fourier transform
- Finite-rank perturbations and BBP phase transitions
- Higher order infinitesimal free probability
- Schur generating functions of random signatures
- Quantized infinitesimal free probability
- Outliers in random domino tilings and asymptotic representation theory of U(N).

• The empirical spectral distribution of a $N\times N$ Hermitian matrix is

$$m[A_N] := \frac{1}{N} \sum_{i=1}^N \delta(\lambda_i(A_N)), \text{ where } \lambda_1(A_N) \ge \cdots \ge \lambda_N(A_N) \text{ are the eigenvalues of } A_N.$$

• Let A_N , B_N be uniformly random Hermitian matrices with deterministic spectra, i.e.

 $A_N = U_N A_N U_N^*$, $B_N = V_N B_N V_N^*$, where U_N, V_N are Haar distributed

and A_N, B_N are deterministic and diagonal.

Question. What can we say for the random spectrum of $A_N + B_N$?

Theorem (Voiculescu, 1991) Assume that A_N, B_N are independent and such that as $N \to \infty$, $m[A_N], m[B_N]$ weakly converge to probability measures μ_1, μ_2 respectively. Then the random measure $m[A_N + B_N]$ converges weakly, in probability to a deterministic probability measure $\mu_1 \boxplus \mu_2$ which is the free convolution of μ_1 and μ_2 . • A non-commutative probability space is a pair (\mathcal{A}, φ) where \mathcal{A} is a unital algebra and $\varphi: \mathcal{A} \to \mathbb{C}$ is a linear functional such that $\varphi(1) = 1$.

Given Hermitian random matrices A_N , global asymptotic results for the spectrum emerge by the limits of the ncps $\left(\mathbb{C}[\mathbf{x}], P \xrightarrow{\varphi_{A_N}} \frac{1}{N} \mathbb{E}[\operatorname{Tr} P(A_N)]\right)$. A type of limit is the pair $(\mathbb{C}[\mathbf{x}], P \xrightarrow{\varphi} \int_{\mathbb{R}} P(t) \boldsymbol{\mu}(dt))$ where

$$\lim_{N\to\infty}\varphi_{A_N}(P)=\varphi(P).$$

There is a notion of cumulants which expresses in a simpler way how the limit of $\varphi_{A_N+B_N}$ is related to the limits of $\varphi_{A_N}, \varphi_{B_N}$.

• The free cumulants $(\kappa_n(a))_{n \in \mathbb{N}}$ of the random variable $a \in (\mathcal{A}, \varphi)$ are uniquely determined by

$$\varphi(a^k) = \sum_{\pi \in \mathrm{NC}(k)} \prod_{V \in \pi} \kappa_{|V|}(a), \text{ for every } k \in \mathbb{N}.$$

where NC(k) denotes the lattice of non-crossing partitions of $\{1, \ldots, k\}$.

The *R***-transform** of *a* is $R_a(z) = \sum_{n \ge 1} \kappa_n(a) z^{n-1}$.

We recall that the free convolution is an operation of probability measures characterized by.

$$\kappa_n(\boldsymbol{\mu}_1 \boxplus \boldsymbol{\mu}_2) = \kappa_n(\boldsymbol{\mu}_1) + \kappa_n(\boldsymbol{\mu}_2), \quad \text{for every } n \ge 1.$$

The Harish-Chandra-Itzykson-Zuber integral is defined by

$$HC(A_N; B_N) = \int_{U(N)} \exp(\operatorname{Tr}(A_N U_N B_N U_N^*)) dU_N.$$

- $HC(A_N; B_N)$ depends only on the eigenvalues of A_N and B_N .
- $HC(A_N; B_N)$ is symmetric in $\{\lambda_1(A_N), \ldots, \lambda_N(A_N)\}$ and $\{\lambda_1(B_N), \ldots, \lambda_N(B_N)\}$ separately.

It is due to Harish-Chandra that

$$HC(a_1, \dots, a_N; b_1, \dots, b_N) = c_N \frac{\det(e^{a_i b_j})_{1 \le i, j \le N}}{\prod_{i < j} (a_i - a_j) \prod_{i < j} (b_i - b_j)} \quad \text{where} \quad c_N = \prod_{i=1}^{N-1} i!.$$

Definition Let A_N be Hermitian random matrices of size N. The Harish-Chandra transform of A_N is $(x_1, \ldots, x_N) \longmapsto \mathbb{E}[HC(A_N; x_1, \ldots, x_N)].$

Theorem (Bufetov-Gorin, 2013) Let A_N be Hermitian random matrices such that

$$\lim_{N \to \infty} \frac{1}{N} \log \mathbb{E}[HC(A_N; x_1, \dots, x_r, 0^{N-r})] = \sum_{i=1}^r \Psi(x_i)$$

where Ψ is analytic and r is arbitrary and it does not depend on N. Then $m[N^{-1}A_N]$ converges as $N \to \infty$ in probability, in the sense of moments to a probability measure μ with moments

$$\boldsymbol{\mu}_{k} = \sum_{m=0}^{k-1} \binom{k}{m} \frac{1}{(m+1)!} \frac{\mathrm{d}^{m}}{\mathrm{d}x^{m}} (\Psi'(x))^{k-m} \Big|_{x=0}$$

The R-transform of μ is Ψ' .

