Entry-wise application of non-linear functions on orthogonally invariant random matrices

Roland Speicher

Saarland University Saarbrücken, Germany

joint work with Alexander Wendel arXiv:2412.06943

supported by the DFG project "Free probability aspects of neural networks"

Question: What is the effect of applying a non-linear function to the entries of a random matrix?

3 D 🗸 3 D J

Question: What is the effect of applying a non-linear function to the entries of a random matrix?

Given input

- random matrix $X_N = (x_{ij})_{i,j=1}^N$
- function $f : \mathbb{R} \to \mathbb{R}$ (for now, polynomial)

Question: What is the effect of applying a non-linear function to the entries of a random matrix?

Given input

• random matrix
$$X_N = (x_{ij})_{i,j=1}^N$$

• function $f : \mathbb{R} \to \mathbb{R}$ (for now, polynomial)

Define the "non-linear" random matrix $Y_N = (y_{ij})$ by

$$y_{ij} = \begin{cases} \frac{1}{\sqrt{N}} f(\sqrt{N}x_{ij}), & i \neq j\\ 0, & i = j \end{cases}$$

Question: What is the effect of applying a non-linear function to the entries of a random matrix?

Given input

• random matrix
$$X_N = (x_{ij})_{i,j=1}^N$$

• function $f : \mathbb{R} \to \mathbb{R}$ (for now, polynomial)

Define the "non-linear" random matrix $Y_N = (y_{ij})$ by

$$y_{ij} = \begin{cases} \frac{1}{\sqrt{N}} f(\sqrt{N}x_{ij}), & i \neq j \\ 0, & i = j. \end{cases}$$

Question

How does this change the eigenvalue distribution, asymptotically, if $N \to \infty?$

Roland Speicher (Saarland University)

Non-linear random matrices

What assumptions should we make about our random matrices X_N

previous work

 kernel matrices: El Karou 2010; Cheng and Singer 2013; Fan and Montanari 2019

covariance matrices:

Pennington and Worah 2017; Louart, Liao and Couillet 2018; Benigni and Péché 2021; Piccolo and Schröder 2021

What assumptions should we make about our random matrices X_N

previous work for quite specific random matrices

 kernel matrices: El Karou 2010; Cheng and Singer 2013; Fan and Montanari 2019

covariance matrices:

Pennington and Worah 2017; Louart, Liao and Couillet 2018; Benigni and Péché 2021; Piccolo and Schröder 2021

Our general setting

orthogonally invariant random matrices

Orthogonally invariant random matrices with limit distribution

3 × 4 3 ×

Image: Image:

Orthogonally invariant random matrices with limit distribution

Typical examples (say, symmetric real random matrices)

• given by density of the form

 $\exp\left(-N\mathsf{Tr}(q(X_N))\right)dX_N$

• given as polynomials in independent GOEs

 $p(A_N, B_N, \ldots, D_N)$

Orthogonally invariant random matrices with limit distribution

Typical examples (say, symmetric real random matrices)

• given by density of the form

$$\exp\left(-N\mathsf{Tr}(q(X_N))\right)dX_N$$

• given as polynomials in independent GOEs

$$p(A_N, B_N, \ldots, D_N)$$

Properties of this class of random matrices

- orthogonal invariance: entries of X_N have the same joint distribution as entries of OX_NO^T for any orthogonal O
- existence of scaled limit of correlations (c_n are classical cumulants)

$$\lim_{n \to \infty} N^{n-2} \cdot c_n(\mathsf{Tr}(X_N^{m_1}), \dots, \mathsf{Tr}(X_N^{m_n}))$$

Properties of this class of random matrices

- orthogonal invariance: entries of X_N have the same joint distribution as entries of OX_NO^T for any orthogonal O
- existence of scaled limit of correlations $(c_n \text{ are classical cumulants})$

$$\lim_{n \to \infty} N^{n-2} \cdot c_n(\mathsf{Tr}(X_N^{m_1}), \dots, \mathsf{Tr}(X_N^{m_n}))$$

Properties of this class of random matrices

- orthogonal invariance: entries of X_N have the same joint distribution as entries of OX_NO^T for any orthogonal O
- existence of scaled limit of correlations (c_n are classical cumulants)

$$\lim_{n \to \infty} N^{n-2} \cdot c_n(\mathsf{Tr}(X_N^{m_1}), \dots, \mathsf{Tr}(X_N^{m_n}))$$

This implies for cumulants $c_n(x_{i_1j_1}, x_{i_2j_2}, \ldots, x_{i_nj_n})$ of entries

only indices with cycle structure are non-zero

< <>> < <>>

Properties of this class of random matrices

- orthogonal invariance: entries of X_N have the same joint distribution as entries of OX_NO^T for any orthogonal O
- existence of scaled limit of correlations (c_n are classical cumulants)

$$\lim_{n \to \infty} N^{n-2} \cdot c_n(\mathsf{Tr}(X_N^{m_1}), \dots, \mathsf{Tr}(X_N^{m_n}))$$

This implies for cumulants $c_n(x_{i_1j_1}, x_{i_2j_2}, \ldots, x_{i_nj_n})$ of entries

- only indices with cycle structure are non-zero
- leading order for one full cycle is

$$c_n(x_{i_1i_2}, x_{i_2i_3}, \dots, x_{i_ni_1}) \sim N^{1-n}$$

Properties of this class of random matrices

- orthogonal invariance: entries of X_N have the same joint distribution as entries of ${\cal O} X_N {\cal O}^T$ for any orthogonal ${\cal O}$
- existence of scaled limit of correlations (c_n are classical cumulants)

$$\lim_{n \to \infty} N^{n-2} \cdot c_n(\mathsf{Tr}(X_N^{m_1}), \dots, \mathsf{Tr}(X_N^{m_n}))$$

This implies for cumulants $c_n(x_{i_1j_1}, x_{i_2j_2}, \ldots, x_{i_nj_n})$ of entries

- only indices with cycle structure are non-zero
- leading order for one full cycle is

$$c_n(x_{i_1i_2}, x_{i_2i_3}, \dots, x_{i_ni_1}) \sim N^{1-n}$$

• leading order for r cycles is ${\cal N}^{2-r-n}$

This implies for cumulants $c_n(x_{i_1j_1}, x_{i_2j_2}, \ldots, x_{i_nj_n})$ of entries

- only indices with cycle structure are non-zero
- leading order for one full cycle is

$$c_n(x_{i_1i_2}, x_{i_2i_3}, \dots, x_{i_ni_1}) \sim N^{1-n}$$

• leading order for
$$r$$
 cycles is N^{2-r-n}

This implies for cumulants $c_n(x_{i_1j_1}, x_{i_2j_2}, \ldots, x_{i_nj_n})$ of entries

