S-transform in finite free probability

Daniel Perales Anaya Texas A&M University

Probabilistic Operator Algebra Seminar

August 23, 2024 Joint work with Octavio Arizmendi, Katsunori Fujie and Yuki Ueda (arXiv:2408.09337).

- Main theorem
- Prelim: Finite Free probability
- Finite S-transform
- Proof of main theorem
 - New results on differentiation
 - ► A partial order on polynomials
- Applications

Polynomials

 $\mathcal{P}_d(S):=$ monic polynomials of degree d with all its roots contained in the set $S\subset\mathbb{C}$.

For $p \in \mathcal{P}_d(\mathbb{C})$ we use the notation:

$$p(x) = \prod_{k=1}^{d} (x - \lambda_k(p)) = \sum_{k=0}^{d} x^{d-k} (-1)^k \binom{d}{k} \frac{\tilde{e}_k(p)}{k}.$$

Roots: $\lambda_1(p), \ldots, \lambda_d(p)$.

 $\textbf{Coefficients:} \quad \tilde{\mathbf{e}}_{\mathbf{k}}(\mathbf{p}) := \frac{1}{\binom{d}{\mathbf{k}}} \sum_{1 < i_1 < \dots < i_k < d} \lambda_{i_1}(\mathbf{p}) \cdots \lambda_{i_k}(\mathbf{p}).$

Empirical root distribution: $\mu \llbracket p \rrbracket := \frac{1}{d} \sum_{i=1}^{d} \delta_{\lambda_i(p)}$

Main Theorem

For $\mu \in \mathcal{M}(\mathbb{R}_{\geq 0})$, its *S*-transform [Voiculescu '87] is

$$S_{\mu}(z) := rac{1+z}{z} \Psi_{\mu}^{-1}(z) \qquad ext{ for } z \in (\mu(\{0\})-1,0),$$

where

$$\Psi_{\mu}(z) := \int_0^{\infty} \frac{tz}{1-tz} \mu(dt), \quad z \in \mathbb{C} \setminus \mathbb{R}_{\geq 0}.$$

Main tool for free multiplicative convolution: $S_{\mu\boxtimes\nu}(z)=S_{\mu}(z)S_{\nu}(z)$.

Theorem (Arizmendi, Fujie, P, Ueda '24)

 $(p_d)_{d\in\mathbb{N}}$ sequence with $p_d\in\mathbb{P}_d(\mathbb{R}_{\geq 0})$ and $\nu\in\mathcal{M}(\mathbb{R}_{\geq 0})$. The following are equivalent:

- **②** For every $t \in (0, 1 \mu(\{0\}))$,

$$\lim_{\substack{d \to \infty \ \frac{k}{d} o t}} \frac{\widetilde{\mathrm{e}}_{k-1}^{(d)}(p_d)}{\widetilde{\mathrm{e}}_k^{(d)}(p_d)} = S_{
u}(-t).$$

Corollary. Under some assumptions,

$$\left(\widetilde{\mathsf{e}}_k^{(d)}(p_d)\right)^{rac{1}{d}} = \exp\left(-\int_0^t \log S_{\nu}(-x)dx\right).$$

Theorem (Arizmendi, Fujie, P, Ueda '24)

 $(p_d)_{d\in\mathbb{N}}$ sequence with $p_d\in\mathbb{P}_d(\mathbb{R}_{\geq 0})$ and $\nu\in\mathcal{M}(\mathbb{R}_{\geq 0}).$ Then

$$\mu \, \llbracket p_d
rbracket^{-}
angle \,
u \qquad \Leftrightarrow \qquad \lim_{\substack{d o \infty \ rac{k}{d} o t}} rac{\widetilde{\mathrm{e}}_{k-1}^{(d)}(p)}{\widetilde{\mathrm{e}}_{k}^{(d)}(p)} = S_
u(-t). \qquad ext{for } t \in (0, 1 - \mu(\{0\}))$$

Laguerre of parameter 1 for d = 10 and d = 20.