Theorem (Bufetov-Z., 2024) Let A_N be Hermitian random matrices such that

$$\lim_{N \to \infty} \frac{1}{N^l} \log \mathbb{E}[HC(A_N; x_1, \dots, x_r, 0^{N-r})] = \sum_{i=1}^r \Psi(x_i)$$

where Ψ is analytic, r is arbitrary and does not depend on N and $l \ge 2$ fixed. Then $m[N^{-l}A_N]$ converges as $N \to \infty$ in probability, in the sense of moments to $\delta_{\Psi'(0)}$.

- Guionnet-Maida (2004) proved that for matrices A_N with deterministic spectrum, convergence of $m_N[N^{-1}A_N]$ implies asymptotic additivity for the normalized logarithm of the Harish-Chandra integral.
- We can use the previous theorem and the results of Guionnet-Maida to prove the theorem of Voiculescu.

Example. Let $A_N = (a_{i,j})_{1 \le i,j \le N}$ be the Hermitian Gaussian random matrix where $a_{i,i} \sim \mathcal{N}(0, 2\gamma)$, $\Re a_{i,j} \sim \mathcal{N}(0, \gamma)$, $\Im a_{i,j} \sim \mathcal{N}(0, \gamma)$ and $\{a_{i,j}\}_{i>j}$ are independent. Then

$$\mathbb{E}[HC(A_N; x_1, \dots, x_N)] = \prod_{i=1}^N \exp(\gamma x_i^2).$$

Example. Let $A_N = \alpha X_1 X_1^* + \cdots + \alpha X_M X_M^*$, where $(X_i)_{i=1}^M$ are independent standard complex Gaussian vectors. Then,

$$\mathbb{E}[HC(A_N; x_1, \dots, x_N)] = \prod_{i=1}^N (1 - \alpha x_i)^{-M}.$$

In the previous examples we have additivity for the logarithm of the Harish-Chandra integral, for every N and not just asymptotically. These examples are related to ergodic unitarily invariant measures on the space of infinite Hermitian matrices.

 $H = \{\infty \times \infty \text{ Hermitian matrices}\}$

 $H(\infty) = \{\infty \times \infty \text{ Hermitian matrices with finitely many entries different from } 0\}$ $U(\infty) = \{\infty \times \infty \text{ unitary matrices with finitely many entries different from } \delta_{i,j}\}$

Olshanski-Vershik (1996) proved that the ergodic $U(\infty)$ -invariant Borel probability measures M on H are characterized by the multiplicativity of the Fourier transform, i.e. for every $A \in H(\infty)$

$$f_{\boldsymbol{M}}(A) := \int_{H} \exp(i\operatorname{Tr}(AB)) \boldsymbol{M}(dB) = \prod_{a \in \operatorname{Spec}(A)} F(a), \text{ for some function } F: \mathbb{R} \to \mathbb{C} \text{ with } F(0) = 1.$$

The functions F are of the form

$$F(a) = e^{i\gamma_1 a - \gamma_2 a^2/2} \prod_k \frac{e^{-iy_k a}}{1 - iy_k a}$$

where $\gamma_1 \in \mathbb{R}$, $\gamma_2 \ge 0$ and $(y_k)_{k \in \mathbb{N}}$ is a sequence of real numbers such that $\sum_k y_k^2 < \infty$.

The classification of ergodic $U(\infty)$ -invariant probability measures is related to a limit regime for the Harish-Chandra integral, different from the previous ones.

Theorem (Olshanski-Vershik, 1996) We have the following equivalence

$$\log HC(\lambda_1, \ldots, \lambda_N; x_1, \ldots, x_r, 0^{N-r}) \longrightarrow \Phi(x_1) + \cdots + \Phi(x_r)$$

$$\iff \sum_{i=1}^{N} \delta\left(\frac{\lambda_i}{N}\right) \longrightarrow \mu, \quad in \ the \ sense \ of \ moments.$$

In other words,

$$\frac{\lambda_1}{N} \longrightarrow y'_1, \dots, \frac{\lambda_i}{N} \longrightarrow y'_i, \dots,$$
$$\frac{\lambda_N}{N} \longrightarrow y''_1, \dots, \frac{\lambda_{N-i+1}}{N} \longrightarrow y''_i, \dots$$

where $y_k = y'_k + y''_k$. There are also precise expressions for γ_1, γ_2 , as limits of (λ_i) related terms.

Different limit regimes for the logarithm of the Harish-Chandra transform lead to different type of asymptotic results for the empirical distribution of the corresponding matrix. The following limit regime leads to asymptotic results for the unnormalized trace

Theorem (Bufetov-Z., 2024) Let A_N be Hermitian random matrices such that

$$\lim_{N \to \infty} \log \mathbb{E}[HC(A_N; x_1, \dots, x_r, 0^{N-r})] = \sum_{i=1}^r \Phi(x_i),$$

where Φ is analytic and r is arbitrary and does not depend on N. Then for every $k \in \mathbb{N}$, the k-th moment of $Nm[N^{-1}A_N]$ converges in probability to $\Phi^{(k)}(0)/(k-1)!$.

Studying limits of $\mathbb{E}[\operatorname{Tr} A_N^k]$ as $N \to \infty$, fits into the framework of infinitesimal free probability. The tools of infinitesimal free probability explain the dependence of the limits from the function Φ .

• An infinitesimal ncps is a triple $(\mathcal{A}, \varphi, \varphi')$ where (\mathcal{A}, φ) is a ncps and $\varphi' : \mathcal{A} \to \mathbb{C}$ is a linear functional such that $\varphi'(1) = 0$.