- only indices with cycle structure are non-zero
- leading order for one full cycle is

$$c_n(x_{i_1i_2}, x_{i_2i_3}, \dots, x_{i_ni_1}) \sim N^{1-n}$$

• leading order for
$$r$$
 cycles is N^{2-r-n}

Examples

• no cyclic structure: $c_4(x_{12}, x_{23}, x_{34}, x_{43}) = 0$

This implies for cumulants $c_n(x_{i_1j_1}, x_{i_2j_2}, \ldots, x_{i_nj_n})$ of entries

- only indices with cycle structure are non-zero
- leading order for one full cycle is

$$c_n(x_{i_1i_2}, x_{i_2i_3}, \dots, x_{i_ni_1}) \sim N^{1-n}$$

• leading order for
$$r$$
 cycles is N^{2-r-n}

- no cyclic structure:
- one cycle:

$$c_4(x_{12}, x_{23}, x_{34}, x_{43}) = 0$$

$$c_4(x_{12}, x_{23}, x_{34}, x_{41}) \sim N^{-3}$$

This implies for cumulants $c_n(x_{i_1j_1}, x_{i_2j_2}, \ldots, x_{i_nj_n})$ of entries

- only indices with cycle structure are non-zero
- leading order for one full cycle is

$$c_n(x_{i_1i_2}, x_{i_2i_3}, \dots, x_{i_ni_1}) \sim N^{1-n}$$

• leading order for
$$r$$
 cycles is N^{2-r-n}

- no cyclic structure:
- one cycle:
- two cycles:

$$c_4(x_{12}, x_{23}, x_{34}, x_{43}) = 0$$

$$c_4(x_{12}, x_{23}, x_{34}, x_{41}) \sim N^{-3}$$

$$c_4(x_{12}, x_{21}, x_{34}, x_{43}) \sim N^{-4}$$

This implies for cumulants $c_n(x_{i_1j_1}, x_{i_2j_2}, \ldots, x_{i_nj_n})$ of entries

- only indices with cycle structure are non-zero
- leading order for one full cycle is

$$c_n(x_{i_1i_2}, x_{i_2i_3}, \dots, x_{i_ni_1}) \sim N^{1-n}$$

• leading order for
$$r$$
 cycles is N^{2-r-n}

- no cyclic structure:
- one cycle:
- two cycles:
- one cycle with subcycles:

$$c_4(x_{12}, x_{23}, x_{34}, x_{43}) = 0$$

$$c_4(x_{12}, x_{23}, x_{34}, x_{41}) \sim N^{-3}$$

$$c_4(x_{12}, x_{21}, x_{34}, x_{43}) \sim N^{-4}$$

$$c_4(x_{12}, x_{21}, x_{12}, x_{21}) \sim N^{-3}$$

This implies for cumulants $c_n(x_{i_1 i_1}, x_{i_2 i_2}, \ldots, x_{i_n i_n})$ of entries

- only indices with cycle structure are non-zero
- leading order for one full cycle is

$$c_n(x_{i_1i_2}, x_{i_2i_3}, \dots, x_{i_ni_1}) \sim N^{1-n}$$

• leading order for
$$r$$
 cycles is N^{2-r-n}

Examples

- o no cyclic structure:
- one cycle:
- two cycles:

• one cycle:
$$c_4(x_{12}, x_{23}, x_{34}, x_{41}) \sim N^{-3}$$

• two cycles: $c_4(x_{12}, x_{21}, x_{34}, x_{43}) \sim N^{-4}$
• one cycle with subcycles: $c_4(x_{12}, x_{21}, x_{12}, x_{21}) \sim N^{-3}$
has leading order N^{-3} , and a subleading contribution of order N^{-4}

 $c_4(x_{12}, x_{23}, x_{34}, x_{43}) = 0$

This implies for cumulants $c_n(x_{i_1j_1}, x_{i_2j_2}, \ldots, x_{i_nj_n})$ of entries

- only indices with cycle structure are non-zero
- leading order for one full cycle is

$$c_n(x_{i_1i_2}, x_{i_2i_3}, \dots, x_{i_ni_1}) \sim N^{1-n}$$

• leading order for
$$r$$
 cycles is N^{2-r-n}

Meaning of cycle structure

Note that there is some freedom in arranging the entries of the cumulants

- arguments of classical cumulants can be permuted
- for our symmetric matrices X_N we have: $x_{ij} = x_{ji}$

This implies for cumulants $c_n(x_{i_1j_1}, x_{i_2j_2}, \ldots, x_{i_nj_n})$ of entries

- only indices with cycle structure are non-zero
- leading order for one full cycle is

$$c_n(x_{i_1i_2}, x_{i_2i_3}, \dots, x_{i_ni_1}) \sim N^{1-n}$$

• leading order for
$$r$$
 cycles is N^{2-r-n}

Meaning of cycle structure

Note that there is some freedom in arranging the entries of the cumulants

- arguments of classical cumulants can be permuted
- for our symmetric matrices X_N we have: $x_{ij} = x_{ji}$
- e.g., $c_4(x_{12}, x_{34}, x_{23}, x_{14})$

This implies for cumulants $c_n(x_{i_1j_1}, x_{i_2j_2}, \ldots, x_{i_nj_n})$ of entries

- only indices with cycle structure are non-zero
- leading order for one full cycle is

$$c_n(x_{i_1i_2}, x_{i_2i_3}, \dots, x_{i_ni_1}) \sim N^{1-n}$$

• leading order for
$$r$$
 cycles is N^{2-r-n}

Meaning of cycle structure

Note that there is some freedom in arranging the entries of the cumulants

- arguments of classical cumulants can be permuted
- for our symmetric matrices X_N we have: $x_{ij} = x_{ji}$
- e.g., $c_4(x_{12}, x_{34}, x_{23}, x_{14}) = c_4(x_{12}, x_{23}, x_{34}, x_{14})$

This implies for cumulants $c_n(x_{i_1j_1}, x_{i_2j_2}, \ldots, x_{i_nj_n})$ of entries

- only indices with cycle structure are non-zero
- leading order for one full cycle is

$$c_n(x_{i_1i_2}, x_{i_2i_3}, \dots, x_{i_ni_1}) \sim N^{1-n}$$

• leading order for
$$r$$
 cycles is N^{2-r-n}

Meaning of cycle structure

Note that there is some freedom in arranging the entries of the cumulants

- arguments of classical cumulants can be permuted
- for our symmetric matrices X_N we have: $x_{ij} = x_{ji}$

e.g., $c_4(x_{12}, x_{34}, x_{23}, x_{14}) = c_4(x_{12}, x_{23}, x_{34}, x_{14}) = c_4(x_{12}, x_{23}, x_{34}, x_{41})$ has also cyclic structure.

