Self-normalized sums in free probability theory

Leonie Neufeld Bielefeld University

UC Berkeley POAS August 30, 2024 Self-normalized sums in classical probability theory

Self-normalized sums in free probability theory

Bounded self-normalized sums

Unbounded self-normalized sums

Self-normalized sums in the non-i.d. case

Let $(X_i)_{i\in\mathbb{N}}$ be a sequence of classical random variables. Define

$$S_n := \sum_{i=1}^n X_i, \qquad V_n^2 := \sum_{i=1}^n X_i^2.$$

Then:

$$S_n/V_n =$$
self-normalized sum, $S_n/V_n := 0$ on $\{V_n = 0\}$.

Question: How do self-normalized sums behave in the limit?

From now on: Only consider the i.i.d. case!

SNS in classical probability theory – Intuitive approach

·· I TR 17

o for
$$(X_i)_{i\in\mathbb{N}}$$
 i.i.d. with $\mathbb{E}X_1 = 0$ and $\operatorname{Var}X_1 = 1$:
 $\frac{S_n}{\sqrt{n}} \to \mathcal{N}(0,1)$ in distribution as $n \to \infty$ due to CLT
 $\frac{V_n^2}{n} \to 1$ in probability as $n \to \infty$ due to weak LLN

0

Slutsky's theorem

Let $(X_n)_{n \in \mathbb{N}}$, $(Y_n)_{n \in \mathbb{N}}$, and X be classical random variables and $c \in \mathbb{C}, c \neq 0$. Assume that

$$X_n \to X$$
 in distribution as $n \to \infty$
 $Y_n \to c$ in probability as $n \to \infty$.

Then:

$$\frac{X_n}{Y_n} \to \frac{X}{c} \quad \text{in distribution as } n \to \infty.$$

SNS in classical probability theory – Intuitive approach

• for $(X_i)_{i \in \mathbb{N}}$ i.i.d. with $\mathbb{E}X_1 = 0$ and $\operatorname{Var}X_1 = 1$:

$$\frac{S_n}{\sqrt{n}} \to \mathcal{N}(0,1) \ \text{ in distribution as } n \to \infty \ \text{due to CLT} \\ \frac{V_n^2}{n} \to 1 \ \text{ in probability as } n \to \infty \ \text{due to weak LLN}$$

• by Slutsky's theorem:

$$\frac{S_n}{V_n} = \frac{\frac{S_n}{\sqrt{n}}}{\frac{V_n}{\sqrt{n}}} \to \mathcal{N}(0,1) \text{ in distribution as } n \to \infty$$

• so far: Self-normalization did not come into play!

SNS in classical probability theory - Two results

• Giné, Götze, Mason (1997): for i.i.d. random variables $(X_i)_{i \in \mathbb{N}}$:

 $\frac{S_n}{V_n} \to \mathcal{N}(0,1) \text{ in distribution as } n \to \infty \ \Leftrightarrow \ X_1 \in \mathsf{DAN}, \ \mathbb{E} X_1 = 0,$

where $\mathsf{DAN} = \mathsf{domain}$ of attraction of the normal law

• Bentkus, Götze (1996): if $\mathbb{E}X_1 = 0$, $\operatorname{Var} X_1 = 1$, $\mathbb{E}|X_1|^3 < \infty$:

$$\Delta(\mu_{S_n/V_n}, \mathcal{N}(0, 1)) \lesssim \frac{\mathbb{E}|X_1|^3}{\sqrt{n}},$$

where

$$\Delta(\nu_1, \nu_2) := \sup_{x \in \mathbb{R}} |\nu_1((-\infty, x]) - \nu_2((-\infty, x])|$$

and μ_{S_n/V_n} = distribution of S_n/V_n

• Berry-Esseen theorem: rate for $\frac{S_n}{\sqrt{n}}$ to $\mathcal{N}(0,1)$ given by $\frac{1}{\sqrt{n}}$ too!

