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Question: What is the effect of applying a
non-linear function to the entries of a random
matrix?

Given input

random matrix XN = (xij)
N
i,j=1

function f : R→ R (for now, polynomial)

Define the “non-linear” random matrix YN = (yij) by

yij =

{
1√
N
f(
√
Nxij), i 6= j

0, i = j.

Question
How does this change the eigenvalue distribution, asymptotically, if
N →∞?
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What assumptions should we make about our
random matrices XN

previous work

for quite specific random matrices

kernel matrices:
El Karou 2010; Cheng and Singer 2013; Fan and Montanari 2019
covariance matrices:
Pennington and Worah 2017; Louart, Liao and Couillet 2018; Benigni
and Péché 2021; Piccolo and Schröder 2021

Our general setting
orthogonally invariant random matrices
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Orthogonally invariant random matrices with limit
distribution

Typical examples (say, symmetric real random matrices)
given by density of the form

exp (−NTr(q(XN ))) dXN

given as polynomials in independent GOEs

p(AN , BN , . . . , DN )

Properties of this class of random matrices
orthogonal invariance: entries of XN have the same joint distribution
as entries of OXNO

T for any orthogonal O
existence of scaled limit of correlations (cn are classical cumulants)

lim
n→∞

Nn−2 · cn(Tr(Xm1
N ), . . . ,Tr(Xmn

N ))
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Cyclic structure of the cumulants of entries

Properties of this class of random matrices
orthogonal invariance: entries of XN have the same joint distribution
as entries of OXNO

T for any orthogonal O
existence of scaled limit of correlations (cn are classical cumulants)

lim
n→∞

Nn−2 · cn(Tr(Xm1
N ), . . . ,Tr(Xmn

N ))

This implies for cumulants cn(xi1j1 , xi2j2 , . . . , xinjn) of entries
only indices with cycle structure are non-zero
leading order for one full cycle is

cn(xi1i2 , xi2i3 , . . . , xini1) ∼ N1−n

leading order for r cycles is N2−r−n
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Examples

no cyclic structure: c4(x12, x23, x34, x43) = 0

one cycle: c4(x12, x23, x34, x41) ∼ N−3

two cycles: c4(x12, x21, x34, x43) ∼ N−4

one cycle with subcycles: c4(x12, x21, x12, x21) ∼ N−3
has leading order N−3, and a subleading contribution of order N−4
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Cyclic structure of the cumulants of entries
This implies for cumulants cn(xi1j1 , xi2j2 , . . . , xinjn) of entries

only indices with cycle structure are non-zero
leading order for one full cycle is

cn(xi1i2 , xi2i3 , . . . , xini1) ∼ N1−n

leading order for r cycles is N2−r−n

Meaning of cycle structure
Note that there is some freedom in arranging the entries of the cumulants

arguments of classical cumulants can be permuted
for our symmetric matrices XN we have: xij = xji

e.g., c4(x12, x34, x23, x14) = c4(x12, x23, x34, x14) = c4(x12, x23, x34, x41)

has also cyclic structure.
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Cyclic structure of the cumulants of entries
This implies for cumulants cn(xi1j1 , xi2j2 , . . . , xinjn) of entries

only indices with cycle structure are non-zero
leading order for one full cycle is

cn(xi1i2 , xi2i3 , . . . , xini1) ∼ N1−n

leading order for r cycles is N2−r−n

Where to find such statements in the literature?

