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Free convolution

Given u,v € Mj1(R), the free convolution pFHv € M1(R) is
defined thanks to the following result:
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Given u,v € Mj1(R), the free convolution pFHv € M1(R) is
defined thanks to the following result:

1 @M, a0y, (V) V) € RN satisfy

Y )
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NE(SQEN)—)/L, NE(Sb;(N)_)V’ as N — oo,

i=1 i=1
then the real eigenvalues (ch) (N))

diag(a (N),.. (N)) + U* dlag(b(N) .,bgVN))U,

where U € U(N) is Haar-distributed, converge weakly a.s:

1
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for some k € M1(R) [Voiculescu '91, '98].



Free convolution

Given u,v € Mj1(R), the free convolution pFHv € M1(R) is
defined thanks to the following result:

1 @M, a0y, (V) V) € RN satisfy

1 & 1 &

NZ;(SQEN)_)'M’ N_Ziéb;w)_)y’ as N — oo,
then the real eigenvalues (ch) (N))
diag(a (N),.. (N)) + U* dlag(b(N) .,bgVN))U,

where U € U(N) is Haar-distributed, converge weakly a.s:

1
NZ(SC'(N)—)K), as N — oo,

for some k € M1(R) [Voiculescu '91, '98].

The free convolution is defined by



Free cumulants
For simplicity, assume that u, v € M{(R) have compact support.
= pHr e M{(R).
In particular, u, v, pEHv are uniquely determined by their moments.



Free cumulants
For simplicity, assume that pu, v € M{(R) = pHvr e M{(R).
In particular, u, v, pH v are uniquely determined by their moments.

Definition (Voiculescu '85, Speicher '94)

For any moment sequence (my, my, . ..), the free cumulants
(K1, K2, ...) are uniquely defined by:

mp = Z H Ke+1, n:1727"'7
FeLuk(n) steps (1,£) of T

where the sum is over Lukasiewicz paths of length n, and kg := 1. )
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Free cumulants
For simplicity, assume that pu, v € M{(R) = pHvr e M{(R).
In particular, u, v, pH v are uniquely determined by their moments.

Definition (Voiculescu '85, Speicher '94)

For any moment sequence (my, my, . ..), the free cumulants
(K1, K2, ...) are uniquely determined by:

mp = Z H Ke+1, n:1727"'7
FeLuk(n) steps (1,£) of T

where the sum is over Lukasiewicz paths of length n, and kg := 1. )

m = Ki,
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m3 = K3 + 3K1K2 ,'f




Free cumulants

For simplicity, assume that p,v € M{(R) = pHvr e M{(R).
In particular, u, v, pH v are uniquely determined by their moments.
Definition (Voiculescu '85, Speicher '94)

For any moment sequence (my, my, ... ), the free cumulants
(K1, K2,...) are uniquely determined by:

mp = Z H Re+1, n:1727"'7
IFeLuk(n) steps (1,£) of T

where the sum is over Lukasiewicz paths of length n, and kg := 1.

Theorem (Voiculescu '85, Speicher '94)
For any p,v e M{(R),

ke(uE V) = ke(p) + ke(v), forall ¢ > 1.
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Finite free convolution

Given fixed d x d complex Hermitian matrices Ay, By, let
pa(x) :=det(xI — Ag), quq(x):=det(xI —By).
Then the finite free convolution of py(x) and gqg(x) is
(Pd Hd 94) (x) == Eyeu(a) [X/ — (Ag + U*By U)],
where U € U(d) is Haar-distributed.



Finite free convolution

Given fixed d x d complex Hermitian matrices Ay, By, let
pa(x) :=det(xI — Ag), quq(x):=det(xI —By).
Then the finite free convolution of py(x) and gqg(x) is
(Pd Hd 94) (x) == Eyeu(a) [X/ — (Ag + U*BdU)],
where U € U(d) is Haar-distributed.

[Marcus—Spielman—Srivastava '22] studied py Hy qq arising from
their studies on the Kadison—Singer problem (existence of
Ramanujan graphs of every degree).

