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Introduction

Joint work with Charles Bordenave.
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Main results

Definition of freeness associated to a collection of tensors of
possibly different orders.

Associated free cumulants.

Asymptotic freeness of random tensors.

Schwinger-Dyson loop equations associated to random
tensors.

Free convolution of tensors (work in progress).
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I. Maps of tensors

4/38



I. Anatomy of a tensor

T = (Ti1,...,ip)1≤il≤Nl

• Ti1,...,ip ∈ R or C
• p = order (p = 1 vector, p = 2 matrix,...)

• l = a leg

• Nl = dimension of a leg = N (in this talk)

T
1

3 2

σ = (1, 2)(3)

−→ T σ2

3 1

Tσ
i1,··· ,ip = Tiσ(1),··· ,iσ(p)
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I. Combinatorial maps

M0 : trace maps m = (π, α) with

• π ∈ Sm with m even the number of half-edges and the cycles
of π are the vertices,

• α ∈ Sm an involution without fixed point encoding the edges
(matching between half-edges).

Figure: m = (π = (1, 2, 3, 4)(5, 6)(7, 8), α = (1, 2)(3, 5)(4, 7)(6, 8)).

Mq : maps with q boundaries (α has q fixed points).
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I. Tensor maps

Tensor maps

m((Tv )v∈V )iδ =
1

Nγ

∑
i∈[[N]]E

∏
v∈V

(Tv )i∂v

with γ = #{c.c. of m} if m ∈ M0 and γ = 0 otherwise.

A(1)

A(2) B(1)

a

b c

d

m(A(1),A(2),B(1)) =
1

N

∑
1≤a,b,c,d≤N

A
(1)
aabcA

(2)
bd B

(1)
cd .
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I. Some examples

• Matrix trace

M b2(M) = 1
N

∑
Mii

• Matrix multiplication

M1 M2

m(M1,M2) = M1M2

• Frobenius norm

T T
fp(T ,T ) = 1

N

∑
i1,...,ip

T 2
i1,...,ip

• Contraction by vectors

T

u
v

w
T .(u, v ,w)

• Unitary composition

T U

U

U

U
T · Up
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I. Trace invariants

Let m be a trace map and consider m((Tv )v∈V ).

It is orthogonal invariant : if U ∈ O(N), then

m((Tv · Upv )v∈V ) = m((Tv )v∈V ),

where (T · Up)j =
∑

i∈[[N]]p

Ti

p∏
k=1

Ujk ik .

→ We call them the trace invariants. They are the building blocks
of a spectral theory for tensors.
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I. Distribution of tensors

A = {ai : i ∈ I} a finite collection of tensors.

Distribution of A
Collection of trace invariants m(T ) for m ∈ M0 and T = (Tv )v∈V
with Tv ∈ A with consistent order.

Example : if A = {a}, a ∈ MN(R), we get

1

N
Tr(aϵ1 · · · aϵk ), aϵi ∈ {a, aT}.
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I. Wigner tensors

(Xi )i=(i1,··· ,ip)∈[[N]]p/Sp ∈ (RN)⊗p i.i.d. random variables s.t.

EXi = 0 and EX 2
i =

1

(p − 1)!
and ∀k ,E|Xi |k ≤ c(k)

Convergence in distribution (Gurau 20’, B. 24’)

WN =
(Xi )i∈[[N]]p

N
p−1
2

converges towards sp in distribution (in proba).

m(WN) → m(sp) =
1

(p − 1)!#m/2
1m melonic.
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II. Tensor freeness
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II. Action of combinatorial maps

E0 = C, E1 complex vector space, Ep = E⊗p
1 , E = ⊔Ep.

m ∈ Mq, Em = {(x1, . . . , xV ) : xv ∈ Edeg(v)}.

M acts on E via m : Em → Eq with properties :

(CI) Class invariance

(M) Morphism

(L) Linearity

(S) Substitution

(Id) Identity for even p

ex : E1 = CN , m(x) = tensor map.
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II. Map vector bundle

M-bundle

Let A ⊂ E = ⊔Ep.
⟨A⟩ is the union of vector spaces spanned by m(x), m ∈ ∪q≥0Mq,
xv ∈ A ∪ 12p.

For matrices, we recover the algebra generated by A.

We say that an ⟨A⟩-map (m, x) ∈ M0(⟨A⟩) is centered if
m(x) = 0.
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II. The non-crossing poset

Pπ := {m = (π, α) ∈ M0}.
m′ < m if αα′ is a product of transpositions and γ(m′) = γ(m)+ 1.