Zinn-Justin 1999; Collins 2003; Guionnet, Maida 2005; Collins, Mingo,
Sniady, Speicher 2007
specifically in the orthogonal case: Capitaine, Casalis 2007
probably in many physics papers on a non-rigorous level???
in particular: are there precise statements in the literature for the
orthogonal case for the case of several cycles?
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Relation between free and classical cumulants

only indices with cycle structure are non-zero
leading order for one full cycle is cn(xi1i2 , xi2i3 , . . . , xini1) ∼ N1−n

leading order for r cycles is N2−r−n

Put κn := limN→∞N
n−1cn(xi1i2 , xi2i3 , . . . , xini1)

Then E[tr(Xn
N )] =

1

N

N∑
i1,...,in

E[xi1i2xi2i3 · · ·xini1 ]

=
1

N

N∑
i1,...,in

∑
π∈P (n)

cπ[xi1i2 , xi2i3 , . . . , xini1 ]

goes in leading order over to ϕ(Xn) =
∑

π∈NC(n)

κπ;

and the κn are the free cumulants of the asymptotic eigenvalue distribution
of XN .
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Theorem
1 The only cumulants which make asymptotically a contribution in the

calculation of the moments of E[tr(Y n
N )] are those with a cyclic index

structure,

κfn := lim
N→∞

Nn−1cn(yi1i2 , yi2i3 , . . . , yini1) all ik distinct.

Those κfn are thus the free cumulants of the asymptotic eigenvalue
distribution of the random matrix YN .

2 We have the following relation between the free cumulants κn of the
asymptotic eigenvalue distribution of XN and the free cumulants κfn
of the asymptotic eigenvalue distribution of the random matrix YN :

1 κf1 = 0;
2 κf2 = c2(f(g), f(g)) = E[f(g)2]− E[f(g)]2;
3 for n ≥ 3,

κfn = κn · E[f ′(g)]n;

where g is a Gaussian random variable with mean zero and variance κ2.
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1 The only cumulants which make asymptotically a contribution in the
calculation of the moments of E[tr(Y n

N )] are those with a cyclic index
structure,

κfn := lim
N→∞

Nn−1cn(yi1i2 , yi2i3 , . . . , yini1) all ik distinct.

Note that the cumulants of the yij are more complicated than the ones for
the xij ; in particular,

non-cyclic cumulants can also be different from zero
the subleading orders and subcycles are getting more complicated

But still, in leading order it’s just the

κfn := lim
N→∞

Nn−1cn(yi1i2 , yi2i3 , . . . , yini1) all ik distinct

which contribute.

Those κfn are thus the free cumulants of the asymptotic eigenvalue
distribution of the random matrix YN .
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Theorem (Formula of Leonov and Shiryaev)

cm(a1 · · · ai(1), . . . , ai(m−1)+1 · · · ai(m)) =
∑

π∈P (n)
π∨τ=1n

cπ[a1, . . . , an]

where
τ = {(1, . . . , i(1)), . . . , (i(m− 1) + 1, . . . , i(m))} ∈ P(n).

a1 a2 a3 a4

assume c1(ai) = 0; then

c2(a1a2, a3a4) = c4(a1, a2, a3, a4)+

c2(a1, a4)c2(a2, a3) + c2(a1, a3)c2(a2, a4)
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1 Only cumulants which make asymptotically contribution in calculation
of the moments of E[tr(Y n

N )] are those with a cyclic index structure,

κfn := lim
N→∞

Nn−1cn(yi1i2 , yi2i3 , . . . , yini1) all ik distinct.

Those κfn are thus the free cumulants of the asymptotic eigenvalue
distribution of the random matrix YN .

Consider f(x) = x3. Then

c4(y12, y23, y34, y41) = N4c4(x12x12x12, x23x23x23, x34x34x34, x41x41x41)

c4(y12, y23, y34, y41) ∼ N4N−3(N−1)4 = N−3
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c4(y12, y23, y34, y41) = N4c4(x12x12x12, x23x23x23, x34x34x34, x41x41x41)

c4(y12, y23, y34, y41) ∼ N4N−3(N−1)4 = N−3

−→ 4 free indices

However, in the case with subcycles

c4(y12, y21, y12, y21) = N4c4(x12x12x12, x21x21x21, x12x12x12, x21x21x21)

c4(y12, y21, y12, y21) ∼ N4(N−1)6 = N−2

−→ only 2 free indices
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1 Only cumulants which make asymptotically contribution in calculation
of the moments of E[tr(Y n

N )] are those with a cyclic index structure,

κfn := lim
N→∞

Nn−1cn(yi1i2 , yi2i3 , . . . , yini1) all ik distinct.