Let $(X_i)_{i\in\mathbb{N}}$ be a sequence of self-adjoint non-commutative random variables. Define

$$S_n := \sum_{i=1}^n X_i, \qquad V_n^2 := \sum_{i=1}^n X_i^2.$$

The free analog of a self-normalized sum is given by

$$U_n := V_n^{-1/2} S_n V_n^{-1/2}.$$

We will see later that U_n is well-defined!

Question: How does U_n behave in the limit?

From now on: Only consider the case of free i.d. self-adjoint random variables!

SNS in free probability theory – Intuitive approach

- in classical case: limiting behavior of S_n/V_n determined by behavior of S_n (via CLT) and V_n (via LLN)
- in free case: for $(X_i)_{i\in\mathbb{N}}$ free i.d. self-adjoint with mean 0 and variance 1:
 - analytic distr. of $\frac{S_n}{\sqrt{n}} \Rightarrow$ Wigner semicircle distr. ω as $n \to \infty$ due to free CLT
 - analytic distr. of $\frac{V_n^2}{n} \Rightarrow \delta_1$ as $n \to \infty$ due to free LLN
- problem: How can we combine these two results?
- solution: Replace Slutsky's theorem by machinery of Cauchy transforms!
- realization of solution depends on whether the random variables are bounded or unbounded

Recap: Bounded and unbounded random variables

- bounded random variable X= element in $C^*\text{-probability space }(\mathcal{A},\varphi)$
 - expressions of the form $\varphi(X^k)$ always exist
 - for self-adjoint $X{:}$ analytic distribution μ_X is compactly supported
- unbounded random variable X = unbounded operator affiliated with finite von Neumann algebra \mathcal{A} ; (\mathcal{A}, φ) is tracial W^* -probability space
 - + $\varphi(X)$ only defined as an extension if X positive or $\varphi(|X|) < \infty$
 - expressions of the form $\varphi(X^k)$ may not exist
 - for self-adjoint X: analytic distribution μ_X is not necessarily compactly supported

Theorem (N., 2024)

Given a tracial faithful C^* -probability space (\mathcal{A}, φ) with norm $\|\cdot\|$, let $(X_i)_{i \in \mathbb{N}} \subset \mathcal{A}$ be a sequence of free i.d. self-adjoint random variables with

$$\varphi(X_1) = 0$$
 and $\varphi(X_1^2) = 1$.

For sufficiently large n, we have:

- $U_n = V_n^{-1/2} S_n V_n^{-1/2}$ is well-defined in \mathcal{A} .
- If μ_n denotes the analytic distribution of $U_n,$ then $\mu_n \Rightarrow \omega$ as $n \to \infty$ with

$$\Delta\left(\mu_n,\omega\right) \lesssim \|X_1\|^3 rac{\log n}{\sqrt{n}}.$$

For comparison: rate of convergence for $\frac{S_n}{\sqrt{n}}$ to ω and for classical SNS to $\mathcal{N}(0,1)$ given by $\frac{1}{\sqrt{n}}$

We argue in three steps:

- Show that U_n is well-defined in \mathcal{A} .
- Show that Cauchy transform of U_n is close to Cauchy transform of ω .
- Derive weak convergence $\mu_n \Rightarrow \omega$ and rate of convergence.

From now on: Consider normalized versions of S_n and V_n^2 , i.e.:

$$S_n = \frac{1}{\sqrt{n}} \sum_{i=1}^n X_i, \qquad V_n^2 = \frac{1}{n} \sum_{i=1}^n X_i^2.$$

Goal: $U_n = V_n^{-1/2} S_n V_n^{-1/2}$ is well-defined in \mathcal{A} for large n.

Sufficient: V_n^2 is invertible in \mathcal{A} for large n.

