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Quaternions I

Let H denote the algebra of quaternions. An element q ∈ H is of the form

q = q0 + q1i + q2j + q3ij qℓ ∈ R,

where ij = −ji = k , i2 = j2 = k2 = −1. They generalize the complex
numbers.

Sum: Similar as in the complex case (4-dim. real vector space).

Product: Use the associative law.

Product is non-commutative: In general, pq ̸= qp, for p, q ∈ H.

Conjugation: q = q0 − q1i − q2j − q3k .

Existence of inverses: For every q ∈ H, q ̸= 0, there exists a unique
q−1 ∈ H with q−1q = qq−1 = 1.

Modulus: |q| =
√
q20 + q21 + q22 + q23 .
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Quaternions II

Similarly as for complex numbers, we can distinguish between the real and
imaginary (vectorial) parts of a quaternion. For

q = q0 + q1i + q2j + q3k ∈ H,

we define
Re q = q0, Im q = q1i + q2j + q3k .

Remark

Quaternion multiplication may be used to represent rotations in R3. More
precisely, if q ∈ H and s ∈ H\{0}, then s−1qs has a rotated imaginary
part with respect to q.
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Quaternions II

Note that if λ = λ0 + iλ1 + jλ2 + kλ3 = λ0 + Im(λ) ̸∈ R, we can set

I = Im(λ)/|Im(λ)|, and λv = |Im(λ)|

so that λ = λ0 + Iλv .

Set S = {I = Im(q) : |Im(q)| = 1}, then I ∈ S if and only if I 2 = −1.

Then [λ] = {λ0 + Jλv , J ∈ S} = {λ′ = s−1λs, s ̸= 0}.
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Quaternionic matrices (linear maps)

We now consider finite-dimensional vector spaces over H (denoted Hn),
and (right-) linear maps between these.
Let A ∈ Mn(H) and a (right) eigenvalue λ ∈ H of A, with eigenvector
x ∈ Hn, x ̸= 0, i.e.,

Ax = xλ.

For any nonzero quaternion s, λ′ = s−1λs is an eigenvalue of A

A(xs) = (Ax)s = xλs = (xs)(s−1λs) = (xs)λ′.
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Quaternionic matrices (linear maps)

Remark

Although being different, λ and λ′ satisfy the relations Re λ = Re λ′ and
|λ| = |λ′|. This allows to define equivalence classes [λ] of eigenvalues.

Note

The operator A− Iλ is not right linear: A(xs)− (xs)λ ̸= (Ax − xλ)s

A(xs) = (Ax)s = xλs = (xs)(s−1λs) = (xs)λ′.

Eigenspaces are ill-defined.
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Problems with quaternionic matrices

How can we define the trace of A and expect it to be equal to the sum
of all eigenvalues of A? (in general, there are uncountably many!)

What about its determinant and relate it to the eigenvalues?

Can we construct a characteristic polynomial?

How to deal with the problem of eigenspaces which seem to be
ill-defined?
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Let us set C = C(i). Any quaternion q may be written as q = z1 + z2j ,
where z1, z2 ∈ C. For A ∈ Mn(H), write A = A1 + A2j , with
A1,A2 ∈ Mn(C). The companion matrix of A is defined as the matrix

χA =

(
A1 A2

−A2 A1

)
.

This matrix captures the noncommutative nature of A (Lee, ’49). It also
“solves” some of the problems of working directly with quaternion
matrices.

Theorem

Let A ∈ Mn(H). Then λ ∈ C is an eigenvalue of A if and only if both λ
and λ are eigenvalues of χA.
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Companion matrix and eigenvalues

To each eigenvalue class [λ] of A correspond two eigenvalues of χA.

Definition

For a matrix A ∈ Mn(H), we define the standard eigenvalues of A as the
purely complex eigenvalues of A with positive imaginary part.

By the previous theorem, λ is a standard eigenvalue of A if and only if λ
and λ are eigenvalues of χA.