This implies for cumulants $c_n(x_{i_1j_1}, x_{i_2j_2}, \ldots, x_{i_nj_n})$ of entries

- only indices with cycle structure are non-zero
- leading order for one full cycle is

$$c_n(x_{i_1i_2}, x_{i_2i_3}, \dots, x_{i_ni_1}) \sim N^{1-n}$$

• leading order for
$$r$$
 cycles is N^{2-r-n}

This implies for cumulants $c_n(x_{i_1j_1}, x_{i_2j_2}, \ldots, x_{i_nj_n})$ of entries

- only indices with cycle structure are non-zero
- leading order for one full cycle is

$$c_n(x_{i_1i_2}, x_{i_2i_3}, \dots, x_{i_ni_1}) \sim N^{1-n}$$

• leading order for
$$r$$
 cycles is N^{2-r-n}

Where to find such statements in the literature?

 Zinn-Justin 1999; Collins 2003; Guionnet, Maida 2005; Collins, Mingo, Sniady, Speicher 2007

This implies for cumulants $c_n(x_{i_1j_1}, x_{i_2j_2}, \ldots, x_{i_nj_n})$ of entries

- only indices with cycle structure are non-zero
- leading order for one full cycle is

$$c_n(x_{i_1i_2}, x_{i_2i_3}, \dots, x_{i_ni_1}) \sim N^{1-n}$$

• leading order for
$$r$$
 cycles is N^{2-r-n}

- Zinn-Justin 1999; Collins 2003; Guionnet, Maida 2005; Collins, Mingo, Sniady, Speicher 2007
- specifically in the orthogonal case: Capitaine, Casalis 2007

This implies for cumulants $c_n(x_{i_1j_1}, x_{i_2j_2}, \ldots, x_{i_nj_n})$ of entries

- only indices with cycle structure are non-zero
- leading order for one full cycle is

$$c_n(x_{i_1i_2}, x_{i_2i_3}, \dots, x_{i_ni_1}) \sim N^{1-n}$$

• leading order for
$$r$$
 cycles is N^{2-r-n}

- Zinn-Justin 1999; Collins 2003; Guionnet, Maida 2005; Collins, Mingo, Sniady, Speicher 2007
- specifically in the orthogonal case: Capitaine, Casalis 2007
- probably in many physics papers on a non-rigorous level???

This implies for cumulants $c_n(x_{i_1j_1}, x_{i_2j_2}, \ldots, x_{i_nj_n})$ of entries

- only indices with cycle structure are non-zero
- leading order for one full cycle is

$$c_n(x_{i_1i_2}, x_{i_2i_3}, \dots, x_{i_ni_1}) \sim N^{1-n}$$

• leading order for
$$r$$
 cycles is N^{2-r-n}

- Zinn-Justin 1999; Collins 2003; Guionnet, Maida 2005; Collins, Mingo, Sniady, Speicher 2007
- specifically in the orthogonal case: Capitaine, Casalis 2007
- probably in many physics papers on a non-rigorous level???
- in particular: are there precise statements in the literature for the orthogonal case for the case of several cycles?

- only indices with cycle structure are non-zero
- leading order for one full cycle is $c_n(x_{i_1i_2}, x_{i_2i_3}, \dots, x_{i_ni_1}) \sim N^{1-n}$
- leading order for r cycles is N^{2-r-n}

Relation between free and classical cumulants

- only indices with cycle structure are non-zero
- leading order for one full cycle is $c_n(x_{i_1i_2}, x_{i_2i_3}, \ldots, x_{i_ni_1}) \sim N^{1-n}$
- leading order for r cycles is N^{2-r-n}

Put $\kappa_n := \lim_{N \to \infty} N^{n-1} c_n(x_{i_1 i_2}, x_{i_2 i_3}, \dots, x_{i_n i_1})$

Relation between free and classical cumulants

- only indices with cycle structure are non-zero
- leading order for one full cycle is $c_n(x_{i_1i_2}, x_{i_2i_3}, \ldots, x_{i_ni_1}) \sim N^{1-n}$
- leading order for r cycles is N^{2-r-n}

$$\begin{aligned} \mathsf{Put} \ \kappa_n &:= \lim_{N \to \infty} N^{n-1} c_n(x_{i_1 i_2}, x_{i_2 i_3}, \dots, x_{i_n i_1}) \\ \mathsf{Then} \qquad \mathbb{E}[\operatorname{tr}(X_N^n)] &= \frac{1}{N} \sum_{i_1, \dots, i_n}^N \mathbb{E}[x_{i_1 i_2} x_{i_2 i_3} \cdots x_{i_n i_1}] \\ &= \frac{1}{N} \sum_{i_1, \dots, i_n}^N \sum_{\pi \in P(n)} c_{\pi}[x_{i_1 i_2}, x_{i_2 i_3}, \dots, x_{i_n i_1}] \\ \mathsf{goes in leading order over to} \qquad \varphi(X^n) &= \sum_{\pi \in NC(n)} \kappa_{\pi}; \end{aligned}$$

Relation between free and classical cumulants

- only indices with cycle structure are non-zero
- leading order for one full cycle is $c_n(x_{i_1i_2}, x_{i_2i_3}, \ldots, x_{i_ni_1}) \sim N^{1-n}$
- leading order for r cycles is N^{2-r-n}

$$\begin{split} \text{Put } \kappa_n &:= \lim_{N \to \infty} N^{n-1} c_n(x_{i_1 i_2}, x_{i_2 i_3}, \dots, x_{i_n i_1}) \\ \text{Then} \quad \mathbb{E}[\text{tr}(X_N^n)] &= \frac{1}{N} \sum_{i_1, \dots, i_n}^N \mathbb{E}[x_{i_1 i_2} x_{i_2 i_3} \cdots x_{i_n i_1}] \\ &= \frac{1}{N} \sum_{i_1, \dots, i_n}^N \sum_{\pi \in P(n)} c_\pi[x_{i_1 i_2}, x_{i_2 i_3}, \dots, x_{i_n i_1}] \\ \text{goes in leading order over to} \qquad \varphi(X^n) &= \sum_{\pi \in NC(n)} \kappa_\pi; \end{split}$$

and the κ_n are the free cumulants of the asymptotic eigenvalue distribution of $X_N.$

Roland Speicher (Saarland University)

Question: What is the effect of applying a non-linear function to the entries of a random matrix?