Note: Non-cyclic cumulants can be non-zero for the yij

Consider f(x) = x2.

c2(y12, y23) = Nc2(x12x12, x23x23)

= Nc2(x21x12, x23x32)

= Nc4(x21, x12, x23, x32)

∼ NN−3

∼ N−2

But this is still small enough to not contribute to E[tr(Y n
N )].
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The only cumulants which make asymptotically a contribution in the
calculation of the moments of E[tr(Y n

N )] are those with a cyclic index
structure,

κfn := lim
N→∞

Nn−1cn(yi1i2 , yi2i3 , . . . , yini1) all ik distinct.

Those κfn are thus the free cumulants of the asymptotic eigenvalue
distribution of the random matrix YN .

The κfn are given by
I for n = 1

κf1 = 0

I for n = 2
κf2 = c2(f(g), f(g))

I for n ≥ 3,
κfn = κn · E[f ′(g)]n;

where g is a Gaussian random variable with mean zero and variance κ2.
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for n ≥ 3: κfn = κn · E[f ′(g)]n

c4(f1(x12), f2(x23), . . . , f4(x41)) = c4(x
m1
12 , x

m2
23 , . . . , x

m4
41 )

κ4 m1

E[gm1−1]

m2

E[gm2−1]

. . . m4

E[gm4−1]

κ4 E[f ′1(g)] E[f ′2(g)] · · · E[f ′4(g)]

where g is a Gaussian random variable with mean zero and variance κ2.
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for n = 2: κf2 = c2(f(g), f(g))

c2(f1(x12), f2(x21)) = c4(x
m1
12 , x

m2
21 )

c2(f1(g), f2(g))
where g is a Gaussian random variable with mean zero and variance κ2.
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Gaussian equivalence principle

Corollary
Let XN and YN be as above. Then the non-linear random matrix model
YN has the same asymptotic eigenvalue distribution as the linear model

ŶN := θ1XN + θ2ZN ,

where ZN is a symmetric standard GOE random matrix which is
independent from XN and where

θ1 := E[f ′(g)]

and

θ2 : =
√
E[f(g)2]− E[f(g)]2 − κ2E[f ′(g)]2,

where g is a Gaussian random variable with mean zero and variance κ2.
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Example: The ReLU function

The function

f(x) = ReLU(x) := max(0, x).

The orthogonal invariant random matrix

XN = A2
N +AN +BNAN +ANBN +BN ,

where AN and BN are independent standard GOE.

We want to compare
non-linear random matrix YN = ReLU(XN )

versus

linear Gaussian equivalent ŶN := 1
2XN + 1

2

√
5(1− 2/π)ZN
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XN = A2
N +AN +BNAN

+ANBN +BN

YN , after applying ReLU
entrywise to XN

Gaussian equivalent ŶN := 1
2XN + 1

2

√
5(1− 2/π)ZN
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Superposition of the eigenvalues of the non-linear
matrix YN and of its Gaussian equivalent ŶN
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Extension to multivariate case

Consider 2 independent matrices

X
(1)
N = (x

(1)
ij )Ni,j=1 and X

(2)
N = (x

(2)
ij )Ni,j=1.

and a function (for now, a polynomial)

f : R2 → R

and define the non-linear random matrix YN = (yij)
N
i,j=1 by

yij =

{
1√
N
f
(√

Nx
(1)
ij ,
√
Nx

(2)
ij

)
, i 6= j

0, i = j.
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Corollary

Let X(1)
N , X(2)

N and YN be as above. Then the non-linear random matrix
model YN has the same asymptotic eigenvalue distribution as the linear
model

ŶN := θ1X
(1)
N + θ2X

(2)
N + θZN ,

where ZN is a symmetric standard GOE random matrix which is
independent from X

(1)
N and X(2)

N and where

θ1 := E[∂1f(g1, g2)], θ2 := E[∂2f(g1, g2)]

and

θ : =

√
c2(f(g1, g2), f(g1, g2))− κ(1)2 θ21 − κ

(2)
2 θ22,

where g1 and g2 are independent Gaussian random variables with mean
zero and variance κ(1)2 and κ(2)2 , respectively.
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Example: the maximum function
The function

f(x1, x2) = max(x1, x2) =
1

2
(x1 + x2 + |x1 − x2|).

