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SNS in classical probability theory – Definition

Let (Xi)iœN be a sequence of classical random variables. Define

Sn :=
nÿ

i=1
Xi, V 2

n :=
nÿ

i=1
X2

i .

Then:

Sn/Vn = self-normalized sum, Sn/Vn := 0 on {Vn = 0}.

Question: How do self-normalized sums behave in the limit?

From now on: Only consider the i.i.d. case!
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SNS in classical probability theory – Intuitive approach

• for (Xi)iœN i.i.d. with EX1 = 0 and VarX1 = 1:
SnÔ

n
æ N (0, 1) in distribution as n æ Œ due to CLT

V 2
n

n
æ 1 in probability as n æ Œ due to weak LLN

Slutsky’s theorem

Let (Xn)nœN, (Yn)nœN, and X be classical random variables and c œ C, c ”= 0.

Assume that

Xn æ X in distribution as n æ Œ,

Yn æ c in probability as n æ Œ.

Then:

Xn

Yn
æ X

c
in distribution as n æ Œ.

• by Slutsky’s theorem:

Sn

Vn
=

SnÔ
n

VnÔ
n

æ N (0, 1) in distribution as n æ Œ

• so far: Self-normalization did not come into play!
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SNS in classical probability theory – Two results

• Giné, Götze, Mason (1997): for i.i.d. random variables (Xi)iœN:

Sn

Vn
æ N (0, 1) in distribution as n æ Œ … X1 œ DAN, EX1 = 0,

where DAN = domain of attraction of the normal law
• Bentkus, Götze (1996): if EX1 = 0, VarX1 = 1, E|X1|3 < Œ:

�(µSn/Vn
, N (0, 1)) . E|X1|3Ô

n
,

where

�(‹1, ‹2) := sup
xœR

|‹1((≠Œ, x]) ≠ ‹2((≠Œ, x])|

and µSn/Vn
= distribution of Sn/Vn

• Berry-Esseen theorem: rate for SnÔ
n

to N (0, 1) given by 1Ô
n

too!
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SNS in free probability theory – Definition

Let (Xi)iœN be a sequence of self-adjoint non-commutative random
variables. Define

Sn :=
nÿ

i=1
Xi, V 2

n :=
nÿ

i=1
X2

i .

The free analog of a self-normalized sum is given by

Un := V ≠1/2
n SnV ≠1/2

n .

We will see later that Un is well-defined!

Question: How does Un behave in the limit?

From now on: Only consider the case of free i.d. self-adjoint random
variables!
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SNS in free probability theory – Intuitive approach

• in classical case: limiting behavior of Sn/Vn determined by behavior
of Sn (via CLT) and Vn (via LLN)

• in free case: for (Xi)iœN free i.d. self-adjoint with mean 0 and
variance 1:

• analytic distr. of SnÔ
n

∆ Wigner semicircle distr. Ê as n æ Œ due
to free CLT

• analytic distr. of V 2
n

n ∆ ”1 as n æ Œ due to free LLN

• problem: How can we combine these two results?

• solution: Replace Slutsky’s theorem by machinery of Cauchy
transforms!

• realization of solution depends on whether the random variables are
bounded or unbounded
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Recap: Bounded and unbounded random variables

• bounded random variable X = element in Cú-probability space (A, Ï)
• expressions of the form Ï(Xk) always exist
• for self-adjoint X: analytic distribution µX is compactly

supported
• unbounded random variable X = unbounded operator a�liated with

finite von Neumann algebra A; (A, Ï) is tracial W ú-probability space
• Ï(X) only defined as an extension if X positive or Ï(|X|) < Œ
• expressions of the form Ï(Xk) may not exist
• for self-adjoint X: analytic distribution µX is not necessarily

compactly supported
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Bounded self-normalized sums

Theorem (N., 2024)

Given a tracial faithful Cú-probability space (A, Ï) with norm Î · Î, let
(Xi)iœN µ A be a sequence of free i.d. self-adjoint random variables with

Ï(X1) = 0 and Ï(X2
1 ) = 1.