Given input

- orthogonally invariant random matrix $X_N = (x_{ij})_{i,j=1}^N$
- function $f : \mathbb{R} \to \mathbb{R}$ (for now, polynomial)

Define the "non-linear" random matrix $Y_N = (y_{ij})$ by

$$y_{ij} = \begin{cases} \frac{1}{\sqrt{N}} f(\sqrt{N}x_{ij}), & i \neq j\\ 0, & i = j. \end{cases}$$

Question

How does this change the eigenvalue distribution, asymptotically, if $N \to \infty?$

Roland Speicher (Saarland University)

Theorem

• The only cumulants which make asymptotically a contribution in the calculation of the moments of $\mathbb{E}[\operatorname{tr}(Y_N^n)]$ are those with a cyclic index structure,

$$\kappa_n^f := \lim_{N \to \infty} N^{n-1} c_n(y_{i_1 i_2}, y_{i_2 i_3}, \dots, y_{i_n i_1}) \qquad \text{all } i_k \text{ distinct.}$$

Those κ_n^f are thus the free cumulants of the asymptotic eigenvalue distribution of the random matrix Y_N .

2 We have the following relation between the free cumulants κ_n of the asymptotic eigenvalue distribution of X_N and the free cumulants κ_n^f of the asymptotic eigenvalue distribution of the random matrix Y_N :

•
$$\kappa_1^f = 0;$$

• $\kappa_2^f = c_2(f(g), f(g)) = \mathbb{E}[f(g)^2] - \mathbb{E}[f(g)]^2;$
• for $n \ge 3$,
 $\kappa_n^f = \kappa_n \cdot \mathbb{E}[f'(g)]^n;$

where g is a Gaussian random variable with mean zero and variance κ_2 .

• The only cumulants which make asymptotically a contribution in the calculation of the moments of $\mathbb{E}[\operatorname{tr}(Y_N^n)]$ are those with a cyclic index structure,

$$\kappa_n^f := \lim_{N \to \infty} N^{n-1} c_n(y_{i_1 i_2}, y_{i_2 i_3}, \dots, y_{i_n i_1}) \qquad \text{all } i_k \text{ distinct.}$$
$$\kappa_n^f := \lim_{N \to \infty} N^{n-1} c_n(y_{i_1 i_2}, y_{i_2 i_3}, \dots, y_{i_n i_1}) \qquad \text{all } i_k \text{ distinct.}$$

Note that the cumulants of the y_{ij} are more complicated than the ones for the x_{ij} ;

$$\kappa_n^f := \lim_{N \to \infty} N^{n-1} c_n(y_{i_1 i_2}, y_{i_2 i_3}, \dots, y_{i_n i_1}) \qquad \text{all } i_k \text{ distinct.}$$

Note that the cumulants of the y_{ij} are more complicated than the ones for the x_{ij} ; in particular,

- non-cyclic cumulants can also be different from zero
- the subleading orders and subcycles are getting more complicated

$$\kappa_n^f := \lim_{N \to \infty} N^{n-1} c_n(y_{i_1 i_2}, y_{i_2 i_3}, \dots, y_{i_n i_1}) \qquad \text{all } i_k \text{ distinct.}$$

Note that the cumulants of the y_{ij} are more complicated than the ones for the x_{ij} ; in particular,

• non-cyclic cumulants can also be different from zero

• the subleading orders and subcycles are getting more complicated But still, in leading order it's just the

$$\kappa_n^f := \lim_{N \to \infty} N^{n-1} c_n(y_{i_1 i_2}, y_{i_2 i_3}, \dots, y_{i_n i_1})$$
 all i_k distinct

which contribute.

$$\kappa_n^f := \lim_{N \to \infty} N^{n-1} c_n(y_{i_1 i_2}, y_{i_2 i_3}, \dots, y_{i_n i_1}) \qquad \text{all } i_k \text{ distinct.}$$

Note that the cumulants of the y_{ij} are more complicated than the ones for the x_{ij} ; in particular,

• non-cyclic cumulants can also be different from zero

• the subleading orders and subcycles are getting more complicated But still, in leading order it's just the

$$\kappa_n^f := \lim_{N \to \infty} N^{n-1} c_n(y_{i_1 i_2}, y_{i_2 i_3}, \dots, y_{i_n i_1})$$
 all i_k distinct

which contribute.

Those κ_n^f are thus the free cumulants of the asymptotic eigenvalue distribution of the random matrix Y_N .

$$\kappa_n^f := \lim_{N \to \infty} N^{n-1} c_n(y_{i_1 i_2}, y_{i_2 i_3}, \dots, y_{i_n i_1}) \qquad \text{all } i_k \text{ distinct.}$$

Those κ_n^f are thus the free cumulants of the asymptotic eigenvalue distribution of the random matrix Y_N .

$$\kappa_n^f := \lim_{N \to \infty} N^{n-1} c_n(y_{i_1 i_2}, y_{i_2 i_3}, \dots, y_{i_n i_1}) \qquad \text{all } i_k \text{ distinct.}$$

Those κ_n^f are thus the free cumulants of the asymptotic eigenvalue distribution of the random matrix Y_N .

Consider $f(x) = x^3$. Then $c_4(y_{12}, y_{23}, y_{34}, y_{41}) = N^4 c_4(x_{12}x_{12}x_{12}, x_{23}x_{23}x_{23}, x_{34}x_{34}x_{34}, x_{41}x_{41}x_{41})$

Theorem (Formula of Leonov and Shiryaev)

$$c_m(a_1 \cdots a_{i(1)}, \dots, a_{i(m-1)+1} \cdots a_{i(m)}) = \sum_{\substack{\pi \in P(n) \\ \pi \lor \tau = 1_n}} c_\pi[a_1, \dots, a_n]$$

where

$$\tau = \{(1, \dots, i(1)), \dots, (i(m-1)+1, \dots, i(m))\} \in \mathcal{P}(n)$$

$$\kappa_n^f := \lim_{N \to \infty} N^{n-1} c_n(y_{i_1 i_2}, y_{i_2 i_3}, \dots, y_{i_n i_1}) \qquad \text{all } i_k \text{ distinct.}$$

Those κ_n^f are thus the free cumulants of the asymptotic eigenvalue distribution of the random matrix Y_N .

