Supports of free convolutions joint work with C.-W. Ho and S.T. Belinschi POAS, September 23, 2024

Hari Bercovici

Connected components

- \bullet $\mu_1, \mu_2 \in \mathscr{P}_{\mathbb{R}}$, $\mu_1 \boxplus \mu_2$ their free convolution, $\mu_1^{\boxplus t}$ t th power $(t > 1)$
- $\bullet\,$ If supp (μ) has finitely many components, $\mu^{\boxplus t}$ may have more components for t small. The number decreases along with $1/t$ and reduces to 1 eventually (Huang; earlier related results by Biane and V-B)
- If μ_1, μ_2 have (bounded) connected supports and Jacobi type densities, then $\mu_1 \boxplus \mu_2$ has connected support, good endpoint behavior (Bao, Erdös, Schnelli; multiplicative \mathbb{R}_+ analog by Ji)
- If μ_i has n_i (bounded) connected components in supp, Jacobi densities on each component, then $\mu_1 \boxplus \mu_2$ has $< 2n_1n_2$ components, good endpoint behavior, compatible with observed RM models. (Moreillon-Schnelli; lower estimates sometimes)

$$
(\mu_1 * \mu_2 \text{ has at most } n_1 n_2 \text{ components})
$$

Is regularity necessary? bounded support?

• No.

Theorem

If μ_i has n_i (bounded) connected components, then $\mu_1 \boxplus \mu_2$ has $< 2n_1n_2$ components in supp. When $n_1 = n_2 = 1$, components need not be bounded.

- Bounded version derived from M-S via simple spectral theory.
- Unbounded version (connected spectrum) seems to require a direct argument. The delicate combinatorics of M-S may perhaps be reproducible when $n_1n_2 > 1$ in order to count the bounded components. Optimal uper bound is probably smaller.

Spectral argument

- $\mathscr A$ Banach algebra, $x, y \in \mathscr A$ with $||x y|| < \varepsilon_x$, then the spectrum of y has at least as many components as the spectrum of y. (Folklore? Maybe, but see Newburgh-1951.)
- $({\mathscr A},\tau)$ tracial W^* -probability space, $x_1,x_2\in{\mathscr A}$ free, selfadjoint, with distribution μ_1, μ_2 , so $\mu_{x_1+x_2} = \mu_1 \boxplus \mu_2$
- One can find, perhaps in a larger algebra, y_1, y_2 free, selfadjoint, $\|y_j - x_j\| < \pmb{\varepsilon}_{\varkappa_1+\varkappa_2}/2$, so y_j satisfy the hypotheses of M-S (same n_1, n_2)
- Thus supp $(v_1 \boxplus v_2)$ has $< 2n_1n_2$ components.
- supp $(v_1 \boxplus v_2) = \sigma(v_1 + v_2)$ has at least as many components as $\sigma(x_1+x_2)$, so $\sigma(x_1+x_2) = \text{supp}(\mu_1 \boxplus \mu_2)$ also has $\lt 2n_1n_2$ components.

Preliminaries

Lemma

(Lehner) X a topological space, $u_1, u_2 : X \to \mathscr{A}$ norm-continuous functions, for every $x \in X$, $u_1(x)$ and $u_2(x)$ are $*$ -free, $\tau(u_1(x)) = \tau(u_2(x)) = 0$, and $1 - u_1(x)u_2(x)$ is invertible. Then

$$
Y = \{x \in X : ||u_1(x)||_2 ||u_2(x)||_2 < 1\}
$$

is both open and closed in X. If X is connected, either $Y = X$ or $Y - \alpha$

Preliminaries

Example

 $x = x^*$ affiliated with \mathscr{A} , $G_\mathsf{x}(\lambda) = \tau((\lambda - x)^{-1})$, $F_\mathsf{x}(\lambda) = 1/G(\lambda)$ $(\lambda \in \mathbb{H} = \{z : \Im z > 0\})$ Then

$$
\leq \lim_{\lambda \to \infty} ||F(\lambda)(\lambda - x)^{-1} - 1||_2 = 0.
$$

Fact

Suppose $a_j = b_j^{-1} - 1_{\mathscr{A}}$, $b_1, b_2 \in \widetilde{\mathscr{A}}$ boundedly invertible. Then:

$$
1_{\mathscr{A}} - a_1 a_2 = b_1^{-1} (1_{\mathscr{A}} - b_1 - b_2) b_2^{-1}.
$$

(Haagerup applies this when $\tau(b_1^{-1}) = \tau(b_2^{-1}) = 1$ to prove additivity of R. Also helps verify lemma above.)