They found an explicit formula that showed the polynomial
convolution Hy had been studied by [Walsh 1922], who proved that
if pg(x), qa(x) are real-rooted polys, then so is (pg Ha qa)(x).



Finite free convolution

The operation Hy gives birth to Finite Free Probability when
regarding it as an operation between empirical measures:
If pg(x) a degree d polynomial with real roots aq, ..., ay, then

1 d
ulpal =5 D 0oy
i=1

[MSS '22] proved that finite free convolution converges to free
convolution, as d — o0:

plpd]l = 1, plad] = v = plpda BHa qa] — pHv.



Finite free convolution

The operation Hy gives birth to Finite Free Probability when
regarding it as an operation between empirical measures:
If pg(x) a degree d polynomial with real roots aq, ..., ay, then

1 d
ulpal =5 D 0oy
i=1

[MSS '22] proved that finite free convolution converges to free
convolution, as d — o0:

plpd]l = 1, plad] = v = plpda BHa qa] — pHv.

So, the operation [y and further developments on FFP can be
regarded as 1-parameter deformations of FP, with deformation
parameter d € N.

Mantra: FFP(d) 222 FP.




Finite free cumulants

The combinatorial approach to FFP (akin to [Speicher '94] for FP)
began with:

Definition (Arizmendi—Perales '18)
For the monic polynomial pg(x) = x9 + Zjl:l ajxd,
define the finite free cumulants K{[pq], K§[pdl, .-, KI[pa] as the
first d numbers in the unique sequence that satisfies™

exp (Z K¢ Epd z)

>1

where (u); = (u)(u+1)---(u+j — 1).

Theorem (Arizmendi—Perales '18)

K¢ [pg Ba q4] = K [pa] + K [qq], forall1 << d.

#Their definition of Kg [p4] differs by a factor depending only on £.



Finite free cumulants

To view Kgd[pd] in terms of empirical measures (not of polys), let
m1[pa], m2|pd], .. be the moments of the empirical measures of
the real-rooted polynomial pg(x) = x9 + Zle ajx?J, then

1 Mlpd] &
exp | —d Z "n Z"l =1+ 2 ajz).
n=1 j=1




Finite free cumulants

To view Kgd[pd] in terms of empirical measures (not of polys), let
m1[pa], m2|pd], .. be the moments of the empirical measures of
the real-rooted polynomial pg(x) = x9 + Zle ajx?J, then

1 Mlpd] &
exp | —d Z "n Z"l =1+ 2 ajz).
n=1 j=1

[AP '18] found moment/finite-free-cumulant formulas involving
sums over pairs of set partitions 7,0 € P(n), and used them to
prove that finite free cumulants tend to free cumulants:

ulpd] = 1 = KZ|pg] — re[p], forallt=1,...,d.

This gives an alternative proof that finite free convolution
converges to free convolution [MSS '22].



Random [-sum of matrices

From a different point of view, we generalize the map

Spec(A) x Spec(B) — Spec(A + UBU*) (U € U(N) is Haar)

with the deformation parameter S > 0 from Statistical Mechanics
(inverse temperature). When 3 = 1,2, 4, the desired map will
recover this operation for groups O(N), U(N), Sp(N), akin to
similar constructions in Random Matrix Theory (beta ensembles).



Random [-sum of matrices

From a different point of view, we generalize the map
Spec(A) x Spec(B) — Spec(A + UBU*) (U € U(N) is Haar)

with the deformation parameter S > 0 from Statistical Mechanics
(inverse temperature). When 3 = 1,2, 4, the desired map will
recover this operation for groups O(N), U(N), Sp(N), akin to
similar constructions in Random Matrix Theory (beta ensembles).

This involves the matrix Fourier transform (spherical integral)
Eyeu(n) [eTr(AUXU*)] =: By (Spec A, Spec X)
that satisfies
E¢[Bn (€ X)] = Bn(d,X) - Bu(b,X), for all xe RV,

where a,b € RN are the spectra of A, B; and € is the random
spectra of C = A + UBU*, for U € U(N) Haar-distributed.