Remark

We can associate invariant quantities to A ∈ Mn(H) based on these of χA.
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Invariants of quaternionic matrices

Let us define invariants associated to A = (akℓ)
n
k,ℓ=1 ∈ Mn(H) in terms of

χA =

(
A1 A2

−A2 A1

)
.

Trace: TH,1(A) := TrχA = 2Re

( n∑
k=1

akk

)
. If λ1, . . . , λn are the

standard eigenvalues of A, then

TH,1(A) = 2Re

( n∑
k=1

λk

)
=

n∑
k=1

(λk + λk).

Determinant:

detH(A) := detχA =
n∏

k=1

|λk |2 =
n∏

k=1

λkλk .
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The (quaternionic) characteristic polynomial

We can also define the “characteristic polynomial” of A as

detH(I − zA) := det(I − zχA) =
n∏

k=1

(1− zλk)(1− zλk).

It is known that

det(I − zχA) =
2n∑
k=0

(−1)kzk Tr
(∧kχA

)
,

where

Tr
(∧kχA

)
=

1

k!

∣∣∣∣∣∣∣∣∣∣∣

TrχA k − 1 0 · · · 0
TrχA2 TrχA k − 2 · · · 0

...
...

. . .
. . .

...
TrχAk−1 TrχAk−2 · · · TrχA 1
TrχAk TrχAk−1 · · · TrχA2 TrχA

∣∣∣∣∣∣∣∣∣∣∣
.
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A remark on the second-order trace

The previously defined first-order trace satisfies

TH,1(A) = 2Re

( n∑
k=1

λk

)
,

but still misses some information regarding the eigenvalues of A.
Such an information is found in the second-order trace

TH,2(A) =
1

2

∣∣∣∣ TH,1(A) 1
TH,1(A

2) TH,1(A)

∣∣∣∣
=

n∑
k=1

|λk |2 + 4
n−1∑
k=1

Re(λk)

( n∑
ℓ=k+1

Re(λℓ)

)
.
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A remark on the second-order trace

Proposition

Let A =
(
aℓm

)n
ℓ,m=1

∈ Mn(H). Then

TH,2(A) =
n∑

ℓ=1

|aℓℓ|2+4
n−1∑
ℓ=1

n∑
m=ℓ+1

Re(aℓℓ) Re(amm)−2
n−1∑
ℓ=1

n∑
m=ℓ+1

Re(amℓaℓm).

The quaternionic Fredholm determinant P̃χA
(z) = detH(I − zA) satisfies

the identity

detH(I − zA) =
n∏

k=1

(
1− 2Re(λk)z + |λk |2z2

)
.
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A remark on the second-order trace

Proposition

Let A =
(
aℓm

)n
ℓ,m=1

∈ Mn(H). Then

TH,2(A) =
n∑

ℓ=1

|aℓℓ|2+4
n−1∑
ℓ=1

n∑
m=ℓ+1

Re(aℓℓ) Re(amm)−2
n−1∑
ℓ=1

n∑
m=ℓ+1

Re(amℓaℓm).
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Example

Consider the matrix

A =

(
3 + i 0
0 ij

)
.

The standard eigenvalues of A are 3 + i and i , the characteristic
polynomial is

P̃χA
(z) = det(I − zχA) = 1− 6z + 11z2 − 6z3 + 10z4.

Observe that the linear term has coefficient −2Re(3 + i + ij) = −6 and
TH,1(A) = 6, whilst for the quadratic term the coefficient
is

TH,2(A) = |3 + i |2 + |ij |2 + 4Re(3 + i) Re(ij)− 2Re((3 + i)(ij)) = 11.
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The fact that eigenvalues are equivalence classes of elements, explains
the need of more information to be encoded in the notion of trace.

For matrices one may refer to the companion matrix but what to do
in the case of linear operators?