Theorem (Arizmendi, Fujie, P, Ueda '24)

 $(p_d)_{d\in\mathbb{N}}$ sequence with $p_d\in\mathbb{P}_d(\mathbb{R}_{\geq 0})$ and $\nu\in\mathcal{M}(\mathbb{R}_{\geq 0}).$ Then

$$\mu \left[\!\!\left[p_d
ight]\!\!\right] o
u \qquad \Leftrightarrow \qquad \lim_{\substack{d o \infty \ rac{k}{d} o t}} rac{\widetilde{\mathrm{e}}_{k-1}^{(d)}(p)}{\widetilde{\mathrm{e}}_{k}^{(d)}(p)} = S_
u(-t). \qquad ext{for } t \in (0, 1 - \mu(\{0\}))$$

Laguerre of parameter 2 for d = 10 and d = 20.

Finite Free Probability

Finite free convolutions

Definition

Given $p, q \in \mathcal{P}_d$, their multiplicative and additive convolutions are the polynomials $p \boxtimes_d q \in \mathcal{P}_d$ and $p \boxplus_d q \in \mathcal{P}_d$ with coefficients

$$\tilde{e}_k(p \boxtimes_d q) = \tilde{e}_k(p)\tilde{e}_k(q),$$

for
$$k = 1, 2, \ldots, d$$
,

$$\tilde{e}_k(p \boxplus_d q) = \sum_{i+j=k} {k \choose i} \tilde{e}_i(p) \cdot \tilde{e}_j(q),$$

for
$$k = 1, 2, ..., d$$
.

 \boxplus_d preserves real roots (Walsh 1922) If $p, q \in \mathcal{P}_d(\mathbb{R})$ then $p \boxplus_d q \in \mathcal{P}_d(\mathbb{R})$.

 \boxtimes_d preserves positive real roots (Szegő 1922) If

$$p, q \in \mathcal{P}_d(\mathbb{R}_{>0}) \quad \Rightarrow \quad p \boxtimes_d q \in \mathcal{P}_d(\mathbb{R}_{>0}).$$

Basic properties: interpretation in terms of differential operators, bilinear, commutative, associative, identity $(x^d \text{ for } \boxplus_d, (x-1)^d \text{ for } \boxtimes_d)$, preserve interlacing, preserve root separation.

Preserves interlacing: If $p, \widetilde{p}, q \in \mathcal{P}_d(\mathbb{R})$, then $p \preccurlyeq \widetilde{p} \implies p \boxplus_d q \preccurlyeq \widetilde{p} \boxplus_d q$.

$$p \preccurlyeq \widetilde{p}$$
 means $\lambda_1(p) \le \lambda_1(\widetilde{p}) \le \lambda_2(p) \le \lambda_2(\widetilde{p}) \le \cdots \le \lambda_d(p) \le \lambda_d(\widetilde{p})$

Connection to Random Matrices and Free Probability

[Marcus, Spielman, Srivastava '15] Let A and B be $d \times d$ selfadjoint matrices with characteristic polynomials $p = \chi(A)$ and $q = \chi(B)$. Then

$$p \boxplus_d q = \mathbb{E}_Q[\chi(A + QBQ^*)]$$
 and $p \boxtimes_d q = \mathbb{E}_Q[\chi(AQBQ^*)]$

where $Q \sim \text{Haar}$ measure over unitary (orthogonal or permutation) matrices.

[Marcus '16] Establishes a connection with free probability: When $d \to \infty$, finite free convolutions should tend to free convolutions ($\boxplus_d \to \boxplus$). Studies Finite Free Probability and gives basic examples like LLN, CLT, Poisson limit.

Formally, consider sequences $\mathfrak{p}=(p_d)_{d=1}^\infty$ and $\mathfrak{q}=(q_d)_{d=1}^\infty$ with $p_d,q_d\in\mathbb{P}_d(\mathbb{R})$ and limiting measures $\nu(\mathfrak{p}),\nu(\mathfrak{q})\in\mathcal{M}_c(\mathbb{R})$: $\mu\llbracket p_d\rrbracket\to\nu(\mathfrak{p})$ and $\mu\llbracket q_d\rrbracket\to\nu(\mathfrak{q})$.