In certain cases the extra functional φ' arises naturally when (\mathcal{A}, φ) is the limit of a sequence (\mathcal{A}, φ_N) but we also have an infinitesimal limit, i.e.

$$\varphi(a) = \lim_{N \to \infty} \varphi_N(a) \text{ and } \varphi'(a) = \lim_{N \to \infty} N(\varphi_N(a) - \varphi(a)), \text{ for every } a \in \mathcal{A}.$$

In this sense φ' plays the role of the derivative.

• The infinitesimal free cumulants $(\kappa'_n(a))_{n \in \mathbb{N}}$ of a random variable $a \in (\mathcal{A}, \varphi, \varphi')$ are uniquely determined by

$$\varphi'(a^k) = \sum_{\pi \in \mathrm{NC}(k)} \sum_{V \in \pi} \kappa'_{|V|}(a) \prod_{\substack{W \in \pi \\ W \neq V}} \kappa_{|W|}(a), \text{ for every } k \in \mathbb{N}.$$

The infinitesimal *R*-transform of *a* is $R'_a(z) = \sum_{n \ge 1} \kappa'_n(a) z^{n-1}$.

The sequence $(\kappa'_n(a))_{n \in \mathbb{N}}$ emerges differentiating one time the moment-cumulant relations, e.g.

$$\varphi'(a) = (\varphi(a))' = (\kappa_1(a))' = \kappa'_1(a) \quad \text{and} \quad \varphi'(a^2) = (\kappa_2(a) + \kappa_1(a)\kappa_1(a))' = \kappa'_2(a) + 2\kappa'_1(a)\kappa_1(a).$$

The limit regimes

$$\frac{1}{N^{\varepsilon}}\log\mathbb{E}[HC(A_N; x_1, \dots, x_r, 0^{N-r})] \longrightarrow \Phi_{\varepsilon}(x_1) + \dots + \Phi_{\varepsilon}(x_r), \text{ for } \varepsilon = 0, 1$$

have concrete and different impacts on the empirical distribution of A_N from the side of infinitesimal free probability.

We recall

$$\varphi_{A_N}(P) = \frac{1}{N} \mathbb{E}[\operatorname{Tr} P(A_N)], \text{ for } P \in \mathbb{C}[\mathbf{x}].$$

- The regime $\varepsilon = 1$ gives a limit of $(\mathbb{C}[\mathbf{x}], \varphi_{N^{-1}A_N})$ which depends on Φ_1 concretely, in the sense that Φ'_1 is the *R*-transform.
- The regime $\varepsilon = 0$ implies that the limit of $(\mathbb{C}[\mathbf{x}], \varphi_{N^{-1}A_N})$ is 0 and it also gives an infinitesimal limit which depends on Φ_0 . The dependence from Φ_0 is also specific because in this case

$$\varphi'(\mathbf{x}^n) = \kappa'_n(\mathbf{x}), \text{ for every } n.$$

This means that Φ'_0 is the infinitesimal *R*-transform.

Theorem (Bufetov-Z., 2024) Let A_N be Hermitian random matrices such that

$$\lim_{N \to \infty} \left(\log \mathbb{E}[HC(A_N; x_1, \dots, x_r, 0^{N-r})] - N \sum_{i=1}^r \Psi(x_i) \right) = \sum_{i=1}^r \Phi(x_i)$$

where Ψ, Φ are analytic and r is arbitrary and does not depend on N. Then we have that

$$\varphi_{N^{-1}A_N}(P) = \varphi(P) + \frac{1}{N}\varphi'(P) + o(N^{-1}),$$

where $(\mathbb{C}[\mathbf{x}], \varphi, \varphi')$ is an incps such that

$$\varphi(\mathbf{x}^k) = \sum_{m=0}^{k-1} \binom{k}{m} \frac{1}{(m+1)!} \frac{\mathrm{d}^m}{\mathrm{d}x^m} (\Psi'(x))^{k-m} \Big|_{x=0}$$

and

$$\varphi'(\mathbf{x}^k) = \sum_{m=0}^{k-1} \binom{k}{m+1} \frac{1}{m!} \frac{\mathrm{d}^m}{\mathrm{d}x^m} \Phi'(x) (\Psi'(x))^{k-m-1} \Big|_{x=0}$$

Moreover the R-transform is Ψ' and the infinitesimal R-transform is Φ' .

It was shown by Shlyakhtenko (2015) that infinitesimal free probability can provide information about outlier eigenvalues of a random matrix, that are not visible in the limit. Such outlier eigenvalues can emerge by considering additive perturbations of classical random matrix ensembles by finite-rank matrices. It was proved by Olshanski-Vershik (1996) that for matrices of finite rank the (unnormalized) logarithms of the Harish-Chandra integrals are additive asymptotically.

• For $\theta \in \mathbb{R}$ the fact that $(u_{i,j})_{1 \leq i,j \leq N} \in U(N) \mapsto (|u_{11}|^2, \dots, |u_{1N}|^2)$ has a Dirichlet distribution with parameters $(1, \dots, 1)$ implies that

$$\log HC(x_1,\ldots,x_r,0^{N-r},N\theta,0^{N-1}) \longrightarrow \sum_{i=1}^r \log(1-\theta x_i)^{-1}.$$

As a consequence the matrix $N \cdot A_N + \text{diag}(N\theta, 0^{N-1})$, where A_N is a GUE, fits into the framework of our previous theorem and the 1/N correction of $A_N + \text{diag}(\theta, 0^{N-1})$ is given by the signed measure

$$\boldsymbol{\mu}_{\theta}'(dt) = \mathbf{1}_{|\theta| \ge 1} \delta_{\theta+\theta^{-1}}(dt) - \frac{\theta(t-2\theta)}{2\pi(\theta(t-\theta)-1)\sqrt{4-t^2}} dt.$$

From the 1/N correction of a rank one perturbation of a GUE, we deduce that the extremal eigenvalue exhibits a phase transition depending on the magnitude $|\theta|$. This is called a BBP transition and this phenomenon was originally showed by Baik-Ben Arous-Peche (2005) for complex sample covariance matrices.