Consider $f(x) = x^3$. Then

 $c_4(y_{12}, y_{23}, y_{34}, y_{41}) = N^4 c_4(x_{12}x_{12}x_{12}, x_{23}x_{23}x_{23}, x_{34}x_{34}x_{34}, x_{41}x_{41}x_{41})$

$$\kappa_n^f := \lim_{N \to \infty} N^{n-1} c_n(y_{i_1 i_2}, y_{i_2 i_3}, \dots, y_{i_n i_1}) \qquad \text{all } i_k \text{ distinct.}$$

Those κ_n^f are thus the free cumulants of the asymptotic eigenvalue distribution of the random matrix Y_N .

Consider $f(x) = x^3$. Then

 $c_4(y_{12}, y_{23}, y_{34}, y_{41}) = N^4 c_4(x_{12}x_{12}x_{12}, x_{23}x_{23}x_{23}, x_{34}x_{34}x_{34}, x_{41}x_{41}x_{41})$

$$X_{12} X_{12} X_{12} , X_{23} X_{23} X_{23} , X_{34} X_{34} X_{34} , X_{41} X$$

$$\kappa_n^f := \lim_{N \to \infty} N^{n-1} c_n(y_{i_1 i_2}, y_{i_2 i_3}, \dots, y_{i_n i_1}) \qquad \text{all } i_k \text{ distinct.}$$

Those κ_n^f are thus the free cumulants of the asymptotic eigenvalue distribution of the random matrix Y_N .

Consider $f(x) = x^3$. Then $c_4(y_{12}, y_{23}, y_{34}, y_{41}) = N^4 c_4(x_{12}x_{12}x_{12}, x_{23}x_{23}x_{23}, x_{34}x_{34}x_{34}, x_{41}x_{41}x_{41})$ $X_{12} X_{12} X_{12} , X_{23} X_{23} X_{23} , X_{34} X_{34} X_{34} , X_{41} X_{41} X_{41}$ $c_4(y_{12}, y_{23}, y_{34}, y_{41}) \sim N^4 N^{-3} (N^{-1})^4 = N^{-3}$

 $c_4(y_{12}, y_{23}, y_{34}, y_{41}) = N^4 c_4(x_{12}x_{12}x_{12}, x_{23}x_{23}x_{23}, x_{34}x_{34}x_{34}, x_{41}x_{41}x_{41})$

$$X_{12} X_{12} X_{12}, X_{23} X_{23} X_{23}, X_{34} X_{34} X_{34}, X_{41} X_{41} X_{41}$$

 $c_4(y_{12}, y_{23}, y_{34}, y_{41}) \sim N^4 N^{-3} (N^{-1})^4 = N^{-3}$

・ロト ・聞 ト ・ ヨト ・ ヨト …

 $c_4(y_{12}, y_{23}, y_{34}, y_{41}) = N^4 c_4(x_{12}x_{12}x_{12}, x_{23}x_{23}x_{23}, x_{34}x_{34}x_{34}, x_{41}x_{41}x_{41})$

$$X_{12} X_{12} X_{12}, X_{23} X_{23} X_{23}, X_{34} X_{34} X_{34}, X_{41} X_{41} X_{41}$$

$$c_4(y_{12}, y_{23}, y_{34}, y_{41}) \sim N^4 N^{-3} (N^{-1})^4 = N^{-3}$$

However, in the case with subcycles

 $c_4(y_{12}, y_{21}, y_{12}, y_{21}) = N^4 c_4(x_{12}x_{12}x_{12}, x_{21}x_{21}x_{21}, x_{12}x_{12}x_{12}, x_{21}x_{21}x_{21})$

 $c_4(y_{12}, y_{23}, y_{34}, y_{41}) = N^4 c_4(x_{12}x_{12}x_{12}, x_{23}x_{23}x_{23}, x_{34}x_{34}x_{34}, x_{41}x_{41}x_{41})$

$$X_{12} X_{12} X_{12}, X_{23} X_{23} X_{23}, X_{34} X_{34} X_{34}, X_{41} X_{41} X_{41}$$

$$c_4(y_{12}, y_{23}, y_{34}, y_{41}) \sim N^4 N^{-3} (N^{-1})^4 = N^{-3}$$

However, in the case with subcycles

 $c_4(y_{12}, y_{21}, y_{12}, y_{21}) = N^4 c_4(x_{12}x_{12}x_{12}, x_{21}x_{21}x_{21}, x_{12}x_{12}x_{12}, x_{21}x_{21}x_{21})$

$$X_{12} X_{12} X_{12}, X_{21} X_{21} X_{21}, X_{12} X_{12} X_{12}, X_{21} X_{21} X_{21} X_{21}$$

$$c_4(y_{12}, y_{21}, y_{12}, y_{21}) \sim N^4(N^{-1})^6 = N^{-2}$$

 $c_4(y_{12}, y_{23}, y_{34}, y_{41}) = N^4 c_4(x_{12}x_{12}x_{12}, x_{23}x_{23}x_{23}, x_{34}x_{34}x_{34}, x_{41}x_{41}x_{41})$

$$X_{12} X_{12} X_{12}, X_{23} X_{23} X_{23}, X_{34} X_{34} X_{34}, X_{41} X_{41} X_{41}$$

$$c_4(y_{12}, y_{23}, y_{34}, y_{41}) \sim N^4 N^{-3} (N^{-1})^4 = N^{-3} \longrightarrow 4$$
 free indices

However, in the case with subcycles

 $c_4(y_{12}, y_{21}, y_{12}, y_{21}) = N^4 c_4(x_{12}x_{12}x_{12}, x_{21}x_{21}x_{21}, x_{12}x_{12}x_{12}, x_{21}x_{21}x_{21})$

$$X_{12} X_{12} X_{12}, X_{21} X_{21} X_{21}, X_{12} X_{12} X_{12}, X_{21} X_{21} X_{21} X_{21}$$

$$c_4(y_{12}, y_{21}, y_{12}, y_{21}) \sim N^4(N^{-1})^6 = N^{-2}$$

 \rightarrow only 2 free indices

$$\kappa_n^f := \lim_{N \to \infty} N^{n-1} c_n(y_{i_1 i_2}, y_{i_2 i_3}, \dots, y_{i_n i_1}) \qquad \text{all } i_k \text{ distinct.}$$