Random [-sum of matrices
B-Fourier transform based on Multivariate Bessel Function B,(Vﬂ)(é', X):
¢ (Symmetry) B,(Vﬁ) (a,X) is symmetric on xi, ..., Xn.
« (Normalization) B (&, (0,...,0)) = 1.
o (Eigenrelations) P,Eﬁ)B,(\,B)(ﬁ, X) = (af +---+ay) - B,(\’,B)(i, X),

for all kK = 1, where:

(1 —s;;) (Dunkl operators).



Random [-sum of matrices
B-Fourier transform based on Multivariate Bessel Function B,(Vﬂ)(é', X):
¢ (Symmetry) B,(Vﬁ) (a,X) is symmetric on xi, ..., Xn.
« (Normalization) B (&, (0,...,0)) = 1.

o (Eigenrelations) P,Eﬁ)B,(\,B)(ﬁ, X) = (a’l‘ +- a’,i,) (’3)(5 X),
for all kK = 1, where:

& = % T3 o x-(l —5;j) (Dunkl operators).
P T
Example
(B =0: &= i = By V(@%) = iy Sy, o0,

IFB = 2: BI(VBZZ)(E’ %) = EUEU(N)[eTr(diag(é’) U diag(X) U*)]_




Random [-sum of matrices

Definition (Gorin—Marcus '18; Benaych-Georges—C.—Gorin '22)
The p-sum of matrix spectra is the map
RY x RV 25 Ay (RV)

that given a, beRV, produces the random tuple € :=a +3 b
defined by

EE[Bﬁ”(e,z)] B® @& x)- BP (b,%), for all X RV,

V.

It is a conjecture that C is a probability measure (it's related to the
conjectural positivity of Jack-Littlewood-Richardson coefficients).
However, the definition can be understood in terms of distributions
(i.e. make the image of +g be the space of distributions on RV).



Random [-sum of matrices

Definition (Gorin—Marcus '18; Benaych-Georges—C.—Gorin '22)
The p-sum of matrix spectra is the map
RY x RV 25 Ay (RV)

that given a, beRV, produces the random tuple € :=a +3 b
defined by

IEE[B,(f)(E, z)] B® @& x)- BP (b,%), for all X RV,

V.

It is a conjecture that C is a probability measure (it's related to the
conjectural positivity of Jack-Littlewood-Richardson coefficients).
However, the definition can be understood in terms of distributions
(i.e. make the image of +g be the space of distributions on RV).

When 8 > 0 is fixed, the limit N — oo gives the free convolution
as when 5 = 2. But we have a new phenomenon when 3 — 0 - --



Random (-sum of matrices and y-convolution

Theorem (Benaych-Georges — C. — Gorin '22)

Assume the weak limits to compactly supported measures
1Y 1Y
NZéa;_)/% Nzébiﬁya
i=1 i=1

Let € :=a+g b. In the high temperature regime
N—o, B-—07, N7B—>7€(0,oo),
we have the weak convergence, in probability:
1 ZN: d¢c;, = wHy v =: y-convolution of u and v
N= CI ! - '




Random (-sum of matrices and y-convolution

Theorem (Benaych-Georges — C. — Gorin '22)

Assume the weak limits to compactly supported measures
1Y 1
dea,—_)/% Nzéb;_)ya
i=1 i=1

Let €:=a+3 b. In the high temperature regime
N— o, -0, NTB—>7€(O,OO),
we have the weak convergence, in probability:
l ZN: Oc — 1 v =: ~y-convolution of d
P ¢ N Dy w and v.

. —0 .
Moreover, y-convolution -——> free convolution.

y—0

Mantra: HighTempBetaEnsembles(y) —— FP.




