Probabilistic Operator Algebra Seminar

Organizer: Dan-Virgil Voiculescu

April 21 Alexander Glickfield, Indiana University, Bloomington.

Title: The Quasicentral Modulus for a New Class of Operators

Let τ be an *n*-tuple of commuting self-adjoint operators on a separable Hilbert space, and let \mathcal{J} be a symmetrically normed ideal. It is known that the quasicentral modulus $k_{\mathcal{J}}(\tau) = 0$ precisely when there exists an *n*-tuple $\kappa \in (\mathcal{J})^n$ so that $\tau + \kappa$ is unitarily equivalent to a diagonal *n*-tuple. If m_{τ} is the multiplicity function for τ and H_p is the *p* dimensional Hausdorff measure, Voiculescu showed that there exists a class of *n*-tuples with joint-spectra contained in self-similar fractal of dimension *p* so that the quasicentral modulus $k_p^-(\tau)$ associated to the Lorentz-(p, 1) ideals is given by $(k_p^-(\tau))^p = C \int_{\sigma(\tau)} m_{\tau}(x) dH_f(x)$ for some C > 0. We show that, given a gauge function *f* with some regularity conditions, there exists s > 0 and a pair (\mathcal{J}, H_f) consisting of a normed ideal and a measure so that there is a class of *n*-tuple of operators where $(k_{\mathcal{J}}(\tau))^s = C \int_{\sigma(\tau)} m_{\tau}(X) dH_f(x)$ for some C > 0.