Note: Non-cyclic cumulants can be non-zero for the y_{ij}

$$\kappa_n^f := \lim_{N \to \infty} N^{n-1} c_n(y_{i_1 i_2}, y_{i_2 i_3}, \dots, y_{i_n i_1}) \qquad \text{all } i_k \text{ distinct.}$$

$$c_2(y_{12}, y_{23}) = Nc_2(x_{12}x_{12}, x_{23}x_{23})$$

$$\kappa_n^f := \lim_{N \to \infty} N^{n-1} c_n(y_{i_1 i_2}, y_{i_2 i_3}, \dots, y_{i_n i_1}) \qquad \text{all } i_k \text{ distinct}$$

$$c_2(y_{12}, y_{23}) = Nc_2(x_{12}x_{12}, x_{23}x_{23})$$
$$= Nc_2(x_{21}x_{12}, x_{23}x_{32})$$

$$\kappa_n^f := \lim_{N \to \infty} N^{n-1} c_n(y_{i_1 i_2}, y_{i_2 i_3}, \dots, y_{i_n i_1}) \qquad \text{all } i_k \text{ distinct}$$

$$c_2(y_{12}, y_{23}) = Nc_2(x_{12}x_{12}, x_{23}x_{23})$$

= $Nc_2(x_{21}x_{12}, x_{23}x_{32})$
= $Nc_4(x_{21}, x_{12}, x_{23}, x_{32})$

$$\kappa_n^f := \lim_{N \to \infty} N^{n-1} c_n(y_{i_1 i_2}, y_{i_2 i_3}, \dots, y_{i_n i_1}) \qquad \text{all } i_k \text{ distinct}$$

$$c_{2}(y_{12}, y_{23}) = Nc_{2}(x_{12}x_{12}, x_{23}x_{23})$$

= $Nc_{2}(x_{21}x_{12}, x_{23}x_{32})$
= $Nc_{4}(x_{21}, x_{12}, x_{23}, x_{32})$
~ NN^{-3}
~ N^{-2}

$$\kappa_n^f := \lim_{N \to \infty} N^{n-1} c_n(y_{i_1 i_2}, y_{i_2 i_3}, \dots, y_{i_n i_1}) \qquad \text{all } i_k \text{ distinct}$$

Note: Non-cyclic cumulants can be non-zero for the y_{ij} Consider $f(x) = x^2$.

$$\begin{aligned} c_2(y_{12}, y_{23}) &= Nc_2(x_{12}x_{12}, x_{23}x_{23}) \\ &= Nc_2(x_{21}x_{12}, x_{23}x_{32}) \\ &= Nc_4(x_{21}, x_{12}, x_{23}, x_{32}) \\ &\sim NN^{-3} \\ &\sim N^{-2} \end{aligned}$$

But this is still small enough to not contribute to $\mathbb{E}[tr(Y_N^n)]$.

・ロッ ・雪 ・ ・ ヨ ・

$$\kappa_n^f := \lim_{N \to \infty} N^{n-1} c_n(y_{i_1 i_2}, y_{i_2 i_3}, \dots, y_{i_n i_1})$$
 all i_k distinct.

Those κ_n^f are thus the free cumulants of the asymptotic eigenvalue distribution of the random matrix Y_N .

$$\kappa_n^f := \lim_{N \to \infty} N^{n-1} c_n(y_{i_1 i_2}, y_{i_2 i_3}, \dots, y_{i_n i_1}) \qquad \text{all } i_k \text{ distinct.}$$

Those κ_n^f are thus the free cumulants of the asymptotic eigenvalue distribution of the random matrix $Y_N.$

• The κ_n^f are given by • for n = 1• for n = 2• for $n \ge 2$, • for $n \ge 3$, $\kappa_n^f = \kappa_n \cdot \mathbb{E}[f'(g)]^n$;

where g is a Gaussian random variable with mean zero and variance κ_2 .

• for
$$n \ge 3$$
: $\kappa_n^f = \kappa_n \cdot \mathbb{E}[f'(g)]^n$

Roland Speicher (Saarland University) Non-

19 / 37

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• for
$$n \ge 3$$
: $\kappa_n^f = \kappa_n \cdot \mathbb{E}[f'(g)]^n$

$$X_{12} X_{12} \bullet \bullet \bullet X_{12}$$
 , $X_{23} X_{23} \bullet \bullet \bullet X_{23}$, $\bullet \bullet \bullet$, $X_{41} X_{41} \bullet \bullet \bullet X_{41}$

Roland Speicher (Saarland University) Non-linea

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• for
$$n \ge 3$$
: $\kappa_n^f = \kappa_n \cdot \mathbb{E}[f'(g)]^n$

$$c_4(f_1(x_{12}), f_2(x_{23}), \dots, f_4(x_{41})) = c_4(x_{12}^{m_1}, x_{23}^{m_2}, \dots, x_{41}^{m_4})$$

Roland Speicher (Saarland University) Non-linear random matrices

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• for
$$n \ge 3$$
: $\kappa_n^f = \kappa_n \cdot \mathbb{E}[f'(g)]^n$

 $\kappa_4 \quad m_1 \qquad \qquad m_2 \qquad \ldots \quad m_4$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

• for
$$n \ge 3$$
: $\kappa_n^f = \kappa_n \cdot \mathbb{E}[f'(g)]^n$

• for
$$n \ge 3$$
: $\kappa_n^f = \kappa_n \cdot \mathbb{E}[f'(g)]^n$

where g is a Gaussian random variable with mean zero and variance κ_2 .

• for
$$n = 2$$
: $\kappa_2^f = c_2(f(g), f(g))$

Roland Speicher (Saarland University) Non-li

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

• for
$$n = 2$$
: $\kappa_2^f = c_2(f(g), f(g))$

$$X_{12} \bullet \bullet \bullet X_{12} X_{12} , X_{21} \bullet \bullet \bullet X_{21} X_{21}$$

Roland Speicher (Saarland University)

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

• for
$$n = 2$$
: $\kappa_2^f = c_2(f(g), f(g))$

$$X_{12} \bullet \bullet \bullet X_{12} X_{12}, X_{21} \bullet \bullet \bullet X_{21} X_{21}$$

Roland Speicher (Saarland University)

• for
$$n = 2$$
: $\kappa_2^f = c_2(f(g), f(g))$

イロト 不得下 イヨト イヨト 三日

• for
$$n = 2$$
: $\kappa_2^f = c_2(f(g), f(g))$

Gaussian equivalence principle

Corollary

Let X_N and Y_N be as above. Then the non-linear random matrix model Y_N has the same asymptotic eigenvalue distribution as the linear model

$$\hat{Y}_N := \theta_1 X_N + \theta_2 Z_N,$$

where Z_N is a symmetric standard GOE random matrix which is independent from X_N and where

 $\theta_1 := \mathbb{E}[f'(g)]$

and

$$\theta_2 := \sqrt{\mathbb{E}[f(g)^2] - \mathbb{E}[f(g)]^2 - \kappa_2 \mathbb{E}[f'(g)]^2},$$

where g is a Gaussian random variable with mean zero and variance κ_2 .