For quaternionic linear operators the appropriate notion of spectrum
is the S-spectrum (F. Colombo and I.S., 2006).
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Definition of the S-spectrum

Let A ∈ B(V ). We define the S-spectrum σS(A) of A as:

σS(A) = {λ ∈ H : A2 − 2Re(λ)A+ |λ|2I is not invertible in B(V )}.

and the S-resolvent set

ρS(A) = H \ σS(A).
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Properties of the S-spectrum

The S-spectrum is axially symmetric: if λ0 = x0 + jy0 ∈ σS(A), then
x0 + Iy0 ∈ σS(A), for all I ∈ S, i.e. [λ0] ∈ σS(A)

The point S-spectrum of A defined as

{λ ∈ H : ker(A2 − 2Re(λ)A+ |λ|2I) ̸= {0}}.

coincides with the set of right eigenvalues.

Let A ∈ B(V ). Then the S-spectrum σS(A) is a compact nonempty
set.
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The second order operator

Qλ(A) := (A2 − 2Re(λ)A+ |λ|2I )−1, λ ∈ ρS(A),

is called the pseudo S-resolvent operator.

It is a quaternionic right linear operator and it is the linear operator
associated with the eigenvalue problem Av = vλ (which is not linear:
A− Iλ is not a quaternionic right linear operator), i.e. v ̸= 0 is such that

(A2 − 2Re(λ)A+ |λ|2I )v = 0

and it is eigenvector related with [λ]
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Towards the infinite-dimensional (Hilbert) case

We can express a linear map A in a finite-dimensional space with respect
to an arbitrary orthonormal basis {xk}nk=1 as

A =


⟨x1, x ′1⟩ ⟨x1, x ′2⟩ · · · ⟨x1, x ′n⟩
⟨x2, x ′1⟩ ⟨x2, x ′2⟩ · · · ⟨x2, x ′n⟩

...
...

. . .
...

⟨xn, x ′1⟩ ⟨xn, x ′2⟩ · · · ⟨xn, x ′n⟩

 ,

with x ′k = A∗xk (here A∗ = (A)T is the adjoint matrix of A).

We aim to study operators in Hilbert spaces represented by (infinite)
matrices of a similar form.
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Towards the infinite-dimensional (Hilbert) case

For finite rank T operators we proved: TH,1(T ) = 2Re
(∑n

k=1⟨xk , x ′k⟩
)

for k ≥ 2,

TH,1(T
k) = 2

n∑
m1=1

· · ·
n∑

mk=1

Re(⟨x ′m2
, xm1⟩⟨x ′m3

, xm2⟩⟨x ′m4
, xm3⟩ · · ·

⟨x ′mk
, xmk−1

⟩⟨x ′m1
, xmk

⟩).

In particular, for k ≥ 1, TH,1(T
k) does not depend on the choice of the

vectors xm, x
′
m (since they can be written in terms of TH,1(T

k),
k = 1, . . . , 2n).
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Towards the infinite-dimensional (Hilbert) case

TH,1(T ) = 2Re

( n∑
k=1

λk

)
,

TH,2(T ) =
n∑

k=1

|λk |2 + 4
n−1∑
k=1

n∑
m=k+1

Re(λk) Re(λm)

and

detH(I − zT ) =
2n∑
k=0

(−1)kTH,k(T )zk =
n∏

k=1

(
1− 2Re(λk)z + |λk |2z2

)
.
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Trace-class operators

In a Hilbert space H, a linear operator T : H → H of the form

T =


⟨x1, x ′1⟩ ⟨x1, x ′2⟩ · · · ⟨x1, x ′n⟩ · · ·
⟨x2, x ′1⟩ ⟨x2, x ′2⟩ · · · ⟨x2, x ′n⟩ · · ·

...
...

. . .
... · · ·

⟨xn, x ′1⟩ ⟨xn, x ′2⟩ · · · ⟨xn, x ′n⟩ · · ·
...

...
...

...
. . .


is of trace-class if

∑∞
k=1 |⟨xk , x ′k⟩| < ∞ (here {xk} is an orthonormal basis

of H). This allows to define its trace. In the classical (complex) case,

TrT :=
∞∑
k=1

⟨xk , x ′k⟩.
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Grothendieck-Lidskii formula (classical case)

The Fredholm determinant of T is defined as

det(I − zT ) =
∞∑
k=0

(−1)kzk Tr
(∧kT

)
.

Recall:

Tr
(∧kT

)
=

1

k!