[Marcus '16, Arizmendi, P '16]. Then $\mu \llbracket p_d \boxplus_d q_d \rrbracket \longrightarrow \nu(\mathfrak{p}) \boxplus \nu(\mathfrak{q})$

[Arizmendi, Garza-Vargas, P '21]. Then $\mu \llbracket p_d \boxtimes_d q_d \rrbracket \longrightarrow \nu(\mathfrak{p}) \boxtimes \nu(\mathfrak{q})$.

Finite *S*-transform

Theorem (Arizmendi, Fujie, P, Ueda '24)

 $(p_d)_{d\in\mathbb{N}}$ sequence with $p_d\in\mathbb{P}_d(\mathbb{R}_{\geq 0})$ and $\nu\in\mathcal{M}(\mathbb{R}_{\geq 0}).$ Then

$$\mu \left[\!\!\left[p_d\right]\!\!\right] o
u \qquad \Leftrightarrow \qquad \lim_{\substack{d o \infty \ rac{\widetilde{\mathbf{e}}_{k-1}^{(d)}(
ho)}{\widetilde{\mathbf{e}}_k^{(d)}(
ho)}} = S_
u(-t). \qquad ext{for } t \in (0, 1 - \mu(\{0\}))$$

Definition

The **finite** *S*-transform of $p \in \mathbb{P}_d(\mathbb{R}_{>0})$ is the map

$$S_p^{(d)}: \left\{ -\frac{d}{d}, -\frac{d-1}{d}, \dots, -\frac{2}{d}, -\frac{1}{d} \right\} \to \mathbb{R}_{>0}$$
$$-\frac{k}{d} \mapsto \frac{\tilde{e}_{k-1}^{(d)}(p)}{\tilde{e}_k^{(d)}(p)}$$

Properties:

$$\bullet \ S_{p\boxtimes_d q}^{(d)}\left(-\frac{k}{d}\right) = S_p^{(d)}\left(-\frac{k}{d}\right)S_q^{(d)}\left(-\frac{k}{d}\right).$$

(direct from def of \boxtimes_d)

•
$$S_p^{(d)}\left(-\frac{k+1}{d}\right) > S_p^{(d)}\left(-\frac{k}{d}\right)$$
.

(by Newton inequalities)

•
$$S_p^{(d)}\left(-\frac{k}{d}\right)S_{p(-1)}^{(d)}\left(-\frac{d+1-k}{d}\right)=1.$$

Proof of main theorem

Intuition: Multiplicative LLN

Given $\mu \in \mathcal{M}(\mathbb{R}_{>0})$, the *(shifted) T-transform* is the function $T_{\mu}:(0,1) \to \mathbb{R}_{\geq 0}$ with

$$\mathcal{T}_{\mu}(t)=rac{1}{\mathcal{S}_{\mu}(t-1)} \qquad ext{for } t\in (0,1).$$

[Tucci '10, Haagerup and Möller '13] there exists a limiting measure

$$\Phi(\mu) := \lim_{m o \infty} (\mu^{\boxtimes m})^{\langle 1/m \rangle},$$
 char. by

$$extstyle extstyle ext$$

[Fujie and Ueda '23]

Given $p \in \mathbb{P}_d(\mathbb{R}_{>0})$, there exists

$$\Phi_d(p) := \lim_{m \to \infty} (p^{\boxtimes_d m})^{\langle 1/m \rangle},$$

with roots $\lambda_k \left(\Phi_d(p) \right) = \frac{\widetilde{e}_k^{(d)}(p)}{\widetilde{e}_{k-1}^{(d)}(p)}.$

Basic tool: differentiation

For $k \leq d$, denote by $\partial_{k|d} : \mathbb{P}_d \to \mathbb{P}_k$ the operation $\partial_{k|d} p := \frac{p^{(d-k)}}{(d)^{\underline{d-k}}}$. Then:

$$\bullet \ \widetilde{\mathsf{e}}_{j}^{(k)}(\partial_{k|d}\,p) = \widetilde{\mathsf{e}}_{j}^{(d)}(p) \qquad \text{for } 1 \leq j \leq k \\
\partial_{k|d}\,(p \boxplus_{d}\,q) = (\partial_{k|d}\,p) \boxplus_{k} (\partial_{k|d}\,q) \\
\partial_{k|d}\,(p \boxtimes_{d}\,q) = (\partial_{k|d}\,p) \boxtimes_{k} (\partial_{k|d}\,q)$$