For su�ciently large n, we have:
• Un = V ≠1/2

n SnV ≠1/2
n is well-defined in A.

• If µn denotes the analytic distribution of Un, then µn ∆ Ê as
n æ Œ with

� (µn, Ê) . ÎX1Î3 log nÔ
n

.

For comparison: rate of convergence for SnÔ
n

to Ê and for classical SNS
to N (0, 1) given by 1Ô
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Bounded SNS: Idea of the proof

We argue in three steps:

• Show that Un is well-defined in A.

• Show that Cauchy transform of Un is close to Cauchy transform of Ê.

• Derive weak convergence µn ∆ Ê and rate of convergence.

From now on: Consider normalized versions of Sn and V 2
n , i.e.:

Sn = 1Ô
n

nÿ

i=1
Xi, V 2

n = 1
n

nÿ

i=1
X2

i .
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Bounded SNS: Proof – Step 1

Goal: Un = V ≠1/2
n SnV ≠1/2

n is well-defined in A for large n.

Su�cient: V 2
n is invertible in A for large n.

• Voiculescu (1986): For free self-adjoint a1, a2, . . . , ak œ A with
Ï(ai) = 0 for all i = 1, . . . , k, we have:

Îa1 + · · · + akÎ Æ max
i=1,...,k

ÎaiÎ + 2
A

kÿ

i=1
Ï

!
a2

i

"
B1/2

• for large n:

..V 2
n ≠ 1

.. =
.....

1
n

nÿ

i=1
X2

i ≠ 1
..... . ÎX1Î2

Ô
n

• with Neumann series-type argument: V 2
n is invertible in A for large n
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Bounded SNS: Proof – Step 2

Goal: Cauchy transform Gn of Un = V ≠1/2
n SnV ≠1/2

n is close to GÊ.

• for z œ C+ with GSn = Cauchy transform of Sn:

Gn(z) = Ï((z ≠ Un)≠1) = Ï
!
V

1/2
n (zVn ≠ Sn)≠1V

1/2
n

"

= Ï(Vn(zVn ≠ Sn)≠1) ¥ GSn(z)

• precise estimates for z œ C+ with 1 Ø ⁄z Ø 1Ô
n

, |Ÿz| Æ 8:

|Gn(z) ≠ GÊ(z)| Æ |Gn(z) ≠ GSn(z)| + |GSn(z) ≠ GÊ(z)|

. ÎVn ≠ 1Î
⁄z

+ �(µSn , Ê)
⁄z

. 1Ô
n

1
⁄z
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reminder: �(µSn , Ê) := sup
xœR

|µSn ((≠Œ, x]) ≠ Ê((≠Œ, x])| . 1
Ô

n



Bounded SNS: Proof – Step 3

Goal: Derive weak convergence µn ∆ Ê and rate of convergence.

We know: |Gn(z) ≠ GÊ(z)| . 1Ô
n

1
⁄z for z with 1 Ø ⁄z Ø 1Ô

n
, |Ÿz| Æ 8.

• weak convergence µn ∆ Ê can be derived by some modifications of
the inequality above

• for rate of convergence:
• with superconvergence: ÎUnÎ Æ ÎSnÎÎV ≠1

n Î < 3 for large n

• with Bai’s ineq. for compactly supported pm’s:

�(µn, Ê) . v + sup
xœ[≠2,2]

⁄ 1

v
|Gn(x + iy) ≠ GÊ(x + iy)|dy

+
⁄ 3

≠3
|Gn(u + i) ≠ GÊ(u + i)|du . log nÔ

n
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Bounded SNS: Superconvergence

A refinement of the inequality ÎUnÎ Æ ÎSnÎÎV ≠1
n Î < 3 leads to:

Corollary (N., 2024)