• Voiculescu (1986): For free self-adjoint $a_1, a_2, \ldots, a_k \in \mathcal{A}$ with $\varphi(a_i) = 0$ for all $i = 1, \ldots, k$, we have:

$$||a_1 + \dots + a_k|| \le \max_{i=1,\dots,k} ||a_i|| + 2\left(\sum_{i=1}^k \varphi(a_i^2)\right)^{1/2}$$

• for large *n*:

$$\left\|V_{n}^{2}-1\right\| = \left\|\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}-1\right\| \lesssim \frac{\|X_{1}\|^{2}}{\sqrt{n}}$$

• with Neumann series-type argument: V_n^2 is invertible in ${\cal A}$ for large n

Goal: Cauchy transform G_n of $U_n = V_n^{-1/2} S_n V_n^{-1/2}$ is close to G_ω .

• for $z \in \mathbb{C}^+$ with G_{S_n} = Cauchy transform of S_n :

$$G_n(z) = \varphi((z - U_n)^{-1}) = \varphi(V_n^{1/2}(zV_n - S_n)^{-1}V_n^{1/2})$$

= $\varphi(V_n(zV_n - S_n)^{-1}) \approx G_{S_n}(z)$

• precise estimates for $z \in \mathbb{C}^+$ with $1 \ge \Im z \ge \frac{1}{\sqrt{n}}, |\Re z| \le 8$:

$$egin{aligned} |G_n(z)-G_\omega(z)| &\leq |G_n(z)-G_{S_n}(z)|+|G_{S_n}(z)-G_\omega(z)| \ &\lesssim rac{\|V_n-1\|}{\Im z}+rac{\Delta(\mu_{S_n},\omega)}{\Im z}\lesssim rac{1}{\sqrt{n}}rac{1}{\Im z} \end{aligned}$$

 $\text{reminder:} \ \Delta(\mu_{S_n},\omega):=\sup_{x\in\mathbb{R}}|\mu_{S_n}((-\infty,x])-\omega((-\infty,x])|\lesssim \frac{1}{\sqrt{n}}$

Goal: Derive weak convergence $\mu_n \Rightarrow \omega$ and rate of convergence.

We know: $|G_n(z) - G_\omega(z)| \lesssim \frac{1}{\sqrt{n}} \frac{1}{\Im z}$ for z with $1 \ge \Im z \ge \frac{1}{\sqrt{n}}, |\Re z| \le 8$.

- weak convergence $\mu_n \Rightarrow \omega$ can be derived by some modifications of the inequality above
- for rate of convergence:
 - with superconvergence: $\|U_n\| \le \|S_n\| \|V_n^{-1}\| < 3$ for large n
 - with Bai's ineq. for compactly supported pm's:

$$\Delta(\mu_n,\omega) \lesssim \mathbf{v} + \sup_{x \in [-2,2]} \int_v^1 |G_n(x+iy) - G_\omega(x+iy)| dy$$
$$+ \int_{-3}^3 |G_n(u+i) - G_\omega(u+i)| du \lesssim \frac{\log n}{\sqrt{n}}$$

A refinement of the inequality $||U_n|| \le ||S_n|| ||V_n^{-1}|| < 3$ leads to:

Corollary (N., 2024)

In the setting of the last theorem and for sufficiently large n, we have:

$$\operatorname{supp} \mu_n \subset \left(-2 - \frac{58\|X_1\|^2}{\sqrt{n}}, 2 + \frac{58\|X_1\|^2}{\sqrt{n}}\right)$$

In the setting of the free CLT, the corresponding rate is of order $\frac{1}{\sqrt{n}}$ too!