Preliminaries

- $\bullet \;\; \phi: \mathbb{H} \rightarrow \mathbb{H}$ analytic, $\pmb{\varphi}^n = \pmb{\varphi} \circ \cdots \circ \pmb{\varphi}$ converges to a constant n times $\lambda_{\varphi} \in \mathbb{H} \cup \mathbb{R} \cup \{\infty\}$ unless φ is a hyperbolic rotation. (Denjoy-Wolff, 1920s)
- λ_{φ} depends continuously on φ . (Heins, 1951)
- If $\lambda_{\varphi} \in \mathbb{H}$, then $|\varphi'(\lambda_{\varphi})| < 1$
- If $\lambda_{\varphi} \in \mathbb{R}$, then $\varphi'(\lambda_{\varphi}) \leq 1$. (Carathéodory-Julia derivatives exist at such points.) Similar statement for $\lambda_{\varphi} = \infty$ via conformal map. φ may have many "fixed" points on the real line, but only one of them can satisfy this derivative condition.

Subordination

- x_1, x_2 selfadjoint affiliated with \mathscr{A} , $\mu_j = \mu_{x_j}$, $\mu = \mu_1 \boxplus \mu_2$, $G_\mu = G_\mathsf{x},\ F_\mu = F_\mathsf{x},\ h_j(\lambda) = F_j(\lambda) - \lambda$. Suppose x_j is not a scalar multiple of 1.
- $\bullet \ \ \varphi_\alpha^{(1)}(\lambda) = \alpha + h_2(\alpha+ h_1(\lambda)), \varphi_\alpha^{(2)}(\lambda) = \alpha + h_1(\alpha+ h_2(\lambda))$
- For $\alpha \in \mathbb{H} \cup \mathbb{R}$ and $j = 1, 2$, denote by $\omega_i(\alpha)$ the Denjoy-Wolff point of $\varphi ^{\left(j\right) }_{\alpha}$ Then

Theorem

- *1.* ω^j is continuous on H∪R, analytic on H
- 2. $F_{\mu}(z) = F_{\mu_1}(\omega_1(z)) = F_{\mu_2}(\omega_2(z)) = \omega_1(z) + \omega_2(z) z$ for every $z \in \mathbb{H}$.

3.
$$
\lim_{y \uparrow \infty} \omega_j(iy)/iy = 1 \text{ for } j = 1, 2, \text{ and}
$$

More preliminaries

Fact

(Lehner) $x \in \widetilde{A}$ selfadjoint with distribution v_n , $t \in \mathbb{R} \setminus supp(v)$, and $G_V(t) \neq 0$. Set $b = G_V(t)(t1_{\mathscr{A}} - x)$, $a = b^{-1} - 1_{\mathscr{A}}$. Then $||a||_2^2 = F'_v(t)-1.$

Spectrum of a sum

- $x_1, x_2 \in \widetilde{\mathscr{A}}$ selfadioint, free, $x = x_1 + x_2, \mu, \mu_1, \mu_2$ distributions of x, x_1, x_2
- $J \subset \mathbb{R} \setminus supp(\mu)$ open interval where $G_{\mu} \neq 0$, then $\omega_k(J) \subset \mathbb{R} \setminus \text{supp}(\mu_k)$ (use $G_{\mu}(z) = G_{\mu_k}(\omega_k(z))$ for $z = t + i\varepsilon$, $\varepsilon \downarrow 0$)
- $t \in J, t_k = \omega_k(t)$, then $\varphi_t^{(k)}$ $t_k^{(k)}(t_k)=(F'_{\mu_1}(t_1)-1)(F'_{\mu_2}(t_2)-1)<1$ (use connected set lemma)
- converse: suppose $t_1, t_2 \in \mathbb{R}, F_{\mu_1}(t_1) = F_{\mu_2}(t_2)$, and

$$
(F'_{\mu_1}(t_1)-1)(F'_{\mu_2}(t_2)-1)<1.
$$

Then $t = t_1 + t_2 - \mathcal{F}_{\mu_k}(t_k) \notin \operatorname{supp}(\mu)$ and $t_k = \omega_k(t)$.