In the setting of the last theorem and for su�ciently large n, we have:

supp µn µ
3

≠2 ≠ 58ÎX1Î2
Ô

n
, 2 + 58ÎX1Î2

Ô
n

4

In the setting of the free CLT, the corresponding rate is of order 1Ô
n

too!
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Unbounded self-normalized sums

From now on: A�(A) = algebra of operators a�liated with finite von
Neumann algebra A

Theorem (N., 2024)

Given a tracial W ú-probability space (A, Ï), let (Xi)iœN µ A�(A) be a
sequence of free i.d. self-adjoint (possibly unbounded) random variables
with

Ï(X1) = 0, Ï(X2
1 ) = 1, and Ï(|X1|4) < Œ.

For su�ciently large n, we have:
• Un = V ≠1/2

n SnV ≠1/2
n is well-defined in A�(A).

• If µn denotes the analytic distribution of Un, then µn ∆ Ê as
n æ Œ with

�(µn, Ê) . Ï(|X1|4)5/4

n1/4
.
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Unbounded SNS: Idea of the proof

We argue in three (already familiar) steps:

• Show that Un is well-defined in A�(A).

• Show that Cauchy transform of Un is close to Cauchy transform of Ê.

• Derive weak convergence µn ∆ Ê and rate of convergence.

Realization of steps is di�erent compared to bounded setting!

From now on: Consider normalized versions of Sn and V 2
n .
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Unbounded SNS: Proof – Step 1

Goal: Un = V ≠1/2
n SnV ≠1/2

n is well-defined in A�(A) for large n.

Su�cient: V 2
n is invertible in A�(A) for large n.

• with functional calculus: self-adjoint operator T œ A�(A) is invertible
in A�(A) if µT ({0}) = 0, where µT = analytic distribution of T

• we have to prove:

for large n : 0 = µV 2
n

({0}) =
3

µ X2
1

n

� · · · � µ X2
n

n

4
({0})

• use result due to Bercovici, Voiculescu (1998):
“ is atom of ‹1 � ‹2

…

÷ atoms –, — of ‹1, ‹2 : “ = – + —, ‹1({–}) + ‹2({—}) > 1
In this case: (‹1 � ‹2)({“}) = ‹1({–}) + ‹2({—}) ≠ 1
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Unbounded SNS: Proof – Step 2a

Goal: Cauchy transform Gn of Un = V ≠1/2
n SnV ≠1/2

n is close to GÊ.

• in bounded setting:

Gn(z) = Ï((z ≠ Un)≠1) = Ï
!
V

1/2
n (zVn ≠ Sn)≠1V

1/2
n

"

?=

= Ï(Vn(zVn ≠ Sn)≠1) = ...

• in unbounded setting: Ï(T ) only defined via extensions,
Ï(ST ) = Ï(TS) not necessarily true

• new idea: for all z œ C+ :

|Gn(z) ≠ GÊ(z)| Æ |Gn(z) ≠ GSn(z)| + |GSn(z) ≠ GÊ(z)|,

|Gn(z) ≠ GSn(z)| = |Ï((z ≠ Un)≠1(Un ≠ Sn)(z ≠ Sn)≠1)| Æ Ï(|Un ≠ Sn|)
(⁄z)2

17



Unbounded SNS: Proof – Step 2b

• we know: |Gn(z) ≠ GSn(z)| Æ Ï(|Un≠Sn|)
(⁄z)2 for all z œ C+

• Un ≠ Sn = V ≠1/2
n SnV ≠1/2

n ≠ Sn = (1 ≠ V
1/2

n )Un + SnV ≠1/2
n (1 ≠ V

1/2
n )

• with Hölder’s inequality and ÎTÎ2 := Ï(|T |2)1/2:

Ï(|Un ≠ Sn|) Æ Î1 ≠ V
1/2

n Î2
!
ÎUnÎ2 + ÎSnV ≠1/2

n Î2
"

• with free LLN: Î1 ≠ V
1/2

n Î2 Æ Î1 ≠ V 2
n Î2 .