Second order infinitesimal free probability and Harish-Chandra transform 16/38

Additional asymptotic conditions for the Harish-Chandra transform of A_N lead to higher order infinitesimal limits of $(\mathbb{C}[\mathbf{x}], \varphi_{N^{-1}A_N})$ as $N \to \infty$. This is related to higher order infinitesimal free probability, introduced by Fevrier (2010).

Given a second order correction to the limit of the logarithm of the Harish-Chandra transform, i.e.

$$N^{2}\left(\frac{1}{N}\log\mathbb{E}[HC(A_{N};x_{1},\ldots,x_{r},0^{N-r})]-\sum_{i=1}^{r}\Psi(x_{i})-\frac{1}{N}\sum_{i=1}^{r}\Phi(x_{i})\right)\longrightarrow\frac{1}{2}\sum_{i=1}^{r}\mathrm{T}(x_{i}),$$

we get a "second order Taylor expansion"

$$\varphi_{N^{-1}A_N}(P) = \varphi^{(0)}(P) + \frac{1}{N}\varphi^{(1)}(P) + \frac{1}{N^2}\frac{\varphi^{(2)}(P)}{2} + \frac{1}{N^2}\phi^{(2)}(P) + o(N^{-2}), \quad P \in \mathbb{C}[\mathbf{x}],$$

where $(\mathbb{C}[\mathbf{x}], \varphi^{(0)}, \varphi^{(1)}, \varphi^{(2)})$ is an incps of order 2.

The function T' plays the role of the second order infinitesimal *R*-transform. Second order infinitesimal free cumulants $(\kappa_n''(a))_{n \in \mathbb{N}}$ of $a \in (\mathcal{A}, \varphi, \varphi', \varphi'')$ can be defined, differentiating twice the moment cumulant relations. For example, $\varphi''(a) = \kappa_1''(a)$ and

$$\varphi'(a^2) = \kappa'_2(a) + 2\kappa'_1(a)\kappa_1(a) \Longrightarrow \varphi''(a^2) = \kappa''_2(a) + 2\kappa''_1(a)\kappa_1(a) + 2(\kappa'_1(a))^2$$

$$\varphi_{N^{-1}A_N}(P) = \varphi^{(0)}(P) + \frac{1}{N}\varphi^{(1)}(P) + \frac{1}{N^2}\frac{\varphi^{(2)}(P)}{2} + \frac{1}{N^2}\phi^{(2)}(P) + o(N^{-2}), \quad P \in \mathbb{C}[\mathbf{x}].$$

There are explicit formulas for $\varphi^{(2)}$,

$$\varphi^{(2)}(\mathbf{x}^k) = \sum_{m=0}^{k-1} \binom{k}{m+1} \frac{1}{m!} \frac{\mathrm{d}^m}{\mathrm{d}x^m} \mathrm{T}'(x) (\Psi'(x))^{k-m-1} \Big|_{x=0} + \sum_{m=0}^{k-2} \frac{k!}{m!(m+1)!(k-m-2)!} \frac{\mathrm{d}^m}{\mathrm{d}x^m} (\Phi'(x))^2 (\Psi'(x))^{k-m-2} \Big|_{x=0}.$$

- For the extra functional $\phi^{(2)}$, there are explicit formulas and the values $\phi^{(2)}(\mathbf{x}^k)$ depend only on Ψ .
- One can thing that for the second order limit regime our random matrix has the form $A_N = A_N^{(0)} + A_N^{(1)} + A_N^{(2)}$, where $A_N^{(0)}$ is the leading matrix that satisfies the free probability limit regime and $A_N^{(1)}$, $A_N^{(2)}$ are perturbations. The perturbations $A_N^{(1)}$, $A_N^{(2)}$ are not visible in the limit, but in the 1/N and $1/N^2$ correction respectively.
- The leading matrix $A_N^{(0)}$ gives rise to $\phi^{(2)}$ because the free probability limit regime leads to an expansion

$$\frac{1}{N^{k+1}} \mathbb{E} \big[\operatorname{Tr} \big(A_N^{(0)} \big)^k \big] = M_{N,k}^{(0)} + \frac{1}{N^2} M_{N,k}^{(1)} + \frac{1}{N^4} M_{N,k}^{(2)} + \cdots$$

The limit regime for the 1/N correction detects if there are finitely many outliers in the spectrum, possibly coming from finite rank perturbations.