∣∣∣∣∣∣∣∣∣∣∣

TrT k − 1 0 · · · 0
TrT 2 TrT k − 2 · · · 0

...
...

. . .
. . .

...
TrT k−1 TrT k−2 · · · TrT 1
TrT k TrT k−1 · · · TrT 2 TrT

∣∣∣∣∣∣∣∣∣∣∣
.
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Question

Can we relate the trace and Fredholm determinant of T with its
eigenvalues?

Theorem (Grothendieck-Lidskii formula)

Let T be a trace-class operator (on a complex Hilbert space H), and let
{λk} be the sequence of eigenvalues of T . Then, the Fredholm
determinant det(I − zT ) is an entire function of order 1 and genus 0, and,
moreover,

TrT =
∞∑
k=1

λk ,

det(I − zT ) =
∞∏
k=1

(1− zλk).
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Invariants of operators in quaternionic Hilbert spaces

Let T be a linear operator acting on a quaternionic Hilbert space H.

T =


⟨x1, x ′1⟩ ⟨x1, x ′2⟩ · · · ⟨x1, x ′n⟩ · · ·
⟨x2, x ′1⟩ ⟨x2, x ′2⟩ · · · ⟨x2, x ′n⟩ · · ·

...
...

. . .
... · · ·

⟨xn, x ′1⟩ ⟨xn, x ′2⟩ · · · ⟨xn, x ′n⟩ · · ·
...

...
...

...
. . .

 .

For a quaternionic matrix A ∈ Mn(H), we have

TH,1(A) = 2Re

( n∑
k=1

⟨xk , x ′k⟩
)
,

detH(I − zA) =
2n∑
k=0

(−1)kzkTH,k(A).

The definitions do not depend on the choice of the basis {xk}
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Quaternionic Grothendieck-Lidskii formula

Theorem (Cerejeiras, Colombo, Debernardi Pinos, Kähler, I. S.)

Let T be a trace-class operator on a quaternionic Hilbert space H, and let
{λk} be the sequence of standard eigenvalues of T . Then, the
quaternionic Fredholm determinant detH(I − zT ) is an entire function of
order 1 and genus 0, and, moreover,

TH,1(T ) = 2Re

( ∞∑
k=1

λk

)

TH,2(T ) =
∞∑
k=1

|λk |2 + 4
∞∑
k=1

∞∑
m=k+1

Re(λk) Re(λm)

detH(I − zT ) =
∞∏
k=1

(1− zλk)(1− zλk) =
∞∏
k=1

(1− 2Re(λk)z + |λk |2z2).
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Nuclear operators in quaternionic Banach spaces

Let X be a quaternionic Banach space and 0 < r ≤ 1. A linear operator
T : X → X is said to be r -nuclear if it admits a representation

Tx =
∞∑
k=1

xk · x ′k(x), xk ∈ X , x ′k ∈ X ′,

and

∥T∥r := inf

( ∞∑
k=1

∥xk∥rX∥x ′k∥rX ′

) 1
r

< ∞.

If r = 1 we say that T is nuclear.

Remark

If X is a Hilbert space, then nuclear operators are precisely trace-class
operators.
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Classical case: nuclear operators and well-definiteness of
the trace

Question

For nuclear operators, is it true that the quantity

∞∑
k=1

⟨x ′k , xk⟩

is well defined? (independently of the “basis” {xk}, {x ′k}).

Answer: it depends.

True if X possesses the approximation property.

False in general.

Grothendieck showed that the answer is always positive for 2/3-nuclear
operators
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Theorem (Quaternionic Grothendieck-Lidskii formula, 2024)

Let X be a quaternionic Banach space having the approximation property,
T ∈ L(X ) be a 2

3 -nuclear operator, and let {λk(T )} be the sequence of
standard eigenvalues of T . Then:

TH,1(T ) = 2Re

( ∞∑
k=1

λk(T )

)
,

TH,2(T ) =
∞∑
k=1

|λk(T )|2 + 4
∞∑
k=1

∞∑
m=k+1

Re(λk(T )) Re(λm(T )),

and

detH(I + T ) =
∞∏
k=1

(1 + 2Re(λk(T )) + |λk(T )|2) =
∞∑
k=0

TH,k(T ).