Spectrum of a sum

• To understand $\mathbb{R}\setminus \mathrm{supp}(\mu)$ we must look at

$$
\{(t_1, t_2) \in \mathbb{R}^2 : t_k \notin \text{supp}(\mu_k), F_{\mu_1}(t_1) = F_{\mu_2}(t_2) \neq \infty, \\ (F'_{\mu_1}(t_1) - 1)(F'_{\mu_2}(t_2) - 1) < 1\}
$$

- This is a union of smooth curves whose number generally exceeds the number of components of supp (μ) . When $\text{supp}(\mu_k)$ is connected, $k = 1, 2$, there are at most two such curves.
- Say (s, ∞) \cap supp $(\mu_1) = \emptyset$. Then (Nevanlinna)

$$
F_{\mu_1}(z)-z=\alpha+\int_{\tau\leq s}\frac{1+\tau z}{\tau-z}d\rho(\tau),
$$

$$
F''_{\mu_1}(z)=\int_{\tau\leq s}\frac{1+\tau^2}{(\tau-z)^3}d\rho(\tau)<0, \quad z>s,
$$

so $F_{\mu_1}>0$ increases, $F'_{\mu_1}-1$ decreases there. Similar for μ_2 . Only ≤ 1 component in $\mathbb{R}\sup(p(\mu))$ comes from that side, etc.

Spectrum of a sum

• If *J* is a bounded component of $\mathbb{R}\sup (u_1)$, F_{μ_1} may be ∞ at one point in J, may also change sign and convexity. M-S use additional information about ω_k to find a bound on the number of resulting components.

Multiplicative version

- runs along analogous lines
- (Haagerup identity) Suppose that $y_1, y_2 \in \widetilde{A}$, $1 y_1$ and $1 y_2$ are boundedly invertible, and $\beta \in \mathbb{C} \backslash \{0,1\}$. Then

$$
(1-y_1)\left\{1-\left[(1-y_1)^{-1}-\beta\right]\beta^{-1}(\beta-1)^{-1}\left[(1-y_2)^{-1}-\beta\right]\right\}(1-y_2)
$$

= $\beta^{-1}-y_1(\beta-1)^{-1}y_2$

• Under this form it applies in a Banach op. valued prob. space (with β in the "scalar" algebra). Take y_1, y_2 free,

$$
\mathbb{E}[(1-y_1)^{-1}] = \mathbb{E}[(1-y_2)^{-1}] = \beta
$$

to obtain a form of Dykema's "twisted" multiplicativity for S-transforms.

Multiplicative version

• Replace
$$
G, F
$$
 by

$$
\varphi_{x}(\lambda) = \tau(\lambda x (1 - \lambda x)^{-1}), \quad \eta_{x}(\lambda) = \lambda \widetilde{\eta}_{x}(\lambda) = \frac{\varphi_{x}(\lambda)}{1 + \varphi_{x}(\lambda)}
$$

• For x_1, x_2 free, define

$$
\psi_{\alpha}^{(1)}(\lambda) = \alpha \widetilde{\eta}_{x_2}(\alpha \widetilde{\eta}_{x_1}(\lambda)), \ \psi_{\alpha}^{(2)}(\lambda) = \alpha \widetilde{\eta}_{x_1}(\alpha \widetilde{\eta}_{x_2}(\lambda))
$$

and let $\omega_k(\alpha)$ be the Denjoy-Wolff point of $\psi_{\alpha}^{(k)}$ on an appropriate domain. With $x = x_1x_2$, we have

$$
\widetilde{\eta}_x(\lambda)=\widetilde{\eta}_{x_k}(\omega_k(\lambda))=\omega_1(\lambda)\omega_2(\lambda).
$$

Here $\lambda \in \mathbb{H} \cup \mathbb{R}$ when $x_k \geq 0$ and $\lambda \in \overline{\mathbb{D}}$ when x_k unitary.

Multiplicative version

- The Julia-Carathéodory derivative is more complicated (but, curiously, the same formula holds for the positive and unitary cases)
- For the positive case with connected supports, there is again a convexity argument that yields connectivity for the free multiplicative convolution. (No convexity was observed in the unitary case.)
- The existence of subordination functions survives in the Banach algebra-valued case.

Thanks for listening!