Example: The ReLU function

The function

$$f(x) = \mathsf{ReLU}(x) := \max(0, x).$$

3

Example: The ReLU function

The function

$$f(x) = \mathsf{ReLU}(x) := \max(0, x).$$

The orthogonal invariant random matrix

$$X_N = A_N^2 + A_N + B_N A_N + A_N B_N + B_N,$$

where A_N and B_N are independent standard GOE.
Example: The ReLU function

The function

$$f(x) = \mathsf{ReLU}(x) := \max(0, x).$$

The orthogonal invariant random matrix

$$X_N = A_N^2 + A_N + B_N A_N + A_N B_N + B_N,$$

where A_N and B_N are independent standard GOE.

We want to compare

non-linear random matrix

$$Y_N = \mathsf{ReLU}(X_N)$$

versus

linear Gaussian equivalent

$$\hat{Y}_N := \frac{1}{2}X_N + \frac{1}{2}\sqrt{5(1-2/\pi)}Z_N$$

$$X_N = A_N^2 + A_N + B_N A_N + A_N B_N + B_N$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

$$X_N = A_N^2 + A_N + B_N A_N + A_N B_N + B_N$$

$Y_N, \mbox{ after applying ReLU}$ entrywise to X_N

< 口 > < 同

23 / 37

э

∃►

Gaussian equivalent $\hat{Y}_N := \frac{1}{2}X_N + \frac{1}{2}\sqrt{5(1-2/\pi)}Z_N$

Image: Image:

3 1 4 3 1

23 / 37

Superposition of the eigenvalues of the non-linear matrix Y_N and of its Gaussian equivalent \hat{Y}_N

Roland Speicher (Saarland University)

Extension to multivariate case

Consider 2 independent matrices

$$X_N^{(1)} = (x_{ij}^{(1)})_{i,j=1}^N$$
 and $X_N^{(2)} = (x_{ij}^{(2)})_{i,j=1}^N$.

and a function (for now, a polynomial)

$$f:\mathbb{R}^2\to\mathbb{R}$$

and define the non-linear random matrix $Y_N = (y_{ij})_{i,j=1}^N$ by

$$y_{ij} = \begin{cases} \frac{1}{\sqrt{N}} f\left(\sqrt{N} x_{ij}^{(1)}, \sqrt{N} x_{ij}^{(2)}\right), & i \neq j\\ 0, & i = j. \end{cases}$$

・ロト ・聞 ト ・ ヨト ・ ヨト …

Corollary

Let $X_N^{(1)}$, $X_N^{(2)}$ and Y_N be as above. Then the non-linear random matrix model Y_N has the same asymptotic eigenvalue distribution as the linear model

$$\hat{Y}_N := \theta_1 X_N^{(1)} + \theta_2 X_N^{(2)} + \theta Z_N,$$

where Z_N is a symmetric standard GOE random matrix which is independent from $X_N^{(1)}$ and $X_N^{(2)}$ and where

$$\theta_1 := \mathbb{E}[\partial_1 f(g_1, g_2)], \qquad \theta_2 := \mathbb{E}[\partial_2 f(g_1, g_2)]$$

and

$$\theta := \sqrt{c_2(f(g_1, g_2), f(g_1, g_2)) - \kappa_2^{(1)} \theta_1^2 - \kappa_2^{(2)} \theta_2^2},$$

where g_1 and g_2 are independent Gaussian random variables with mean zero and variance $\kappa_2^{(1)}$ and $\kappa_2^{(2)}$, respectively.

The function

$$f(x_1, x_2) = \max(x_1, x_2) = \frac{1}{2}(x_1 + x_2 + |x_1 - x_2|).$$

Roland Speicher (Saarland University) Non-line

3

The function

$$f(x_1, x_2) = \max(x_1, x_2) = \frac{1}{2}(x_1 + x_2 + |x_1 - x_2|).$$

The orthogonally invariant random matrices

$$X_N^{(1)} = \frac{-A_N^2 + B_N}{\sqrt{2}}, \qquad X_N^{(2)} = \frac{C_N^4 + C_N D_N + D_N C_N}{\sqrt{12}},$$

where A_N, B_N, C_N, D_N are independent standard GOE.

э

・ロト ・聞 ト ・ ヨト ・ ヨト …

The function

$$f(x_1, x_2) = \max(x_1, x_2) = \frac{1}{2}(x_1 + x_2 + |x_1 - x_2|).$$

The orthogonally invariant random matrices

$$X_N^{(1)} = \frac{-A_N^2 + B_N}{\sqrt{2}}, \qquad X_N^{(2)} = \frac{C_N^4 + C_N D_N + D_N C_N}{\sqrt{12}},$$

where A_N, B_N, C_N, D_N are independent standard GOE.

We want to compare

non-linear random matrix

$$Y_N = \max(X_1^{(1)}, X_2^{(2)})$$

versus

Gaussian linear equivalent

$$\hat{Y}_N := \frac{1}{2}X_N^{(1)} + \frac{1}{2}X_N^{(2)} + \sqrt{\frac{1}{2} - \frac{1}{\pi}}Z_N$$

28 / 37

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

$$X_{N}^{(1)} = \frac{-A_{N}^{2} + B_{N}}{\sqrt{2}}$$

<ロ> (四) (四) (三) (三) (三)

Roland Speicher (Saarland University)

28 / 37

$$X_{N}^{(1)} = \frac{-A_{N}^{2} + B_{N}}{\sqrt{2}}$$

Roland Speicher (Saarland University)

Non-linear random matrices

28 / 37

Superposition of the eigenvalues of the non-linear matrix Y_N and of its Gaussian equivalent \hat{Y}_N

Roland Speicher (Saarland University)

Non-linear random matrices

The function

$$f(x_1, x_2) = \max(x_1, x_2) = \frac{1}{2}(x_1 + x_2 + |x_1 - x_2|).$$

The orthogonally invariant random matrices

$$X_N^{(1)} = \frac{-A_N^2 + B_N}{\sqrt{2}}, \qquad X_N^{(2)} = \frac{C_N^4 + C_N D_N + D_N C_N}{\sqrt{12}},$$

where A_N, B_N, C_N, D_N are independent standard GOE.

We want to compare

non-linear random matrix

$$Y_N = \max(X_1^{(1)}, X_2^{(2)})$$

versus

Gaussian linear equivalent

$$\hat{Y}_N := \frac{1}{2}X_N^{(1)} + \frac{1}{2}X_N^{(2)} + \sqrt{\frac{1}{2} - \frac{1}{\pi}}Z_N$$

Example: something more non-linear

The function

$$f(x_1, x_2) = \frac{1}{2}x_1^3 x_2^2 - 2x_1^2 x_2$$

The orthogonally invariant random matrices

$$X_N^{(1)} = \frac{-A_N^2 + B_N}{\sqrt{2}}, \qquad X_N^{(2)} = \frac{C_N^4 + C_N D_N + D_N C_N}{\sqrt{12}},$$

where A_N, B_N, C_N, D_N are independent standard GOE.