•
$$\kappa_m^{(j)}\left(\partial_{j|d} p\right) = \kappa_m^{(d)}\left(\operatorname{Dil}_{\frac{j}{d}} p^{\boxplus_d \frac{d}{j}}\right)$$
, where

$$\kappa_j^{(d)}(p) := d^{j-1} \sum_{\pi \in P(j)} c(\pi) \, \widetilde{\mathsf{e}}_\pi^{(d)}(p)$$

This yields a **new proof** of the following:

[Hoskins-Kabluchko '21, Arizmendi-Garza-Vargas-P '23]

Let $\mathfrak{p}=(p_d)_{d=1}^\infty$ be a sequence of polynomials such that $\mu\,[\![p_d]\!]\longrightarrow \nu(\mathfrak{p})$ real measure determined by moments. Then

$$\partial_{k|d} p_d \longrightarrow \mathrm{Dil}_t(\mu^{\boxplus 1/t})$$
 as $d \to \infty$, and $rac{k}{d} \to t \in (0,1)$

Case 1: compact support away from 0

Theorem

Assume the roots of the polynomials are contained in $C = [\alpha, \beta] \subset (0, \infty)$. Then

$$\lim_{\substack{d o \infty \ rac{k}{d} o t}} S_{p_d}^{(d)}\left(-rac{k}{d}
ight) = S_{\mu}(-t).$$

$$S_p^{(d)}\left(-\frac{k}{d}\right) = \frac{\widetilde{e}_{k-1}^{(d)}(p)}{\widetilde{e}_k^{(d)}(p)}$$

$$= \frac{\widetilde{e}_{k-1}^{(k)}(\partial_{k|d}p)}{\widetilde{e}_k^{(l)}(\partial_{k|d}p)}$$

$$= \frac{1}{k} \sum_{i=1}^k \frac{1}{\lambda(\partial_{k|d}p)} = -G_{\mu[\![\partial_{k|d}p]\!]}(0)$$

Then take limits and use relation from free probability that roughly says:

$$S_{\mu}(-t) = S_{\mathrm{Dil}_t(\mu^{\boxplus 1/t})}(-1) = \int_0^{\infty} x^{-1} \mu_t(dx) = -G_{\mathrm{Dil}_t(\mu^{\boxplus 1/t})}(0)$$

Proof of General case

Requires several steps, that gradually generalizing the previous ones.

• Compact interval containing 0. To avoid problems with $\frac{1}{k}\sum_{j=1}^k \frac{1}{\lambda(\partial_{k|d}p)}$ we show that for $t\approx \frac{k}{d}$ small enough, there exists $\varepsilon>0$ such that $\partial_{k|d}p\in\mathbb{P}(\mathbb{R}_{\geq\varepsilon})$ (roots are uniformly bounded away from 0).

Intuition: For $\mu \in \mathcal{M}(\mathbb{R}_{\geq 0})$ and t small enough, then $\mu^{\boxplus 1/t} \in \mathcal{M}(\mathbb{R}_{\geq \varepsilon})$.

The proof of the uniform bound requires two main ingredients:

- **3** Show the bound for polynomials of the form $x^{j}(1-x)^{d-j}$. (Classic result on the asymptotics of Jacobi polynomials)
- ② Use a partial order on polynomials to reduce to the previous case.
- Case with unbounded support. We use cut-up and cut-down measures, and the
 partial order on polynomials to reduce to the bounded case.
 Note: We can also generalize the results on differentiation and fractional convolution
 - to allow unbounded support.
- Converse implication. Follows from the first implication and Helly's Selection Theorem.

A partial order on polynomials

Partial order on measures. Given $\mu, \nu \in \mathcal{M}(\mathbb{R})$ we say that $\mu \ll \nu$ if their cumulative distribution functions satisfy $F_{\mu}(t) \geq F_{\nu}(t)$ for all $t \in \mathbb{R}$.