Note: Independence of xn, x
′
n.
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Trace and tensor products

More generally, Grothendieck considered the general context of locally
convex spaces E , and their tensor products, with operators represented as

T ∼
∞∑
k=1

µk(xk ⊗ x ′k), µk ∈ R, xk ∈ E , x ′k ∈ E ′.

Depending on the topological properties of E , and assumptions on T, the
trace may be properly defined.
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A few words on the trace functional

For a (real) vector space E and its dual E ′, the tensor product E ⊗ E ′ is
defined as the free Abelian group with generators x ⊗ x ′, x ∈ E , x ′ ∈ E ′,
modulo the relations

1 (x + y)⊗ x ′ = x ⊗ x ′ + y ⊗ x ′,

2 x ⊗ (x ′ + y ′) = x ⊗ x ′ + x ⊗ y ′,

3 a(x ⊗ x ′) = (ax)⊗ x ′ = x ⊗ (ax ′) = (x ⊗ x ′)a, a ∈ R.
Linear operators may be described in terms of tensor products as follows:
to any tensor x ⊗ x ′, we associate the (rank 1) operator

y 7→ x⟨x ′, y⟩,

where ⟨·, ·⟩ is the canonical bilinear pairing on E × E ′.
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Tensor products of quaternionic spaces

Given a right H-vector space E , with dual (left) H-vector space E ′ (both
R-linear), E ⊗ E ′ is defined similarly as before, with the relations

1 (x + y)⊗ x ′ = x ⊗ x ′ + y ⊗ x ′,

2 x ⊗ (x ′ + y ′) = x ⊗ x ′ + x ⊗ y ′,

3 (xq)⊗ x ′ = x ⊗ (qx ′), q ∈ H (balance property).

Remarks
1 E ⊗ E ′ can be given a left (or right) H-linear structure via the

relations q(x ⊗ x ′) = (xq)⊗ x ′.

2 In order for x ⊗ x ′ to properly represent a right H-linear operator, we
can only have R-linear structure!

3 We will regard E ⊗ E ′ as a R-linear space.
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2 In order for x ⊗ x ′ to properly represent a right H-linear operator, we
can only have R-linear structure!

3 We will regard E ⊗ E ′ as a R-linear space.

A map Φ : E × E ′ → M is said to be balanced if

Φ(xq, x ′) = Φ(x , qx ′).
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2 In order for x ⊗ x ′ to properly represent a right H-linear operator, we
can only have R-linear structure!

3 We will regard E ⊗ E ′ as a R-linear space.

For instance, the canonical map (x , x ′) 7→ x ⊗ x ′ is balanced.
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The trace functional: from real to quaternionic

If we wish to define a quaternionic trace for operators in E ⊗ E ′, it should
respect the linear structure of such a space. Thus, we have to consider a
trace that takes values on R.
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The quaternionic trace as the canonical form

If we consider Φ(x , x ′) = Re(⟨x ′, x⟩), we obtain an additive balanced form
on E × E ′ (thus, it can be extended to E ⊗ E ′), which is a candidate for a
canonical form on E ⊗ E ′:

Theorem

Any balanced R-bilinear form Φ : E × E ′ → R is the real part of a left and
right H-linear form Ψ : E ′ × E → H.
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Proof

Theorem

Any additive balanced R-bilinear form Φ : E × E ′ → R is the real part of a
and right/left H-linear form Ψ : E ′ × E → H.

Given Φ, define

Ψ(x , x ′) = Φ(x , x ′)− Φ(xi , x ′)i − Φ(xj , x ′)j − Φ(xij , x ′)ij .

It is clear that Φ = ReΨ, and that Ψ is additive. Then one may directly
check the linearity properties in the first and second entries.
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From Banach spaces to locally convex spaces

In order to derive a trace formula in locally convex spaces, we first have to
introduce the relevant operators.