Random (-sum of matrices and y-convolution

For e Mi(R) with moments my[u], mo[u], ..., define the
y-cumulants k] [u], qaul, ... by:

N
exp { D=1 Keé[“] ze) =14+>,21 (f;ﬁzna
exp |V D=1 mkk[“] zk) =1+ ,51302"

(%)

Theorem (Benaych-Georges — C. — Gorin '22)
For all j1,v € M{(R),
k) [y v] = &) [1] + K] [v], forall €= 1.




Random (-sum of matrices and y-convolution

For e Mi(R) with moments my[u], mo[u], ..., define the
y-cumulants k] [u], qaul, ... by:

N
exp { D=1 Keé[“] ze) =14+>,21 (f;ﬁzna
exp |V D=1 mkk[“] zk) =1+ ,51302"

Theorem (Benaych-Georges — C. — Gorin '22)
For all j1,v € M{(R),
k) [y v] = &) [1] + K] [v], forall €= 1.

The amazing fact is that (*) exactly define the finite free
cumulants upon the formal parameter identification v « —d.

So not only are FFP(d) and HTBE(~) deformations of FP, but

under |y < —d |, they are the same convolution/cumulants!
Y Y



Moments/~-cumulants formula

Theorem (C. '24; Benaych-Georges — C. — Gorin '22)
If (my,my,...) and (K1, k2, ...) are related to each other via:
{GXP (Meo1 #2°) =1+ 2020 O
exp (t 4= F2) =1+ Zn>1 anz",
then for all n > 1,

my, = Z H (t’—i—S) H Ko41-

leLuk(n)  down-steps of I steps (1,£) of T
from height s — s — 1

143
K

Ky




Moments/~-cumulants formula

Theorem (C. '24; Benaych-Georges — C. — Gorin '22)
If (mi,my,...) and (K1, K2, ...) are related to each other via:
{GXP (X1 #2) =1+ Yoy 32",
exp (t Yoy F2) =1+ Xpzq 32",
then for all n > 1,

mp = Z H (t+s) H Kot1-

leLuk(n)  down-steps of I steps (1,0) of T
from height s — s — 1

This formula (for t = —d) gives a direct proof to the result of
[AP '18] that FFC — FC, as both are sums over Lukasiewicz paths.



Sketch of combinatorial proof in [C '24]

{exp (2g>1 & Z) =1+ Zn>1 (i" z",

exp (t2k>1 ELUS k) =1+>,21a2"

The operator | 0¢(2°) := 1sz0y - (t + 5+ 1)z571 | gives

n—1 n—2
at[z ]:1@2- z




Sketch of combinatorial proof in [C '24]

{exp (2g>1 . Z) =1+ Zn>1 (t

exp (t2k>1 ELUS k) =1 +Zn>1 anz".

The operator | 0¢(2°) := 1sz0y - (t + 5+ 1)z571 | gives

n—1 n—2
at[z ]:1@2- z

(t)n (t)n—l
Let G(2):=>,.; %2 = |g(2):=G'(2) = Z/@gzg 1l then
=1
8(2)e°® = Y G2 = an = 1200 g(2) )
n=1 n

With some more work: | m, = [ZO](ﬁt +#4)"(1)




Sketch of combinatorial proof in [C '24]

The operator | 0¢(2°) := 1sz0y - (t + 5+ 1)z | gives

anl Zn72
Ot | ——| =1pz2 - —.
f{a)n] 7 (0
Let G(z2):=>yo, 52" = |g(2):=G'(2) = Z kez" 1| then
=1
z nan n— t n— z
B2 = 3 120 s 5y = L[ (2)eS)
n=1 n

With some more work: | m, = [ZO](ﬁt +#4)"(1)

r+3
Ki

41 r+1
N




Sketch of combinatorial proof in [C '24]
The operator | 0¢(2°) := 120y - (t + 5+ 1)z5 1| gives

n—1 n—2
o {Z ] ) oy —(z .