[Bercovici, Voiculescu '93] for measures $\mu, \nu \in \mathcal{M}(\mathbb{R})$ such that $\mu \ll \nu$,

- if $\rho \in \mathcal{M}(\mathbb{R})$, then $(\mu \boxplus \rho) \ll (\nu \boxplus \rho)$, and
- if $\rho \in \mathcal{M}(\mathbb{R}_{\geq 0})$, then $(\mu \boxtimes \rho) \ll (\nu \boxtimes \rho)$.

A partial order on polynomials

Partial order on measures. Given $\mu, \nu \in \mathcal{M}(\mathbb{R})$ we say that $\mu \ll \nu$ if their cumulative distribution functions satisfy $F_{\mu}(t) \geq F_{\nu}(t)$ for all $t \in \mathbb{R}$.

[Bercovici, Voiculescu '93] for measures $\mu, \nu \in \mathcal{M}(\mathbb{R})$ such that $\mu \ll \nu$,

- if $\rho \in \mathcal{M}(\mathbb{R})$, then $(\mu \boxplus \rho) \ll (\nu \boxplus \rho)$, and
- if $\rho \in \mathcal{M}(\mathbb{R}_{\geq 0})$, then $(\mu \boxtimes \rho) \ll (\nu \boxtimes \rho)$.

A partial order on polynomials: Given $p, q \in \mathcal{P}_d(\mathbb{R})$ we say that q, denoted $p \ll q$ if $\lambda_i(p) \leq \lambda_i(q)$ for all $i = 1, 2, \ldots, d$. Equivalently if $\mu \llbracket p \rrbracket \ll \mu \llbracket q \rrbracket$.

Theorem (Arizmendi, Fujie, P, Ueda '24)

 \boxplus_d and \boxtimes_d preserve \ll . Namely, for $p, q \in \mathcal{P}_d(\mathbb{R})$ such that $p \ll q$.

- If $r \in \mathbb{P}_d(\mathbb{R})$, then $(p \boxplus_d r) \ll (q \boxplus_d r)$.
- ② If $r \in \mathbb{P}_d(\mathbb{R}_{\geq 0})$, then $(p \boxtimes_d r) \ll (q \boxtimes_d r)$.

Applications

Main applications

Theorem (Arizmendi, Fujie, P, Ueda '24)

$$\mu \llbracket p_d \rrbracket \to \mu \quad \Leftrightarrow \quad \mu \llbracket \Phi_d(p_d) \rrbracket \to \Phi(\mu).$$

Conjectured in [Fujie and Ueda, '23].

Proposition (Arizmendi, Fujie, P, Ueda '24)

Consider sequences $\mathfrak{p}=(p_d)_{d=1}^\infty$ and $\mathfrak{q}=(q_d)_{d=1}^\infty$ with $p_d,q_d\in\mathbb{P}_d(\mathbb{R}_{\geq 0})$ and limiting measures $\nu(\mathfrak{p}),\nu(\mathfrak{q})\in\mathcal{M}(\mathbb{R}_{\geq 0})$. Then $\mu\,[\![p_d\boxtimes_d q_d]\!]\longrightarrow\nu(\mathfrak{p})\boxtimes\nu(\mathfrak{q})$.

An extension of the result in [Arizmendi, Garza-Vargas, P'23] to **unbounded** measures, but only when supported in $\mathbb{R}_{\geq 0}$.