Remark

In Banach spaces X , we defined r -nuclear operators

Tx =
∞∑
k=1

xk · x ′k(x), xk ∈ X , x ′k ∈ X ′,

by the condition (which defines a semi-norm on the linear space of such
operators)

∥T∥r := inf

( ∞∑
k=1

∥xk∥rX∥x ′k∥rX ′

) 1
r

< ∞.

We now lack norms!
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From Banach spaces to locally convex spaces

Let E be a locally convex right linear space on H. A right-linear operator
T : E → E is called a Fredholm operator if it is of the form

Tx =
∞∑
k=1

µkxk⟨x ′k , x⟩, x ∈ E , (1)

where {µk} ∈ ℓ1 is a real sequence, and {xk} (resp. {x ′k}) is contained in
a suitable absolutely convex set B ⊂ E (resp. B ′ ⊂ E ′).
If, in addition, {x ′k} is equicontinuous, then T is called nuclear operator
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From Banach spaces to locally convex spaces

We denote by E⊗E ′ the subspace of E⊗E ′ consisting of all elements of
the form

u =
∞∑
k=1

µkxk ⊗ x ′k , (2)

with {µk}, {xk}, and {x ′k} as before. We say that u ∈ E⊗E ′ is a
Fredholm kernel on E .
Let 0 < p ≤ 1. We say that u ∈ E⊗E ′ is a p-summable Fredholm kernel
on E if u is a Fredholm kernel on E , with {µk} ∈ ℓp.
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From Banach spaces to locally convex spaces

Let us denote by L(E ) the R-linear space of all weakly continuous
right-linear operators in E endowed with the weak operator topology, given
by the semi-norms A → |⟨x ′,Ax⟩|, with A ∈ L(E ), x ∈ E , and x ′ ∈ E ′.
Let us denote by Γ the R-linear mapping E ⊗ E ′ → L(E ), under which the
tensor

u =
n∑

k=1

µkxk ⊗ x ′k

is mapped into the finite-rank operator

Γ(u) : x 7→
n∑

k=1

µkxk⟨x ′k , x⟩,

Irene Sabadini, joint work with P. Cerejeiras, F. Colombo, A. Debernardi Pinos, U. Kähler ( )Quaternionic linear operators, S-spectrum and Grothendieck-Lidskii formula
CalTech Probabilistic Operator Algebras Seminar, November 4, 2024
39 / 45



From Banach spaces to locally convex spaces

Let E be a locally convex right linear space on H and let 0 < p ≤ 1 and
let u ∈ E⊗E ′ be a p-summable Fredholm kernel on E . The image Γ(u) of
such kernel is called p-summable Fredholm operator. If the sequence {x ′k}
defining u is equicontinuous, Γ(u) is called a p-nuclear operator.
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The problem of well-defined traces

Question

How do we understand the trace of the operator T = Γ(u)?

Simple answer: set TH,1(Γ(u)) := TH,1(u). Given u ∈ E⊗rE
′, one may

define the (quaternionic) trace of u as

TH,1(u) =
∞∑
k=1

µk⟨x ′k , xk⟩.

Problem: Γ need not be bijective. As in the Banach space case, this is
related to approximation properties of E . This is called the uniqueness
problem.
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The uniqueness problem and 2/3-nuclear operators

For 2/3-nuclear operators we show that the uniqueness problem has a
positive solution, i.e.,

TH,1(Γ(u)) = TH,1(u)

is well defined (no approximation property on E is required due to the
“good enough” behavior of 2/3-nuclear operators). In fact, we show that

TH,1(u) = 2Re

( ∞∑
k=1

λk(Γ(u))

)
,

where {λk(Γ(u))} are the standard eigenvalues of Γ(u).
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Further comments

We introduce (formally) the Fredholm determinant of u:

detH(I − zu) =
∞∑
k=0

(−1)kTH,k(u)z
k ,

and show that it has the expected properties.

Remark

The trace formula follows from the fact that detH(I − zu) is of order
one and genus zero.

We also show that for 2/3-nuclear operators T = Γ(u), we have
{λk(T )} ∈ ℓ1.
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Thank you for your attention!


