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SNS in classical probability theory — Definition

Let (X;)ien be a sequence of classical random variables. Define

IS ::ixi, %5 ;:ixf.
i=1 =1
Then:

Sn/ Vi = self-normalized sum, Sy /Vn :=0 on {V,, =0}.

Question: How do self-normalized sums behave in the limit?

From now on: Only consider the i.i.d. case!



SNS in classical probability theory — Intuitive approach

e for (X;)ien i.i.d. with EX; =0 and VarX; = 1:
S" . . . .

-~ — N(0,1) in distribution as n — oo due to CLT
Vn

V2
— — 1 in probability as n — oo due to weak LLN
n

Slutsky’s theorem
Let (Xn)nen, (Yn)nen, and X be classical random variables and ¢ € C, ¢ # 0.

Assume that
X, — X in distribution as n — oo,

Y, — ¢ in probability as n — co.

Then:

X
— — in distribution as n — oco.
@

alfs



SNS in classical probability theory — Intuitive approach

e for (X;)ien i.i.d. with EX; =0 and VarX; = 1:

S”L . . . .
— N(0,1) in distribution as n — oo due to CLT
N

2

— — 1 in probability as n — oo due to weak LLN
n

e by Slutsky’s theorem:

=

SI'L n . . . .
= — N(0,1) in distribution as n — oo
V. %

e so far: Self-normalization did not come into play!



SNS in classical probability theory — Two results

e Giné, Gotze, Mason (1997): for i.i.d. random variables (X;);cn:
S

?n — N(0,1) in distribution as n — co < X; € DAN, EX; =0,

where DAN = domain of attraction of the normal law
e Bentkus, Gotze (1996): if EX; =0, VarX; = 1, E|X;|? < oc:
E‘A\'l 3

vn

Aps, /v, N(0,1)) S

)

where

A, v2) i= sup [p1 (=00, 2]) — wa((—o00, 2])]

and pg, v, = distribution of S, /V;,

e Berry-Esseen theorem: rate for \S/ﬁ to

(0,1) given by % too!



SNS in free probability theory — Definition

Let (X;)ien be a sequence of self-adjoint non-commutative random
variables. Define

Sni=> X;, VZi=> X7
i=1 i=1
The free analog of a self-normalized sum is given by
Un i= Vo 28,V 2,
We will see later that U, is well-defined!

Question: How does U,, behave in the limit?

From now on: Only consider the case of free i.d. self-adjoint random
variables!



SNS in free probability theory — Intuitive approach

e in classical case: limiting behavior of S,,/V,, determined by behavior
of S, (via CLT) and V,, (via LLN)

e in free case: for (X;);cn free i.d. self-adjoint with mean 0 and
variance 1:

e analytic distr. of S—\/% = Wigner semicircle distr. w as n — oo due
to free CLT

e analytic distr. of v,

2
n
n

= 01 as n — oo due to free LLN
e problem: How can we combine these two results?

e solution: Replace Slutsky's theorem by machinery of Cauchy
transforms!

e realization of solution depends on whether the random variables are
bounded or unbounded



Recap: Bounded and unbounded random variables

e bounded random variable X = element in C*-probability space (A, ¢)
e expressions of the form ¢(X*) always exist
e for self-adjoint X: analytic distribution px is compactly
supported

e unbounded random variable X = unbounded operator affiliated with
finite von Neumann algebra A; (A, ¢) is tracial W*-probability space
e ©(X) only defined as an extension if X positive or p(|X|) < co
e expressions of the form ¢(X*) may not exist
e for self-adjoint X: analytic distribution px is not necessarily
compactly supported



Bounded self-normalized sums

Theorem (N., 2024)

Given a tracial faithful C*-probability space (A, ) with norm || - ||, let
(X)ien C A be a sequence of free i.d. self-adjoint random variables with

p(X1) =0 and p(X7) = 1.

For sufficiently large n, we have:
o U, =V, 28,V * is well-defined in A.

e If u,, denotes the analytic distribution of U,,, then u,, = w as
n — 0o with

A (ptn,w) S 1X°

For comparison: rate of convergence for \% to w and for classical SNS

to N(0,1) given by




Bounded SNS: Idea of the proof

We argue in three steps:

e Show that U, is well-defined in A.

e Show that Cauchy transform of U, is close to Cauchy transform of w.

e Derive weak convergence i, = w and rate of convergence.