Perturbations of rank that depend on N may cause infinitely many outliers. This phenomenon cannot be captured by the 1/N correction and the corresponding limit regime. Instead, we have

Theorem (Bufetov-Z., 2024) Let A_N be Hermitian random matrices and $0 \le \varepsilon \le 1$, such that

$$\lim_{N \to \infty} N^{\varepsilon} \left(\frac{1}{N} \log \mathbb{E}[HC(A_N; x_1, \dots, x_r, 0^{N-r})] - \sum_{i=1}^r \Psi(x_i) \right) = \sum_{i=1}^r \Phi(x_i)$$

where Ψ, Φ are analytic and r is arbitrary and does not depend on N. Then we have that

$$\varphi_{N^{-1}A_N}(P) = \varphi(P) + \frac{1}{N^{\varepsilon}}\varphi'(P) + o(N^{-\varepsilon}),$$

where $(\mathbb{C}[\mathbf{x}],\varphi,\varphi')$ is an incps such that $(\varphi(\mathbf{x}^k))$ are as before and

$$\varphi'(\mathbf{x}^k) = \sum_{m=0}^{k-1} \binom{k}{m+1} \frac{1}{m!} \frac{\mathrm{d}^m}{\mathrm{d}x^m} \Phi'(x) (\Psi'(x))^{k-m-1} \Big|_{x=0}$$

The intermediate limit regime gives an interpolation between the free probability limit regime and the Olshanski-Vershik limit regime.

Example. The $\lfloor N^{1-\varepsilon} \rfloor$ -rank perturbation of the GUE

$$A_N = N \cdot \text{GUE} + \theta \sum_{i=1}^{\lfloor N^{1-\varepsilon} \rfloor} X_i X_i^*$$
, where (X_i) are independent standard complex Gaussian vectors,

fits into the intermediate limit regime.

Our theorem implies that the $1/N^{\varepsilon}$ correction of $N^{-1}A_N$ is given by the same signed measure as for the 1/N correction of $\text{GUE} + \text{diag}(\theta, 0^{N-1})$.

This leads to the same BBP phase transition for $N^{-1}A_N$, where depending on $|\theta|$ we might have $N^{1-\varepsilon}$ outliers $\theta + \theta^{-1}$.

Higher order generalizations of the intermediate limit regime can describe the situation where we have finitely many perturbations. The first one will have rank $N^{1-\varepsilon}$ and the outliers that creates will be visible from the $1/N^{\varepsilon}$ correction. The second one will have rank $N^{1-2\varepsilon}$ and the outliers that creates will be visible from the $1/N^{2\varepsilon}$ correction, and so forth.

Theorem (Bufetov-Z., 2024) Let A_N be Hermitian random matrices and $0 < \varepsilon < n^{-1}$, such that

$$\lim_{N \to \infty} N^{n\varepsilon} \left(\frac{1}{N} \log \mathbb{E}[HC(A_N; x_1, \dots, x_r, 0^{N-r})] - \sum_{j=0}^{n-1} \sum_{i=1}^r \frac{1}{N^{j\varepsilon}} \frac{\Psi_j(x_i)}{j!} \right) = \sum_{i=1}^r \frac{\Psi_n(x_i)}{n!},$$

where Ψ_0, \ldots, Ψ_n are analytic and r is arbitrary and does not depend on N. Then, we have that

$$\varphi_{N^{-1}A_N}(P) = \varphi^{(0)}(P) + \frac{1}{N^{\varepsilon}}\varphi^{(1)}(P) + \dots + \frac{1}{N^{n\varepsilon}}\varphi^{(n)}(P) + o(N^{-n\varepsilon}),$$

where $(\mathbb{C}[\mathbf{x}], \varphi^{(0)}, \varphi^{(1)}, \dots, \varphi^{(n)})$ is an incps of order n. The values $\varphi^{(i)}(\mathbf{x}^k)$ can be computed explicitly and the function Ψ'_i is the *i*-th order infinitesimal *R*-transform.

- A signature of length N is a N-tuple of integers $\lambda = (\lambda_1, \dots, \lambda_N)$. We denote by Sign(N) the set of such N-tuples. For example $\lambda = (5, 3, 3, 1, -2, -2)$ is a signature of length 6.
- It is known that all irreducible representations of U(N) are parametrized by signatures. Let π^{λ} be an irreducible representation of U(N) corresponding to λ .
- The character π^{λ} is the Schur function

$$s_{\lambda}(x_1,\ldots,x_N) = \frac{\det(x_i^{\lambda_j+N-j})_{1\leq i,j\leq N}}{\prod_{1\leq i< j\leq N} (x_i-x_j)}.$$

• We will encode a representation π^{λ} and a signature λ by the counting measure $m[\lambda]$:

$$m[\lambda] = \frac{1}{N} \sum_{i=1}^{N} \delta\left(\frac{\lambda_i + N - i}{N}\right).$$

• Given a finite-dimensional representation π of U(N) we can decompose it into irreducible components

$$\pi = \bigoplus_{\nu \in \operatorname{Sign}(N)} c_{\lambda} \pi^{\lambda}, \quad \text{where the non-negative integers } c_{\lambda} \text{ are multiplicities}.$$

• This decomposition can be identified with a probability measure ρ^{π} on signatures of length N, such that

$$\rho^{\pi}(\lambda) := \frac{c_{\lambda} \dim(\pi^{\lambda})}{\dim(\pi)}.$$

• The pushforward of ρ^{π} with respect to the map $\lambda \mapsto m[\lambda]$ is a random probability measure on \mathbb{R} . We denote this by $m[\lambda]$.