Unbounded self-normalized sums

From now on: $\mathrm{Aff}(\mathcal{A}) = \mathrm{algebra}$ of operators affiliated with finite von Neumann algebra \mathcal{A}

Theorem (N., 2024)

Given a tracial W^* -probability space (\mathcal{A}, φ) , let $(X_i)_{i \in \mathbb{N}} \subset \operatorname{Aff}(\mathcal{A})$ be a sequence of free i.d. self-adjoint (possibly unbounded) random variables with

$$\varphi(X_1) = 0, \ \varphi(X_1^2) = 1, \ \text{and} \ \varphi(|X_1|^4) < \infty.$$

For sufficiently large n, we have:

- $U_n = V_n^{-1/2} S_n V_n^{-1/2}$ is well-defined in Aff(\mathcal{A}).
- If μ_n denotes the analytic distribution of $U_n,$ then $\mu_n \Rightarrow \omega$ as $n \to \infty$ with

$$\Delta(\mu_n,\omega) \lesssim \frac{\varphi(|X_1|^4)^{5/4}}{n^{1/4}}$$

We argue in three (already familiar) steps:

- Show that U_n is well-defined in Aff(\mathcal{A}).
- Show that Cauchy transform of U_n is close to Cauchy transform of ω .
- Derive weak convergence $\mu_n \Rightarrow \omega$ and rate of convergence.

Realization of steps is different compared to bounded setting!

From now on: Consider normalized versions of S_n and V_n^2 .

Goal: $U_n = V_n^{-1/2} S_n V_n^{-1/2}$ is well-defined in Aff(\mathcal{A}) for large n. Sufficient: V_n^2 is invertible in Aff(\mathcal{A}) for large n.

- with functional calculus: self-adjoint operator $T \in Aff(\mathcal{A})$ is invertible in $Aff(\mathcal{A})$ if $\mu_T(\{0\}) = 0$, where μ_T = analytic distribution of T
- we have to prove:

for large
$$n: 0 = \mu_{V_n^2}(\{0\}) = \left(\mu_{\frac{X_1^2}{n}} \boxplus \cdots \boxplus \mu_{\frac{X_n^2}{n}}\right)(\{0\})$$

• use result due to Bercovici, Voiculescu (1998):

 γ is atom of $\nu_1\boxplus\nu_2$

\Leftrightarrow

 $\exists \text{ atoms } \alpha, \beta \text{ of } \nu_1, \nu_2 : \gamma = \alpha + \beta, \nu_1(\{\alpha\}) + \nu_2(\{\beta\}) > 1$ In this case: $(\nu_1 \boxplus \nu_2)(\{\gamma\}) = \nu_1(\{\alpha\}) + \nu_2(\{\beta\}) - 1$

Unbounded SNS: Proof – Step 2a

Goal: Cauchy transform G_n of $U_n = V_n^{-1/2} S_n V_n^{-1/2}$ is close to G_ω .

• in bounded setting:

$$G_n(z) = \varphi((z - U_n)^{-1}) = \varphi(V_n^{1/2}(zV_n - S_n)^{-1}V_n^{1/2})$$
$$= \varphi(V_n(zV_n - S_n)^{-1}) = \dots$$

- in unbounded setting: $\varphi(T)$ only defined via extensions, $\varphi(ST)=\varphi(TS)$ not necessarily true
- new idea: for all $z \in \mathbb{C}^+$:

$$|G_n(z) - G_{\omega}(z)| \le |G_n(z) - G_{S_n}(z)| + |G_{S_n}(z) - G_{\omega}(z)|,$$

$$|G_n(z) - G_{S_n}(z)| = |\varphi((z - U_n)^{-1}(U_n - S_n)(z - S_n)^{-1})| \le \frac{\varphi(|U_n - S_n|)}{(\Im z)^2}$$

Unbounded SNS: Proof – Step 2b

• we know: $|G_n(z) - G_{S_n}(z)| \le \frac{\varphi(|U_n - S_n|)}{(\Im z)^2}$ for all $z \in \mathbb{C}^+$

•
$$U_n - S_n = V_n^{-1/2} S_n V_n^{-1/2} - S_n = (1 - V_n^{1/2}) U_n + S_n V_n^{-1/2} (1 - V_n^{1/2})$$

• with Hölder's inequality and $||T||_2 := \varphi(|T|^2)^{1/2}$:

$$\varphi(|U_n - S_n|) \le ||1 - V_n^{1/2}||_2 (||U_n||_2 + ||S_n V_n^{-1/2}||_2)$$