From now on: Consider normalized versions of S,, and V2, i.e.:

n

1
= \/WZX“ Vr?:izX'LQ



Bounded SNS: Proof — Step 1

Goal: U,, = Vn_1/2SnVn_1/2 is well-defined in A for large n.
Sufficient: V;2 is invertible in A for large n.

e Voiculescu (1986): For free self-adjoint ay,as,...,a; € A with
p(a;) =0foralli=1,... k, we have:

k 2
< N +2 2
o el <, +2 (3ol

g=1l

e for large n:

ZXz ||X1H2
T

e with Neumann series-type argument: V.2 is invertible in A for large n

V2 -1] =
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Bounded SNS: Proof — Step 2

Goal: Cauchy transform G,, of U, = Vn_l/aS'nVn_l/2 is close to G,,.

e for z € C* with G, = Cauchy transform of S,,:

Gul2) = p((z — Un) ™) = o(Vi/*(2Va — 8)IV2)
= o(Va(2Vn — Sn) 1) = Gs,(2)

e precise estimates for z € Ct with 1 > 3z > %l, |Rz| < 8:

Gn(2) = Gu(2)] < |Gn(2) — Gs,(2)| + |Gs, () — Gu(2)]
a1l M) 11
% S ~/n Sz

%\

reminder: A(ps, ;) 1= $up s, (o0, 2]) ~w(=o0,a]) §
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Bounded SNS: Proof — Step 3

Goal: Derive weak convergence /i, = w and rate of convergence.

We know: |G, (2) — Gu(2)] S %S% for z with 1 > Sz > ﬁ, |Rz| <8.

e weak convergence (i, = w can be derived by some modifications of
the inequality above

e for rate of convergence:

e with superconvergence: ||U,| < [|S,||[|V,; ]| < 3 for large n
e with Bai's ineq. for compactly supported pm'’s:

App,w) Sv+  sup /\G (x +iy) — Gy (x + iy)|dy

z€[—2,2]

logn
/\Gn( ) = Gulu+ ildu S <2
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Bounded SNS: Superconvergence

A refinement of the inequality [|U, || < [|Sy, |||V, | < 3 leads to:

Corollary (N., 2024)

In the setting of the last theorem and for sufficiently large n, we have:

581 X1 |12 581 X112
_ S8lIXa® -, | 58l

Vi ﬁ)

supp pn, C (—2

1

i too!

In the setting of the free CLT, the corresponding rate is of order
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Unbounded self-normalized sums

From now on: Aff(.A) = algebra of operators affiliated with finite von
Neumann algebra A
Theorem (N., 2024)

Given a tracial W*-probability space (A, ¢), let (X;)ien C Aff(A) be a
sequence of free i.d. self-adjoint (possibly unbounded) random variables

with
P(X1) =0, p(X7) =1, and p(|X1]*) < oo.
For sufficiently large n, we have:
o U, =V, 728,V /* is well-defined in Aff(A).

e If u,, denotes the analytic distribution of U,,, then u, = w as
n — oo with

p(1 X |7
A(pin,w) S oo
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Unbounded SNS: Idea of the proof

We argue in three (already familiar) steps:

e Show that U, is well-defined in Aff(.A).
e Show that Cauchy transform of U, is close to Cauchy transform of w.

e Derive weak convergence 1, = w and rate of convergence.

Realization of steps is different compared to bounded setting!

From now on: Consider normalized versions of S,, and V2.
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Unbounded SNS: Proof — Step 1

Goal: Uy, = Vi, /28, Vi, /* is well-defined in Aff(A) for large n.
Sufficient: V;2 is invertible in Aff(A) for large n.

e with functional calculus: self-adjoint operator T' € Aff(.A) is invertible
in Aff(A) if ur({0}) =0, where ur = analytic distribution of T'

e we have to prove:

for large n: 0= py2({0}) = </LX% BB “X%) ({0})
e use result due to Bercovici, Voiculescu (1998):
v is atom of v H e
<
Jatoms o, S of vi,1v2 1y =a+ B,vi({a}) + r({8}) > 1
In this case: (v1 Br2)({v}) =vi({a}) +v2({B}) — 1
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Unbounded SNS: Proof — Step 2a

Goal: Cauchy transform G,, of U, = Vi /%S, Vi /* is close to G.,.
e in bounded setting:
Gn(2) = o((z = Un) ") = (V2 (2Vi = Sa)7'V,7%)
= (Vo (2Vi, — Sp) 1) = ...