1

2 3

4

m

≥ ≥
m
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II. Definition of freeness - Preliminaries

(P1) m̂ has c.c. monochromatic or minimal non monochromatic,

(P2) there is a path from m to m̂ with only chromatic switches
(A ≠ B, switch (a1, b1), (a2, b2)).

1

2 3

4

m

≥
= m̂

≥
m
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II. Tensor freeness

Definition of freeness

The sets (Ac)c∈C are free if for all ⟨A⟩-maps (m, x) ∈ M0(⟨A⟩),
we have m(x) = 0 as soon as

all m̂ ≤ m satisfying (P1)-(P2) has a connected component
minimal non monochromatic or centered monochromatic.

Individual distributions

If (Ac)c∈C are free, then the distribution of A = ⊔c∈CAc is
characterized by the individual distributions of Ac , c ∈ C.

17/38



II. A matrix example

The connected 2-valent maps are cycles. The m̂ are the NC partitions
where consecutive elements of the same family are in the same block.

18/38



II. Free cumulants

Pm = {n : n ≤ m}.

Existence of free cumulants

∀m, ∃!κm : Em → C s.t. ∀x ∈ Em,

m(x) =
∑
n≤m

κn(x).

κm satisfy (CI), (M), (L) and a weak form of (S).

Freeness and free cumulants

The even families (Ac)c∈C are free if and only if for all ⟨A⟩-map
(m, x) connected non-monochromatic, we have κm(x) = 0.
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II. Moments and free cumulants of a tensor

Bn := { connected rooted p-valent maps with n vertices }.
T a real symmetric tensor of order p.
Denote m(T ) := m(T , . . . ,T ) and κm(T ) := κm(T , . . . ,T ).

Moments and free cumulants of a tensor

For n ≥ 0,

mn(T ) =
∑
m∈Bn

m(T ) and κn(T ) =
∑
m∈Bn

κm(T ).

Gurau’s measure

∃µT probability measure on R s.t. ∀n,mn(T ) =
∫
λndµT (λ).

p = 2: µT = ESD; p ≥ 3: µT has unbounded support.
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II. High order semi-circular

High order semi-circular

Let sp the high order semi-circular element given by

m(sp) =
1

(p − 1)!#m/2
1m melonic or κm(sp) =

1

(p − 1)!
1m a melon.

Then, for n ≥ 1,

mn(sp) = 1n even Fuss-Catalanp(n/2) and κn(sp) = 1n=2.

Convergence of Wigner tensors (Gurau 20’, B. 24’)

Let µp the measure associated to sp, then µWN → µp.
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II. Free CLT

a ∈ E2p is standard if it satisfy

(i) bσ2p(a) = 0 for all σ (a is centered).

(ii) fσ2p(a) =
1

(2p−1)! for all σ.

Free CLT for tensors

Let p even, (ai )i≥1 ∈ Ep be a collection of standard free elements.
Assume that ∀m ∈ M0, ∃C (m) s.t. ∀i : |m(ai )| ≤ C (m). Then,

1√
n

n∑
i=1

ai

converges toward sp.
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III. Asymptotic freenes
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III. Asymptotic freeness

(AN
c )c∈C finite collection of disjoint subsets in EN and

AN = ⊔Ac = {aNi : i ∈ I}.

Asymptotic freeness

(AN)N≥1 is asymptotically free if ∀m ∈ M0(I) satisfying
conditions in the definition of freeness,

lim
N→∞

m(AN) = 0.

If AN = {random variables}, we can speak of asymptotic freeness
in probability or in expectation
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III. Assumptions

AN
0 a finite and deterministic collection of tensors.

(A1)

∀m ∈ M0, ∀(TN
v )v∈V ∈ (AN

0 )
V , ∃C (m) s.t. ∀N ≥ 1∣∣∣m((TN

v )v∈V )
∣∣∣ ≤ C (m),

(A2)

∀m hyper-map, ∀(TN
v )v∈V ∈ (AN

0 )
V , ∃C (m) s.t. ∀N ≥ 1∣∣∣m((TN

v )v∈V )
∣∣∣ ≤ C (m),
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III. Wigner tensors case

Theorem 1 - Gaussian case

If (A1) holds, AN
0 and {WN} are asymptotically free in probability.