- with free LLN: $||1 V_n^{1/2}||_2 \le ||1 V_n^2||_2 \le \frac{\sqrt{\varphi(|X_1|^4)}}{\sqrt{n}}$
- with self-normalizing effect: $|U_n| \leq \sqrt{n}$

in classical setting with Cauchy's inequality:

$$|S_n| = \left|\frac{1}{\sqrt{n}}\sum_{i=1}^n X_i\right| \le \left(\sum_{i=1}^n X_i^2\right)^{1/2} = \sqrt{n}V_n \implies |S_n/V_n| \le \sqrt{n},$$

in free setting with inequality due to Bikchentaev, Sabirova (2012)

Unbounded SNS: Proof – Step 2b

• we know: $|G_n(z) - G_{S_n}(z)| \le \frac{\varphi(|U_n - S_n|)}{(\Im z)^2}$ for all $z \in \mathbb{C}^+$

•
$$U_n - S_n = V_n^{-1/2} S_n V_n^{-1/2} - S_n = (1 - V_n^{1/2}) U_n + S_n V_n^{-1/2} (1 - V_n^{1/2})$$

• with Hölder's inequality and $||T||_2 := \varphi(|T|^2)^{1/2}$:

$$\varphi(|U_n - S_n|) \le ||1 - V_n^{1/2}||_2 (||U_n||_2 + ||S_n V_n^{-1/2}||_2)$$

- with free LLN: $\|1 V_n^{1/2}\|_2 \le \|1 V_n^2\|_2 \lesssim \frac{\sqrt{\varphi(|X_1|^4)}}{\sqrt{n}}$
- with self-normalizing effect: $|U_n| \leq \sqrt{n}$
- again with self-normalizing effect: $\|U_n\|_2 \lesssim 2 + \sqrt{n} \|V_n^2 1\|_2$

Idea: $V_n^2 \approx 1$ "whp" $\Rightarrow U_n \approx S_n \Rightarrow ||U_n||_2 \approx ||S_n||_2 = 1$

Unbounded SNS: Proof – Step 2b

• we know: $|G_n(z) - G_{S_n}(z)| \le \frac{\varphi(|U_n - S_n|)}{(\Im z)^2}$ for all $z \in \mathbb{C}^+$

•
$$U_n - S_n = V_n^{-1/2} S_n V_n^{-1/2} - S_n = (1 - V_n^{1/2}) U_n + S_n V_n^{-1/2} (1 - V_n^{1/2})$$

• with Hölder's inequality and $||T||_2 := \varphi(|T|^2)^{1/2}$:

$$\varphi(|U_n - S_n|) \le ||1 - V_n^{1/2}||_2 (||U_n||_2 + ||S_n V_n^{-1/2}||_2)$$

• with free LLN:
$$\|1 - V_n^{1/2}\|_2 \le \|1 - V_n^2\|_2 \lesssim \frac{\sqrt{\varphi(|X_1|^4)}}{\sqrt{n}}$$

- with self-normalizing effect: $|U_n| \leq \sqrt{n}$
- again with self-normalizing effect: $||U_n||_2 \lesssim 2 + \sqrt{n} ||V_n^2 1||_2$
- with similar arguments: $\|S_n V_n^{-1/2}\|_2 \lesssim \sqrt{2} + \sqrt{n} \|V_n^2 1\|_2$
- finally: $|G_n(z) G_{S_n}(z)| \lesssim \frac{1}{\sqrt{n}} \frac{1}{(\Im z)^2}$ for all $z \in \mathbb{C}^+$
- in particular with free CLT: $\lim_{n\to\infty} G_n(z) = G_\omega(z)$ for all $z \in \mathbb{C}^+$

Goal: Derive weak convergence $\mu_n \Rightarrow \omega$ and rate of convergence.