Example. Let $\pi = \pi^{(3,2)} \oplus \pi^{(3,1)}$. Because $\dim(\pi^{(3,2)}) = 2$, $\dim(\pi^{(3,1)}) = 3$, $m[\pi]$ is the random probability measure which takes values

$$\begin{cases} \frac{1}{2}\delta(2) + \frac{1}{2}\delta(1), & \text{with probability } \frac{2}{5}, \\ \frac{1}{2}\delta(2) + \frac{1}{2}\delta\left(\frac{1}{2}\right), & \text{with probability } \frac{3}{5}. \end{cases}$$

Tensor products

- Let λ, μ be signatures of length N. The decomposition of the tensor product $\pi^{\lambda} \otimes \pi^{\mu}$ is given by the Littlewood-Richardson coefficients.
- One can write the decomposition of tensor products in terms of Schur functions

$$s_{\lambda}(x_1,\ldots,x_N)s_{\mu}(x_1,\ldots,x_N)=\sum_{\eta}c_{\eta}^{\lambda,\mu}s_{\eta}(x_1,\ldots,x_N).$$

• The explicit formula for the measure on signatures

$$\rho^{\pi^{\lambda} \otimes \pi^{\mu}}(\eta) = \frac{c_{\eta}^{\lambda,\mu} s_{\eta}(1,\ldots,1)}{s_{\lambda}(1,\ldots,1)s_{\mu}(1,\ldots,1)}$$

We are interested in the asymptotic behaviour of the decomposition of the tensor product into irreducibles. We will extract information studying the asymptotic behaviour of $m[\pi^{\lambda} \otimes \pi^{\mu}]$.

Theorem (Bufetov-Gorin, 2013) Let $\lambda^1, \lambda^2 \in \text{Sign}(N)$, $N \in \mathbb{N}$, which satisfy some technical assumptions including that

$$m[\lambda^i] \xrightarrow{w} \mu_i, \quad as \ N \to \infty.$$

Let $\pi_N = \pi^{\lambda^1} \otimes \pi^{\lambda^2}$. Then, $m[\pi_N]$ converges in probability, in the sense of moments to a deterministic probability measure $\mu_1 \otimes \mu_2$ such that

$$(\boldsymbol{\mu}_1 \otimes \boldsymbol{\mu}_2) \boxplus u[0,1] = \boldsymbol{\mu}_1 \boxplus \boldsymbol{\mu}_2$$

where u[0,1] is the uniform measure on [0,1].

• The operation $(\mu_1, \mu_2) \mapsto \mu_1 \otimes \mu_2$ is defined by the linearization of an analytic function. This analytic function is not the usual *R*-transform but its quantized version:

$$R_{\mu}^{quant}(z) := R_{\mu}(z) - R_{u[0,1]}(z).$$

In other words

$$R^{quant}_{\boldsymbol{\mu}\otimes\boldsymbol{\nu}}(z)=R^{quant}_{\boldsymbol{\mu}}(z)+R^{quant}_{\boldsymbol{\nu}}(z).$$

- Comparing the theorems of Voiculescu (1991)and Bufetov-Gorin (2013), there is the following parallelism between the frameworks of Hermitian random matrices and representations of U(N): In the discrete setting, uniformly random Hermitian matrices with deterministic spectrum are replaced by irreducible representations of U(N), the sum is replaced by the tensor product and \boxplus is replaced by \otimes .
- There is a notion of Fourier transform for discrete N-particle systems. Analogously to random matrices, the transform of the tensor product of irreducibles should be the product of the corresponding transforms.

Recall that

$$\frac{s_{\lambda}(x_1,\ldots,x_N)}{s_{\lambda}(1,\ldots,1)} \frac{s_{\mu}(x_1,\ldots,x_N)}{s_{\mu}(1,\ldots,1)} = \sum_{\nu \in \operatorname{Sign}(N)} \rho^{\pi^{\lambda} \otimes \pi^{\mu}}(\nu) \frac{s_{\nu}(x_1,\ldots,x_N)}{s_{\nu}(1,\ldots,1)}$$

Given probability measures ρ_N on Sign(N) the Schur generating function is given by

$$S_{
ho_N}(x_1,\ldots,x_N) = \sum_{\lambda \in {
m Sign}(N)}
ho_N(\lambda) \, rac{s_\lambda(x_1,\ldots,x_N)}{s_\lambda(1,\ldots,1)}.$$

Theorem (Bufetov-Gorin, 2013) Let ρ_N be a sequence of probability measures on Sign(N) such that

$$\lim_{N \to \infty} \frac{1}{N} \log S_{\rho_N}(x_1, \dots, x_r, 1^{N-r}) = \Psi(x_1) + \dots + \Psi(x_r),$$

where Ψ is analytic and r does not depend on N. Then $m[\rho_N]$ converges in probability, in the sense of moments to a probability measure with moments

$$\mu_k = \sum_{m=0}^k \binom{k}{m} \frac{1}{(m+1)!} \frac{\mathrm{d}^m}{\mathrm{d}x^m} (x^k (\Psi'(x))^{k-m}) \bigg|_{x=1},$$

and *R*-transform

$$R_{\mu}(z) = e^{z} \Psi'(e^{z}) + R_{u[0,1]}(z).$$

Schur generating functions and extreme characters of $U(\infty)$

The Olshanski-Vershik limit regime for $\lambda_N \in \operatorname{Sign}(N)$ will be

$$\frac{s_{\lambda_N}(x_1,\ldots,x_r,1^{N-r})}{s_{\lambda_N}(1,\ldots,1)} \longrightarrow \Phi(x_1)\ldots\Phi(x_r).$$

• Similarly to random matrices, the Olshanski-Vershik limit regime for discrete λ_N is related to the classification of extreme characters of $U(\infty)$ (Vershik-Kerov (1982), Okounkov-Olshanski (1998)).