Hypergeometric polynomials

For $a_1,\ldots,a_i,b_1,\ldots,b_j\in\mathbb{R}$, consider $p_d=\mathcal{H}_d\left[egin{matrix}b_1,\ldots,b_j\\a_1,\ldots,a_i\end{matrix}\right]\in\mathbb{P}_d$ with coefficients

$$\widetilde{\mathbf{e}}_k^{(d)}\left(\mathcal{H}_d{\left[\begin{smallmatrix}b_1,\dots,b_j\\a_1,\dots,a_i\end{smallmatrix}\right]}\right):=d^{k(i-j)}\frac{\prod_{s=1}^j\left(b_sd\right)^{\underline{k}}}{\prod_{r=1}^i\left(a_rd\right)^{\underline{k}}}\qquad\text{where }(d)^{\underline{k}}:=\frac{d!}{(d-k)!}.$$

Then its finite S-transform is

$$S_{p_d}^{(d)}\left(-\frac{k}{d}\right) = \frac{\prod_{r=1}^{i}(a_r - \frac{k-1}{d})}{\prod_{s=1}^{j}(b_s - \frac{k-1}{d})} \longrightarrow \frac{\prod_{r=1}^{i}(a_r + t)}{\prod_{s=1}^{j}(b_s + t)} = S_{\mu}(t)$$

This limit was also obtained recently in [Morales, Martinez-Finkelshtein, P ' 24]

Finite free multiplicative Poisson's law of small numbers

[Bercovici, Voiculescu '92]: for $\lambda \geq 0$ and $\beta \in \mathbb{R} \setminus [0,1]$ there exists a measure $\Pi_{\lambda,\beta} \in \mathcal{M}(\mathbb{R}_{\geq 0})$ with S-transform given by

$$S_{\Pi_{\lambda,eta}}(t)=\exp\left(rac{\lambda}{t+eta}
ight).$$

It can be understood as a free multiplicative Poisson's law.

Proposition (Arizmendi, Fujie, P, Ueda '24)

Let $\lambda \geq 0$ and $\beta \in \mathbb{R} \setminus [0, 1]$, and

$$p_d(x) := (x - \frac{\beta-1}{\beta})(x-1)^{d-1} = \mathcal{H}_d \begin{bmatrix} \beta - \frac{1}{d} \\ \beta \end{bmatrix}.$$

Then

$$\mu \left[\!\!\left[p_d^{\boxtimes_d k} \right]\!\!\right] \to \Pi_{\lambda,\beta} \qquad \text{as } d \to \infty \quad \text{ with } \frac{k}{d} \to \lambda.$$

Finite Free max-convolution powers

[Ben Arous, Voiculescu '06] Given $\nu_1, \nu_2 \in \mathcal{M}(\mathbb{R})$, define the free max-convolution measure $\nu_1 \boxtimes \nu_2$, with

$$F_{\nu_1\boxtimes\nu_2}(x):=\max\{F_{\nu_1}(x)+F_{\nu_2}(x)-1,0\}\qquad\text{for all }x\in\mathbb{R}.$$

[Ueda '21] Given $\nu \in \mathcal{M}(\mathbb{R})$ and $t \geq 1$, define the convolution powers $\nu^{\boxtimes t}$

$$F_{\nu^{\boxtimes t}}(x) := \max\{tF_{\nu}(x) - (t-1), 0\},\$$

Then, for $\mu \in \mathcal{M}(\mathbb{R}_{\geq 0})$, one has that $\Phi(\mathrm{Dil}_{1/t}(\mu^{\boxplus t})) = \Phi(\mu)^{\boxtimes t}$.

Definition (Arizmendi, Fujie, P, Ueda '24)

Given $p\in \mathbb{P}_d(\mathbb{R})$ and $1\leq k\leq d$, define $p^{\boxtimes rac{d}{k}}\in \mathbb{P}_k(\mathbb{R})$ with roots

$$\lambda_j\left(p^{igstylesize{rac{d}{k}}}
ight)=\lambda_j(p) \qquad ext{for } j=1,\ldots,k.$$

Proposition (Arizmendi, Fujie, P, Ueda '24)

Let
$$p \in \mathbb{P}_d(\mathbb{R}_{\geq 0})$$
. Then $\Phi_k(\partial_{k|d} p) = (\Phi_d(p))^{\boxtimes \frac{d}{k}}$.

Other results

 Using hypergeometric polynomials and multiplicative convolution, we can provide some finite analogue of free stable laws.

 We can extend the definition of the finite S-transform to include symmetric polynomials in the real line. Similar to how it is done in [Arizmendi, Pérez-Abreu '09] for free probability.

Can we generalize this type of results to measures on the complex plane?

Thanks!