For $z \in \mathbb{C}^+$: $|G_n(z) - G_{S_n}(z)| \lesssim \frac{1}{\sqrt{n}} \frac{1}{(\Im z)^2}$ and $\lim_{n \to \infty} G_n(z) = G_\omega(z)$

- weak convergence $\mu_n \Rightarrow \omega$ is clear
- rate of convergence follows with modified version of Bai's inequality
- rate is only of order $n^{-1/4}$ for two reasons: bound on the difference of the Cauchy transforms does not depend on $\Re z$ and contains $(\Im z)^{-2}$ as a factor

Theorem (N., 2024)

Given a tracial faithful C^* -probability space (\mathcal{A}, φ) with norm $\|\cdot\|$, let $(X_i)_{i\in\mathbb{N}}\subset\mathcal{A}$ be a sequence of free self-adjoint random variables with

$$\varphi(X_i) = 0, \qquad \varphi(X_i^2) = \sigma_i^2, \qquad i \in \mathbb{N}.$$

Moreover, let

$$B_n^2 := \sum_{i=1}^n \sigma_i^2, \qquad L_{S,3n} := \frac{\sum_{i=1}^n \|X_i\|^3}{B_n^3}, \qquad L_{S,4n} := \frac{\sum_{i=1}^n \|X_i\|^4}{B_n^4}.$$

We have:

- If $L_{S,4n} < 1/16$, then $U_n = V_n^{-1/2} S_n V_n^{-1/2}$ is well-defined in \mathcal{A} .
- If $L_{S,4n} < 1/16$, $L_{S,3n} < 1/2e$, and μ_n denotes the distr. of U_n , then $\Delta(\mu_n, \omega) \lesssim \max \left\{ |\log L_{S,3n}| L_{S,3n}, |\log L_{S,4n}| L_{S,4n}^{1/2} \right\}.$
- If $\lim_{n\to\infty} L_{S,4n} = 0$, then $\mu_n \Rightarrow \omega$ as $n \to \infty$.

Theorem (N., 2024)

Given a tracial W^* -probability space (\mathcal{A}, φ) , let $(X_i)_{i \in \mathbb{N}} \subset Aff(\mathcal{A})$ be a sequence of free self-adjoint (possibly unbounded) random variables with

$$\varphi(X_i) = 0, \qquad \varphi(X_i^2) = \sigma_i^2, \qquad \varphi(|X_i|^4) < \infty, \qquad i \in \mathbb{N}.$$

Moreover, let

$$B_n^2 := \sum_{i=1}^n \sigma_i^2, \qquad L_{4n} := \frac{\sum_{i=1}^n \varphi(|X_i|^4)}{B_n^4}$$

and assume that Lindeberg's condition holds. For large n, we have:

- $U_n = V_n^{-1/2} S_n V_n^{-1/2}$ is well-defined in Aff(\mathcal{A}).
- If μ_n denotes the analytic distribution of U_n , then

$$\Delta(\mu_n,\omega) \lesssim L_{4n}^{1/4} + \sqrt{n} L_{4n}^{3/4} + n L_{4n}^{5/4}.$$

• If $\lim_{n\to\infty}\sqrt{n}L_{4n}=0$, then $\mu_n\Rightarrow\omega$ as $n\to\infty$.

- intuitive approach to self-normalized sums works in the free setting with some modifications
- How can we prove free self-normalized limit theorems under weaker moment assumptions? How can we exploit the self-normalization?

Thank you for your attention!

- [1] Bentkus, Götze. The Berry-Esseen bound for Student's statistic.
- [2] Bikchentaev, Sabirova. Dominated convergence in measure on semifinite von Neumann algebras and arithmetic averages of measurable operators.
- [3] Giné, Götze, Mason. When is the Student t-statistic asymptotically standard normal?
- [4] Götze, Tikhomirov. Rate of convergence to the semi-circular law.
- [5] Neufeld. Self-normalized Sums in Free Probability Theory.
- [6] Voiculescu. Addition of certain noncommuting random variables.
- [7] Yin. Non-commutative rational functions in strongly convergent random variables.