Theorem 2

If (A2) holds, AN
0 and {WN} are asymptotically free in probability.

Corollary 1

(WN
1 , . . . ,WN

n ) independent Wigner tensors of possibly different
orders. They are asymptotically free in probability.
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III. Haar orthogonal case

UN Haar distributed on O(N).

Theorem 3

If (A1) holds, AN
0 and {UN ,U

∗
N} are asymptotically free in

probability.

A · U# := {B : ∃p,∃A ∈ A ∩ EN
p ,B = A · Up}.

Theorem 4

AN
1 and AN

2 two finite families of tensors satisfying (A1).

The families AN
1 and AN

2 ·U#
N are asymptotically free in probability.
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III. Operations on maps

A1
A2

A3

s

m ∈ M3(A)

A1
A2

A3

s s

m+s ∈ M0(A)

A1

A2

A3

m\v ∈ M0(A)

A1

A2

A3

(m.σ)\v , σ = (1, 2)(3)
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III. Schwinger-Dyson equations - Gaussian case

Proposition 1 - Schwinger-Dyson equations

∀m ∈ Mp(I) connected,

EN [m
+s] =

1

(p − 1)!

∑
v ,σ

EN [(m.σ)\v ] + O(
1

N
),

where the sum is over all v ∈ V (m) s.t. wv = s, all permutations
in Sp s.t. (m.σ)\v has p connected components (this sum might
be empty).
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III. Schwinger-Dyson equations - Sketch of proof

By Gaussian integration by parts,

A1 A2

A3

s sE [ 1
N ] ≃ 1

N
A1 A2 A3

≃ Np

E(s2)

= 1
Np−1
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III. Variance

Proposition 2

∀m ∈ Mp(I) connected,

EN [|m− ENm|2] = O(
1

N
).

Moreover, ∀m ∈ M0(I), with connected components (m1, . . . ,mγ)
we have

EN [m] =

γ∏
i=1

EN [mi ] + O(
1

N
).
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III. Proof of asymptotic freeness

Proof of Theorem 1 :

• Prop. 2 + Markov inequality ⇒ asymptotic freeness in
expectation is sufficient.

• Fix m and m̂ satisfying (P1)-(P2) with a centered component.
Prop. 2 ⇒ we may assume m connected.

• Recurrence on t := #{v ∈ V (m) : wv = s}.
⋆ t = 0 ⇒ m = m̂ monochromatic ⇒ m(AN) = 0 by (i).

⋆ t = 1 ⇒ m = m̃+s and Prop. 1 ⇒ m(AN) = O( 1
N ) as the

sum is empty.

⋆ t ≥ 2. ”Delete” 2 vertices of type s by applying Prop. 1 to m̃
where m = m̃+s and you get a sum on maps m̃\v with t − 2
vertices of type s.
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III. Non-Gaussian case

Combinatorial hyper-map : m = (π, α) ∈ Sm where α has cycles of
length at least two which are the hyper-edges E (m).

Proof by comparison,∣∣EN [m]− Egauss
N [m]

∣∣ = o(1).
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IV. Free convolution and openings
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Moment-cumulant formula

Define

MT (z) :=
∑
n≥0

mn(T )zn and CT (z) :=
∑
n≥0

κn(T )zn.

We can derive a relation between M and C from the computation

mn(T ) =
n∑

s=1

κs(T )
∑

i1,...,isp/2∈[[n−s]]

s+i1+...+isp/2=n

mi1(T ) . . .misp/2(T ).

Moment-cumulant formula

MT (z) = CT (zMT (z)
p/2)
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Free convolution

Example : stable law

If T1 ∼ 1√
2
sp and T2 ∼ 1√

2
sp are freely independent,

then T1 + T2 ∼ sp.

Proof : MT1+T2(z) = CT1(zMT1+T2(z)
p/2) + CT1(zMT1+T2(z)

p/2)− 1

= 1 + z2MT1+T2(z)
p

→ Possible to define R-transform, subordination functions, etc.
(w.i.p.)
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Variants and perspectives

We may consider extra symmetries, for example tensors with
inputs and outputs as in recent works about local invariance.

To consider tensors with legs of various dimensions, we may
decorate the edges of a map and only consider switches
between legs of the same color.

Concentration inequalities for m(T ) ?

Connections to z-eigenvalues / eigenvectors (T .vp−1 = λv) ?

Multiplicative convolution ?

Free entropy ?
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Conclusion

Thanks for listening !
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