Ô
Ï(|X1|4)Ô

n

• with self-normalizing e�ect: |Un| Æ
Ô

n

• again with self-normalizing e�ect: ÎUnÎ2 . 2 + Ô
nÎV 2

n ≠ 1Î2

• with similar arguments: ÎSnV ≠1/2
n Î2 .

Ô
2 + Ô

n
..V 2

n ≠ 1
..

2

• finally: |Gn(z) ≠ GSn(z)| . 1Ô
n

1
(⁄z)2 for all z œ C+

• in particular with free CLT: limnæŒ Gn(z) = GÊ(z) for all z œ C+

18

in classical setting with Cauchy’s inequality:

|Sn| =

-----
1Ô
n

nÿ

i=1

Xi

----- Æ

A
nÿ

i=1

X2
i

B1/2

=
Ô

nVn ∆ |Sn/Vn| Æ
Ô

n,

in free setting with inequality due to Bikchentaev, Sabirova (2012)
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Unbounded SNS: Proof – Step 3

Goal: Derive weak convergence µn ∆ Ê and rate of convergence.

For z œ C+: |Gn(z) ≠ GSn(z)| . 1Ô
n

1
(⁄z)2 and limnæŒ Gn(z) = GÊ(z)

• weak convergence µn ∆ Ê is clear

• rate of convergence follows with modified version of Bai’s inequality

• rate is only of order n≠1/4 for two reasons: bound on the di�erence of
the Cauchy transforms does not depend on Ÿz and contains (⁄z)≠2

as a factor
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The non-i.d. cases: Bounded SNS

Theorem (N., 2024)

Given a tracial faithful Cú
-probability space (A, Ï) with norm Î · Î, let

(Xi)iœN µ A be a sequence of free self-adjoint random variables with

Ï(Xi) = 0, Ï(X2
i ) = ‡2

i , i œ N.

Moreover, let

B2
n :=

nÿ

i=1

‡2
i , LS,3n :=

qn

i=1 ÎXiÎ3

B3
n

, LS,4n :=
qn

i=1 ÎXiÎ4

B4
n

.

We have:

• If LS,4n < 1/16, then Un = V ≠1/2
n SnV ≠1/2

n is well-defined in A.

• If LS,4n < 1/16, LS,3n < 1/2e, and µn denotes the distr. of Un, then

�(µn, Ê) . max
Ó

|log LS,3n|LS,3n, |log LS,4n|L1/2
S,4n

Ô
.

• If limnæŒ LS,4n = 0, then µn ∆ Ê as n æ Œ.
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The non-i.d. cases: Unbounded SNS

Theorem (N., 2024)

Given a tracial W ú
-probability space (A, Ï), let (Xi)iœN µ A�(A) be a

sequence of free self-adjoint (possibly unbounded) random variables with

Ï(Xi) = 0, Ï(X2
i ) = ‡2

i , Ï(|Xi|4) < Œ, i œ N.

Moreover, let

B2
n :=

nÿ

i=1

‡2
i , L4n :=

qn

i=1 Ï(|Xi|4)
B4

n

and assume that Lindeberg’s condition holds. For large n, we have:

• Un = V ≠1/2
n SnV ≠1/2

n is well-defined in A�(A).
• If µn denotes the analytic distribution of Un, then

�(µn, Ê) . L
1/4
4n +

Ô
nL

3/4
4n + nL

5/4
4n .

• If limnæŒ
Ô

nL4n = 0, then µn ∆ Ê as n æ Œ.

21



Summary and Outlook

• intuitive approach to self-normalized sums works in the free setting
with some modifications

• How can we prove free self-normalized limit theorems under weaker
moment assumptions? How can we exploit the self-normalization?
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Thank you for your attention!
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