A character $\chi: U(\infty) \to \mathbb{C}$ is a central and positive-definite function that maps unit to the unit.

For a character $\chi: U(\infty) \to \mathbb{C}$, there exist probability measures ϱ_N on $\operatorname{Sign}(N)$ such that

$$\boldsymbol{\chi}(\operatorname{diag}(z_1,\ldots,z_N,1,1,\ldots)) = S_{\varrho_N}(z_1,\ldots,z_N).$$

The classification of the extreme characters is due to the Edrei-Voiculescu theorem (Edrei (1953), Voiculescu (1976), Vershik-Kerov (1982), Okounkov-Olshanski (1998), Borodin-Olshanski (2012)). Each extreme character corresponds to a unique $\omega \in (\mathbb{R}^{\infty}_{+})^4 \times (\mathbb{R}_{+})^2$. For arbitrary ω , the extreme character $\chi^{\omega}: U(\infty) \to \mathbb{C}$ has the multiplicative form

$$\boldsymbol{\chi}^{\omega}(U) = \prod_{u \in \operatorname{Spectrum}(U)} \Phi^{\omega}(u).$$

The function Φ^{ω} : $\{u \in \mathbb{C} : |u| = 1\} \to \mathbb{C}$ is called Voiculescu function and it has an explicit form.

• Similarly to random matrices, a generalization of the Olshanski-Vershik limit regime for random $\lambda_N \in \operatorname{Sign}(N)$ can lead to asymptotic results for the 1/N correction to the Law of Large Numbers of Bufetov-Gorin (2013). This 1/N correction can reveal outliers and has an interpretation from the side of infinitesimal free probability.

Given a sequence ρ_N of probability measures on Sign(N), consider

$$\phi_{\rho_N}(P) = \mathbb{E}_{\lambda \sim \rho_N} \bigg[\int_{\mathbb{R}} P(t) m[\lambda](dt) \bigg], \quad P \in \mathbb{C}[\mathbf{x}].$$

From asymptotics of Schur generating functions we extract infinitesimal limits for $(\mathbb{C}[\mathbf{x}], \phi_{\rho_N})$ and a quantized analogoue of the infinitesimal free convolution.

Theorem (Bufetov-Z., 2024) Let ϱ_N be a sequence of probability measures on Sign(N) such that

$$\lim_{N \to \infty} \left(\log S_{\varrho_N}(x_1, \dots, x_r, 1^{N-r}) - N \sum_{i=1}^r \Psi(x_i) \right) = \sum_{i=1}^r \Phi(x_i),$$

where Ψ, Φ are analytic and r is arbitrary and does not depend on N. Then we have that

$$\phi_{\varrho_N}(P) = \phi(P) + \frac{1}{N}\phi'(P) + o(N^{-1}), \quad P \in \mathbb{C}[\mathbf{x}],$$

where $(\mathbb{C}[\mathbf{x}], \phi, \phi')$ is an incps such that

$$\phi(\mathbf{x}^{k}) = \sum_{m=0}^{k} {\binom{k}{m}} \frac{1}{(m+1)!} \frac{\mathrm{d}^{m}}{\mathrm{d}x^{m}} (x^{k} (\Psi'(x))^{k-m}) \Big|_{x=1},$$

and

$$\phi'(\mathbf{x}^k) = \sum_{m=0}^{k-1} \binom{k}{m+1} \frac{1}{m!} \frac{\mathrm{d}^m}{\mathrm{d}x^m} \left(x^k \left(\Phi'(x) - \frac{1}{2x} \right) (\Psi'(x))^{k-m-1} \right) \Big|_{x=1}$$

Moreover, the infinitesimal *R*-transform of $(\mathbb{C}[\mathbf{x}], \phi, \phi')$ is $z \mapsto e^z \Phi'(e^z) - \frac{1}{2}$.

Discrete BBP

Example. Consider the extreme character in $U(\infty)$ that creates the Schur generating function

$$S_{\rho_N}(x_1,\ldots,x_N) = \prod_{i=1}^N \exp(\gamma N(u_i-1)) \frac{1}{1-\alpha(u_i-1)}.$$

Such a character is the product of the one-sided Plancherel character (discrete analog of a GUE) and another character that plays the role of a rank-one matrix.

The limit shape is known from Biane (2001) and Bufetov-Borodin-Olshanski (2015).

The 1/N correction of $m[\rho_N]$ is given by the signed measure

$$\mu_{\alpha,\gamma}'(dt) = \mathbf{1}_{\alpha > \sqrt{\gamma}} \,\delta\Big(\alpha + 1 + \frac{\gamma}{\alpha} + \gamma\Big) + \frac{1}{2} \mathbf{1}_{\alpha = \sqrt{\gamma}} \,\delta\Big(\alpha + 1 + \frac{\gamma}{\alpha} + \gamma\Big) \\ + \Big(\frac{\alpha(t - 2\alpha - \gamma - 1)}{\gamma + a^2 + \alpha\gamma + \alpha - \alpha t} - \frac{t + 1 - \gamma}{2t}\Big) \frac{dt}{2\pi\sqrt{(\gamma + 1 + 2\sqrt{\gamma} - t)(t - \gamma - 1 + 2\sqrt{\gamma})}}$$

We see that depending on whether $\alpha > \sqrt{\gamma}$, the outlier does or does not appear in the model.