(t)n t)n—l
Let G(2):=y; 52" = |g(2):=G(2) = Z rez" 1| then
=1
na,z" !
£@)e = 3 I gy L [0 (2)eS)
n=1 n

With some more work: | m, = [ZO](ﬁt +#4)"(1)

= m, = Z H (t+s) H K41

lFeLuk(n)  down-steps of I' steps (1,6) of T
from height s > s —1

Remark

The operator 0¢ is in a sense the limit of Dunkl operators in the
high-temp. regime, but the combinatorial proof is elementary, and
leads to generalizations (later).
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Rectangular (free) g-convolution

The "rectangular” version of Voiculescu's theory was developed in
[Benaych-Georges '09]. Now the matrices have size MxN, M < N.

If (agM), ce a%\,ﬂ)), (bgM), e bgwM)) € (R}O)M are the singular
values of Ay, Bm,n, and

1M 1 M
W ;[ (53’,(1\/1) + 6_31(/”)) — W, W 121 (6b,‘(M) + 6—b§M)) -V,

in the regime N, M — oo, — g€ [l,00),



Rectangular (free) g-convolution
The "rectangular” version of Voiculescu's theory was developed in
[Benaych-Georges '09]. Now the matrices have size MxN, M < N.

If (agM),. a%\,ﬂ)), (bgM), e bgwM)) € (R}O)M are the singular

values of Ay n, Bu,n, and

M
1 1
M Z; ((Saf(M) + 5_31(/\4)) - L, o Z (6b,‘(M) + 6—be)) — v,
. : N
in the regime N, M — oo, ik € [1,00),
then the singular values of (ch), e c,(V,M)) of

CM,N = AM,N + UBM,NV,
with Haar-distributed Ue U(M), Ve U(N), converge weakly a.s:

1 U N
oM 2 (6Ci(M) + 57CI(M)) — K, as N,M — oo, o

for some neMsym( ), the rectangular g-convolution | uHg v := &



Rectangular (free) g-cumulants

There are also rectangular versions of cumulants. Since measures
are symmetric around zero, all odd moments vanish.

Assume all measures below are compactly supported, for simplicity.



Rectangular (free) g-cumulants

There are also rectangular versions of cumulants. Since measures
are symmetric around zero, all odd moments vanish.

Assume all measures below are compactly supported, for simplicity.
Definition (Benaych-Georges '09)

For any even moment sequence (my, my,...), the rectangular
g-cumulants (K3, K7, ...) are uniquely determined by:

Moy = 2 qfeven(r) H ng n=12---,
reLukodd(2n) steps (1,2¢—1) of

where the sum is over all odd Lukasiewicz paths of length 2n
[any step i — j has j — i~ 1(mod 2)] and even(l") is the number
of up-steps of ' among the steps at positions 2,4,...,2n — 2.

V.

Theorem (Benaych-Georges '09)
For all symmetric pi,v € M{(R),

kgl Bq v] = £3,[p] + &3,[v], forall €= 1.




(-sum of rectangular matrices

Q: Does the g-rectangular FP picture also admits one-parameter
generalizations in the realms of FFP and HTBE?



(-sum of rectangular matrices

Q: Does the g-rectangular FP picture also admits one-parameter
generalizations in the realms of FFP and HTBE?

For the point of view of HTBE, we need new multivariate special
functions: for M < N, let

Bl(\f)N(é’M,)_(’M) := Multivariate Bessel Function of type BC.

Definition (Jiaming Xu 2023)

The random M-tuple €y 1= apn +5.n BM is defined by

Ee, | Bif h(€m: %) | = BY (@, %) BYg (B %in), ¥ Xs € RM

Again, the existence of €y, as a probability measure is a conjecture,
but it can be made sense as a distribution.



p-sum of rectangular matrices and (g, y)-convolution

Theorem (Xu '23)

Assume the weak limits to compactly supported measures

TIEI)
— > 0a = [y, o Y Op > V.
Mi:la Mi:lb

Let €y :=am +5.n by. In the high temperature regime
M N
TIB_)77 M—)QE[].,OO),

we have the weak convergence, in probability:

N—-ow, -0

M

1

W 2 d¢; = pHqH v =: (q,7)-convolution of p and v.
i=1




p-sum of rectangular matrices and (g, y)-convolution

Theorem (Xu '23)