We want to compare

non-linear random matrix

$$Y_N = \max(X_1^{(1)}, X_2^{(2)})$$

versus

Gaussian linear equivalent

$$\hat{Y}_N := \frac{3}{2} X_N^{(1)} - 2X_N^{(2)} + \sqrt{\frac{93}{4} - \frac{9}{4} - 4} Z_N$$

Roland Speicher (Saarland University)

Superposition of the eigenvalues of the non-linear matrix Y_N and of its Gaussian equivalent \hat{Y}_N

Roland Speicher (Saarland University)

Non-linear random matrices

< ∃⇒

Extension to multivariate case with correlation

Let $X_N^{(1)}$ and $X_N^{(2)}$ be jointly orthogonally invariant random matrices.

$$\kappa_n^{(r_1,\dots,r_n)} := \lim_{N \to \infty} N^{n-1} c_n(x_{i_1 i_2}^{(r_1)}, x_{i_2 i_3}^{(r_2)}, \dots, x_{i_n i_1}^{(r_n)}).$$

and define the non-linear random matrix $Y_N = f(X_N^{(1)}, X_N^{(2)}) = (y_{ij})_{i,j=1}^N$ by

$$y_{ij} = \begin{cases} \frac{1}{\sqrt{N}} f\left(\sqrt{N}x_{ij}^{(1)}, \sqrt{N}x_{ij}^{(2)}\right), & i \neq j\\ 0, & i = j \end{cases}$$

Corollary

The non-linear random matrix model $Y_N = f(X_N^{(1)}, X^{(2)})$ has the same asymptotic eigenvalue distribution as the linear model

$$\hat{Y}_N := \theta_1 X_N^{(1)} + \theta_2 X_N^{(2)} + \theta Z_N,$$

where Z_N is a symmetric standard GOE random matrix which is independent from $X_N^{(1)}$ and $X_N^{(2)}$ and where

$$\theta_1 := \mathbb{E}[\partial_1 f(g_1, g_2)], \qquad \theta_2 := \mathbb{E}[\partial_2 f(g_1, g_2)]$$
$$\theta := \sqrt{c_2(f(g_1, g_2), f(g_1, g_2)) - \kappa_2^{(1,1)} \theta_1^2 - \kappa_2^{(2,2)} \theta_2^2 - 2\kappa_2^{(1,2)} \theta_1 \theta_2}$$

where g_1 and g_2 are a Gaussian family of random variables with mean zero and covariance

$$c_2(g_1, g_1) = \kappa_2^{(1,1)}, \qquad c_2(g_2, g_2) = \kappa_2^{(2,2)}, \qquad c_2(g_1, g_2) = \kappa_2^{(1,2)}.$$

The function

$$f(x_1, x_2) = \max(x_1, x_2) = \frac{1}{2}(x_1 + x_2 + |x_1 - x_2|).$$

э

イロト イポト イヨト イヨト

The function

$$f(x_1, x_2) = \max(x_1, x_2) = \frac{1}{2}(x_1 + x_2 + |x_1 - x_2|).$$

The orthogonally invariant random matrices

$$X_N^{(1)} = \frac{A_N^2 - \sqrt{2}B_N}{\sqrt{3}}, \qquad X_N^{(2)} = \frac{A_N^4 + C_N A_N + A_N C_N}{\sqrt{12}},$$

where A_N, B_N, C_N are independent standard GOE.

э

The function

$$f(x_1, x_2) = \max(x_1, x_2) = \frac{1}{2}(x_1 + x_2 + |x_1 - x_2|).$$

The orthogonally invariant random matrices

$$X_N^{(1)} = \frac{A_N^2 - \sqrt{2}B_N}{\sqrt{3}}, \qquad X_N^{(2)} = \frac{A_N^4 + C_N A_N + A_N C_N}{\sqrt{12}},$$

where A_N, B_N, C_N are independent standard GOE.

We want to compare

non-linear random matrix

$$Y_N = \max(X_1^{(1)}, X_2^{(2)})$$

versus

Gaussian linear equivalent

$$\hat{Y}_N := \frac{1}{2}X_N^{(1)} + \frac{1}{2}X_N^{(2)} + \sqrt{\frac{1}{4} - \frac{1}{2\pi}}Z_N$$

Superposition of the eigenvalues of the non-linear matrix Y_N and of its Gaussian equivalent \hat{Y}_N

Roland Speicher (Saarland University)

< ∃⇒

• extend proofs from polynomials to more general functions

э

→ Ξ → < Ξ →</p>

Image: Image:

- extend proofs from polynomials to more general functions
- estimates for rate of convergence

3 1 4 3 1

- extend proofs from polynomials to more general functions
- estimates for rate of convergence
- address question whether the Y_N are asymptotically free from deterministic matrices (as the X_N are)

- extend proofs from polynomials to more general functions
- estimates for rate of convergence
- address question whether the Y_N are asymptotically free from deterministic matrices (as the X_N are)
- think about generalizations to random tensors

- extend proofs from polynomials to more general functions
- estimates for rate of convergence
- address question whether the Y_N are asymptotically free from deterministic matrices (as the X_N are)
- think about generalizations to random tensors
- clarify relation with work in statistical physics around quantum symmetric simple exclusion process or the Eigenstate Thermalization Hypothesis (Bernard and Huzra; Fava, Kuchan, Pappalardi) → generalization to operator-valued free probability

- extend proofs from polynomials to more general functions
- estimates for rate of convergence
- address question whether the Y_N are asymptotically free from deterministic matrices (as the X_N are)
- think about generalizations to random tensors
- clarify relation with work in statistical physics around quantum symmetric simple exclusion process or the Eigenstate Thermalization Hypothesis (Bernard and Huzra; Fava, Kuchan, Pappalardi) → generalization to operator-valued free probability

Thank you for your attention!

- extend proofs from polynomials to more general functions
- estimates for rate of convergence
- address question whether the Y_N are asymptotically free from deterministic matrices (as the X_N are)
- think about generalizations to random tensors
- clarify relation with work in statistical physics around quantum symmetric simple exclusion process or the Eigenstate Thermalization Hypothesis (Bernard and Huzra; Fava, Kuchan, Pappalardi) → generalization to operator-valued free probability

Thank you for your attention!