Domino tilings of Aztec diamond

- The Aztec diamond of size N is all lattice squares which are fully contained in $\{(x, y) : |x| + |y| \le N + 1\}$.
- Domino tilings of Aztec diamond where introduced by Elkies-Kuperberg-Larsen-Propp (1992). They proved that the number of tilings is equal to $2^{N(N+1)/2}$.

Let us consider a chessboard coloring of Aztec diamond. It is useful to distinguish not two, but four different types of dominoes.

• Each domino tiling is uniquely determined by dominoes of two types (one vertical and one horizontal).

How does a uniformly random domino tiling of a large Aztec diamond look like?

• Random tilings of the Aztec diamond is a very well studied model Jockusch-Propp-Schor (1998), Johansson (2005),....

Theorem (Jockusch-Propp-Schor, 1998) Asymptotically a uniformly random tiling becomes frozen outside of a certain circle.

• We say that a signature λ of length N and a signature μ of length N-1 interlace $(\lambda \succ \mu)$ if

$$\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \cdots \geq \lambda_{N-1} \geq \mu_{N-1} \geq \lambda_N.$$

Example. $(6, 3, 2, 0) \succ (3, 3, 2)$.

• We say that signatures λ, μ of length N differ by a vertical strip $(\lambda \succ_{\nu} \mu)$ if

 $\lambda_i - \mu_i \in \{0, 1\}, \text{ for any } i = 1, \dots, N.$

Example. $(3, 3, 2, 1, 1, 1) \succ_{\nu} (3, 3, 1, 0, 0, 0).$

Theorem The set of collection of signatures

$$\{(\lambda^1,\ldots,\lambda^N,\mu^1,\ldots,\mu^{N-1}):\lambda^1\succ_{\nu}\mu^1\prec\lambda^2\succ_{\nu}\mu^2\prec\cdots\prec\lambda^N\succ_{\nu}(0,\ldots,0)\},\$$

is is bijection with domino tilings of Aztec diamond of size N.

Each signature λ^r describes the positions of domino tilings along a one-dimensional slice of the Aztec diamond.

$\lambda^1 \succ_{\nu} \mu^1 \prec \lambda^2 \succ_{\nu} \mu^2 \prec \cdots \prec \lambda^N \succ_{\nu} (0, \dots, 0).$

On each level boxes are numbered starting from 0. Distinct particles are in positions

1; 1; (1,3); (0,2); (0,1,3); (0,1,2).

Making shifts we obtain signatures:

 $1\succ_{\nu} 1 \prec (1,2)\succ_{\nu} (0,1) \prec (0,0,1)\succ_{\nu} (0,0,0).$

• We consider a perturbation of the uniform measure. This is

 $\mathbb{P}[\text{domino tiling}] = Z \theta^{\text{number of horizontal dominoes in the up level}},$

where $\theta > 1$.

• In terms of sequences of signatures $(\lambda^N, \mu^{N-1}, \lambda^{N-1}, \dots, \lambda^1)$, this is

 $\mathbb{P}[(\lambda^N, \mu^{N-1}, \dots, \lambda_1)] = Z \theta^{|\lambda^N|}.$

• For $\alpha < 1$, the Schur generating function of the distribution of $\lambda^{\lfloor \alpha N \rfloor}$ can be computed explicitly and it satisfies the infinitesimal free probability limit regime.

BBP for domino tilings of Aztec diamond

The 1/N correction to the limit of $\lambda^{\lfloor \alpha N \rfloor}$ is given by the signed measure

$$\mu_{\alpha,\gamma}'(dt) = -\mathbf{1}_{\alpha > \frac{(\theta+1)^2}{2\theta^2+2}} \delta\left(\frac{-1+2\alpha\theta-\theta}{\alpha\theta^2-\alpha}\right) - \frac{1}{2}\mathbf{1}_{\alpha = \frac{(\theta+1)^2}{2\theta^2+2}} \delta\left(\frac{-1+2\alpha\theta-\theta}{\alpha\theta^2-\alpha}\right)$$

$$+ \left(\alpha + \frac{-2\alpha + 1}{4t} - \frac{2\alpha^2 - \alpha}{4\alpha t - 4} + \frac{2\alpha^2\theta^2 - \alpha\theta^2 - 2\alpha\theta + 2\alpha^2 - \alpha}{-2\alpha t + 2\alpha\theta^2 t - 4\alpha\theta + 2 + 2\theta}\right) \frac{dt}{\pi\sqrt{1 - (2\alpha - 1)^2 - (2\alpha t - 1)^2}}$$

- Bufetov-Gorin: LLN and CLT for discrete N-particle systems through Schur generating functions.
- Bufetov-Knizel: Asymptotics of random domino tilings of more complicated domains.
- Huang: LLN and CLT for discrete N-particle systems through Jack generating functions.
- Gorin-Sun: Asymptotics of Harish-Chandra transform of random matrix products and global fluctuations.
- Ahn: Local asymptotics at the edge of N-particle systems.
- Benaych Georges-Cuenca-Gorin: LLN for random matrix addition at high temperature regime.
- Xu: LLN for rectangular random matrix addition in low and high temperatures.
- Z.: LLN for discrete N-particle systems and a q-deformation of (infinitesimal) free convolution.
- Cuenca-Dolega: Discrete N-particle systems at high temperature through Jack generating functions.
- Bufetov-Petrov-Z.: General LLN and CLT for discrete *N*-particle systems through Schur generating functions/Domino tilings in random environments.