Assume the weak limits to compactly supported measures

TIEI)
— > 0a = [y, o Y Op > V.
Mi:la Mi:lb

Let €y :=am +5.n by. In the high temperature regime
M N
TIB_)77 M—)C]E[].,OO),

we have the weak convergence, in probability:

N—-ow, -0

M

1

W 2 d¢; = pHqH v =: (q,7)-convolution of p and v.
i=1

Further, [Xu '23] defined (g, y)-cumulants and showed that

g,~)-cumulants 2=, rectangular g-cumulants of [BG '09].
Y



Finite free rectangular convolution

On the side of FFP: given d x (n + d) matrices Ay, By, let
p(x), q(x) := characteristic polynomials of AyA%, ByBj,

the rectangular FF (n, d)-convolution [Gribinski-Marcus '22] is
(PEY q)(x) == EU’V[char. poly. of (Ag + UB4V)(Ag + UBy V)*]

where U € U(n), V € U(n + d) are Haar-distributed.
Theorem (GM '22)

If p(x), q(x) are degree d polynomials with all real nonnegative
roots, then all roots of (p B q) (x) are also real and nonnegative.
Moreover, the rectangular FF (n, d)-convolution converges to
rectangular g-convolution in the regime

n
n,d — oo, 1+g—>q.




Finite free rectangular cumulants

Motivated by [Xu '23] ((g,7)-cumulants), [Gribinski '24]
(rectangular finite R- transform) and [AP 18]

Definition (C. '24)
Given p(x) = x9 + 27:1 apjx97J, the rectangular (finite free)
cumulants K2"’d[p], K‘f’d[p], e KQ""jd

[p] are defined by:
exp | Y Ky Ip] o 1 +Zd: a2j 2
X —= ==z | = zY.
=t (=d)j(=d = n),

Theorem (C. '24)
For any degree d polynomials p(x), q(x), and n =0,

K2 [pld q] K2p] + K3lql, forall ¢ =1,2,....d.




Finite free rectangular cumulants/moments

The empirical measures u[p(xz)] have vanishing odd moments and
the even moments denoted M |p], Ma[p], - - - satisfy:

Maip] S
exp | —d Z TZM =1+ 2 32J'Z2J.

k=1 j=1



Finite free rectangular cumulants/moments

The empirical measures u[p(xz)] have vanishing odd moments and
the even moments denoted M |p], Ma[p], - - - satisfy:

Maip] S
exp | —d Z TZM =1+ 2 agjzzf.

k=1 j=1
Theorem (C. '24)

Malpl = Y [T  (~d=n+s)

reLuk®d(2n) down-steps of T
from height 2s +1 — 2s

x I1 (—d+s) [  &i“lel

down-steps of I’ steps (1,20—1) of [
from height 2s — 2s — 1

[C. '24] also gives as a corollary that FF (n, d)-convolution
converges to rectangular g-convolution.



Asymptotic theory of polynomials

These results are useful in asymptotic theory of real-rooted polys,
e.g. Q: Given {py(x)}4=1, find the weak limit of the empirical
measures.

More precisely, Q: If u[pq4] gz, i, how do the roots of py(x)
evolve under repeated differentiation? (e.g. [Kabluchko '22]

considered the backward heat flow exp (— $D?), where D := 2).



Asymptotic theory of polynomials

These results are useful in asymptotic theory of real-rooted polys,
e.g. Q: Given {py(x)}4=1, find the weak limit of the empirical
measures.
More precisely, Q: If u[pq4] gz, i, how do the roots of py(x)
evolve under repeated differentiation? (e.g. [Kabluchko '22]

i

considered the backward heat flow exp ( — §D?), where D := £2).
Theorem (C. '24)

Let {py(x)}4=1 be a sequence of polynomials with real
nonnegative roots, and let q > 1, n € Z=p. Assume that

d—
ulpa(x*)] == p e M{(R).
Ifqd(X) = exp(_ lxinDX"H»lD)pd(X), then
n
M[Qd(xz)] — g Ag, asn,d — o0, 1+ g —q,

in the sense of moments, where \q is the g-rectangular analogue of
the centered Gaussian distribution (its density is known).