The orthogonally invariant random matrices

X
(1)
N =

−A2
N +BN√

2
, X

(2)
N =

C4
N + CNDN +DNCN√

12
,

where AN , BN , CN , DN are independent standard GOE.

We want to compare

non-linear random matrix YN = max(X
(1)
1 , X

(2)
2 )

versus

Gaussian linear equivalent ŶN := 1
2X

(1)
N + 1

2X
(2)
N +

√
1
2 −

1
πZN
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Gaussian linear equivalent ŶN := 1
2X

(1)
N + 1

2X
(2)
N +

√
1
2 −

1
πZN
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Superposition of the eigenvalues of the non-linear
matrix YN and of its Gaussian equivalent ŶN
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Example: something more non-linear
The function

f(x1, x2) =
1

2
x31x

2
2 − 2x21x2

The orthogonally invariant random matrices

X
(1)
N =

−A2
N +BN√

2
, X

(2)
N =

C4
N + CNDN +DNCN√

12
,

where AN , BN , CN , DN are independent standard GOE.

We want to compare

non-linear random matrix YN = max(X
(1)
1 , X

(2)
2 )

versus

Gaussian linear equivalent ŶN := 3
2X

(1)
N − 2X

(2)
N +

√
93
4 −

9
4 − 4ZN
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Superposition of the eigenvalues of the non-linear
matrix YN and of its Gaussian equivalent ŶN
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Extension to multivariate case with correlation

Let X(1)
N and X(2)

N be jointly orthogonally invariant random matrices.

κ(r1,...,rn)n := lim
N→∞

Nn−1cn(x
(r1)
i1i2

, x
(r2)
i2i3

, . . . , x
(rn)
ini1

).

and define the non-linear random matrix YN = f(X
(1)
N , X

(2)
N ) = (yij)

N
i,j=1

by

yij =

{
1√
N
f
(√

Nx
(1)
ij ,
√
Nx

(2)
ij

)
, i 6= j

0, i = j.
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Corollary

The non-linear random matrix model YN = f(X
(1)
N , X(2)) has the same

asymptotic eigenvalue distribution as the linear model

ŶN := θ1X
(1)
N + θ2X

(2)
N + θZN ,

where ZN is a symmetric standard GOE random matrix which is
independent from X

(1)
N and X(2)

N and where

θ1 := E[∂1f(g1, g2)], θ2 := E[∂2f(g1, g2)]

θ :=

√
c2(f(g1, g2), f(g1, g2))− κ(1,1)2 θ21 − κ

(2,2)
2 θ22 − 2κ

(1,2)
2 θ1θ2,

where g1 and g2 are a Gaussian family of random variables with mean zero
and covariance

c2(g1, g1) = κ
(1,1)
2 , c2(g2, g2) = κ

(2,2)
2 , c2(g1, g2) = κ

(1,2)
2 .
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Example: the maximum function
The function

f(x1, x2) = max(x1, x2) =
1

2
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Superposition of the eigenvalues of the non-linear
matrix YN and of its Gaussian equivalent ŶN
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What is still to do?

extend proofs from polynomials to more general functions

estimates for rate of convergence
address question whether the YN are asymptotically free from
deterministic matrices (as the XN are)
think about generalizations to random tensors
clarify relation with work in statistical physics around quantum
symmetric simple exclusion process or the Eigenstate Thermalization
Hypothesis (Bernard and Huzra; Fava, Kuchan, Pappalardi)
−→ generalization to operator-valued free probability

Thank you for your attention!
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