e in unbounded setting: ©(7T') only defined via extensions,
©(ST) = ¢(TS) not necessarily true

e new idea: for all z € CT:
|Gn(2) — Gu(2)| < |Gn(2) — Gs, (2)| + |Gs, (2) — Gu(2)],

|G (2) — Gs, (2)] = |((z — Un)_l(Un = Sp)(2 — Sn)_1)| <
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Unbounded SNS: Proof — Step 2b

e we know: |G, (2) — Gg, (2)| < % forall z € C*
o Up—Sn=Vi 28,V * = 8y = (1 = Vi) Uy + S Vi 72(1 = V%)
e with Holder's inequality and ||| := o(|T|?)"/?:
o(|Un = Sal) < 11 = Vo212 (1Unll2 + 1SV, 2 12)
o with free LLN: [|1 — V,/*[ls < |1 — V2|2 < 7@

e with self-normalizing effect: |U,| < v/n

in classical setting with Cauchy’s inequality:

1/2
\FZX (ZW) = ViVa = [52/Val < Vi

in free setting with inequality due to Bikchentaev, Sabirova (2012)

717

18



Unbounded SNS: Proof — Step 2b

e we know: |G, (2) — Gg, (2)| < % forall z € C*
o Un—Su=Vu PSaVa /" = Sp = (1= Val"YUn + SuVa (1 = Vi)
e with Holder's inequality and ||T'||2 := o(|T'|?)">:
e(1Un = Sal) < 11 = Vol (I1Uallz + 15a Vi 2112)
e with free LLN: ||1 — 1/2||2 <1=V2|2 S %1'4)
e with self-normalizing effect: |U,| < v/n

e again with self-normalizing effect: ||Uyll2 < 2+ v/n||V:2 — 1|2

Idea: VZ2=~1"whp" = U,=S, =

Sn 2




Unbounded SNS: Proof — Step 2b

we know: |G, (2) — Gg, (2)] < % forall z € C*
Un - S’ﬂ = nil/QSnVnil/z - Sn = (1 - VW%/Q)Un + SnVnil/z(l - ‘/711/2)
with Hélder's inequality and || T2 := ¢(|T|?)"/?:

e(1Un = Sal) < 11 = Vol (I1Uallz + 15a Vi 2112)

with free LLN: [[1— Vi/?[lo < [|1 — V2|, § Y2020
with self-normalizing effect: |U,| < y/n

again with self-normalizing effect: |Uy |2 <2+ /n||V,2 — 1]|2
with similar arguments: [|S, Vi /?[la < V2 + Va||[VE-1|,
finally: |Gn(2) — Gs, (2)| < ﬁ@ for all 2 € C*

in particular with free CLT: lim,, o0 Gy (2) = G, (2) for all z € CT
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Unbounded SNS: Proof — Step 3

Goal: Derive weak convergence i, = w and rate of convergence.

For z € C*: |G(2) — Gs, (2) L

< VACTE and lim,, oo G (2) = G (2)

e weak convergence fi,, = w is clear
e rate of convergence follows with modified version of Bai's inequality

e rate is only of order n~"/* for two reasons: bound on the difference of
the Cauchy transforms does not depend on Rz and contains ($z) =2
as a factor
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The non-i.d. cases: Bounded SNS

Theorem (N., 2024)

Given a tracial faithful C*-probability space (A, ¢) with norm || - ||, let
(X;)ien C A be a sequence of free self-adjoint random variables with

p(X:) =0, (X)=o0i, ieN

Moreover, let

B2 B

n n 3 n 4
= 1%l "X
B::=Y 0% Lsani= L Xl 2 X
g=il

We have:
e If Lsan < /16, then Uy, = Vi, /25, Vi, 7 is well-defined in A.

o If Lgan < 1/16, Ls3n < /2¢, and uy denotes the distr. of U,, then
A(pn,w) S max {|log Ls3n|Ls,3n, |log L5,4,L|L;/’1n}.

o If limy, o0 Ls,an =0, then p,, = w as n — co.
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The non-i.d. cases: Unbounded SNS

Theorem (N., 2024)

Given a tracial W™-probability space (A, ¢), let (X;)ien C Aff(A) be a
sequence of free self-adjoint (possibly unbounded) random variables with

(X)) =0, (X7 =0], o(Xi|')<oo, i€N.
Moreover, let
B3

and assume that Lindeberg’s condition holds. For large n, we have:

o U, =V, 28,V /% is well-defined in AfF(A).

n n XZ n
BEL 32201-27 Iy, ;:M
i=1

e |f 1, denotes the analytic distribution of U, then
Apn,w) S Lify + VaLl! + Ly,
e If limy— o0 /nLayn =0, then p, = w as n — co.
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Summary and Outlook

e intuitive approach to self-normalized sums works in the free setting
with some modifications

e How can we prove free self-normalized limit theorems under weaker
moment assumptions? How can we exploit the self-normalization?

22



Thank you for your attention!
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