V.
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Hierarchy of symmetric orthogonal polynomials
High temp. S-ensembles was understood by MBF of type A / BC:

| Macdonald polynomials (q, t) | |Koornwinder polys (q. t. to. t1, t2. t3) ‘

t=q"2 g 1" t=q"2 q- I, etc

|Jacobi polynomials (8, a, b) ]

|Jack polynomials (8) |
| a=B(IN=-M+1)/2| b=B/2-1

| Mult. Bessel functions (8) | [Mult. Bessel functions of type BC(B.N) |
ﬁ =t 2 ﬁ -9

|Schur polynomia|5| ‘Spherical integrals‘




Hierarchy of symmetric orthogonal polynomials
High temp. S-ensembles was understood by MBF of type A / BC:

| Macdonald polynomials (q, t) | [Koomwinder polys (g, t. to, t1, 2, t3) ‘

2

t= q”/ .q— 17 t=q"2 q-l, etc

|Jacobi polynomials (8, a, b) ‘

|Jack polynomials (8) |
] a=B(N=M+1)/2| b=8/2-1

| Mult. Bessel functions () | ‘Mult. Bessel functions of type BC(8,N) ‘
ﬂ — 2 ﬂ _ 2

|Schur polynomia|5| ‘Spherical integrals‘

Q: Are there high temp. [5-ensembles at higher hierarchy levels?
Al: g-analogue of formulas with Lukasiewicz paths in [C. '24].

A2: In recent/ongoing works [C.—Dolega—Moll '25],
[C.—Dolega '25+], we treat discrete particle ensembles with the
parameter § > 0, at the level of Jack polynomials.



Random partitions and Jack polynomials

There are two kinds of ensembles X = M=X=---2)\y)E Zgo:
of fixed size A1 + A2 + ..., and of fixed length N.

E.g. for fixed length N, the natural “sum” (tensor product of
representations) ZY; x Z¥; — M(ZY,), (&%) — A, is given by:

Ex| (%) | = S0 (@.%) - 47 (#.%), for all ke RN,
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There are two kinds of ensembles X = M=X=---2)\y)E Zgo
of fixed size A1 + A2 + ..., and of fixed length N.

E.g. for fixed length N, the natural “sum” (tensor product of
representations) Zgo X Zgo — M(Zgo), (ﬁ, 17) — A, is given by:

Ex| (%) | = S0 (@.%) - 47 (#.%), for all ke RN,

As a consequence, we discovered two new conjectural 1-parameter

7y-convolutions of prob. measures and cumulants, e.g. if m; = 3:

m. — Z Hhorizontal steps in I at height s(s + 7)
" 1 + # horizontal steps at height 0 in I

reLuk(n)

x 11 (s+7) [T (ketren).

down-steps in I’ up-steps (1,6) in T
from height s »s—1

Open Q: Are there connections to polynomial convolutions?



Finite Free Probability = High temperature S-world?

Recall:

Theorem (Walsh 1922; Marcus—Spielman—Srivastava '22)

If p(x), q(x) are degree d real-rooted polynomials, then so is
p(x) Ha q(x). Similar result holds for B.

Q: Can similar ideas be used to prove:

Conj: If kj[p], p[v] are v-cumulants of p, v € M$(R), then there
exists 7 € M$(R) with v-cumulants s} [7] = rj[p] + Kh[v].



@ Finite free probability:
additive convolution/cumulants (parameter d € N)
rect. convolution/cumulants (parameters d € N, n € Zx)

@ High temp. B-sums of eigenvalues/singular values:
Eigenvalues = ~-convolution (v > 0)
Sing. values = (g, y)-convolution (v > 0, g € [1, 0))

@ In terms of formulas, there is a mysterious match between
formulas, upon identification:

vy e —d

n
14 =
q< +d

Thank you for your attention!
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