On the singular abelian rank of ultraproduct II_1 factors

Patrick Hiatt Joint work with Sorin Popa

Berkeley Probabilistic Operator Algebra Seminar

Definition

Let M be a II₁ factor. A MASA $A \subset M$ is **singular** if any unitary $u \in U(M)$ with $uAu^* = A$ has $u \in A$.

- This definition is originally due to Dixmier (54) who showed *R* contains a singular MASA.
- Popa (81) showed every separable II₁ factor *M* contains a singular MASA.
- If A ⊂ M is singular, uAu^{*} = vAv^{*} iff u^{*}v ∈ A. So in fact, any separable II₁ factor M contains uncountably many singular MASA.

Definition (Popa)

For $P, Q \subset M$ subalgebras, we say $P \prec_M Q$ if there are projections $p \in P$ and $q \in Q$, a *-homomorphism $\theta : pPp \rightarrow qQq$, and a partial isometry $v \neq 0$ in M with $\theta(x)v = vx$.

If $A_1, A_2 \subset M$ are singular MASAs:

- $A_1 \prec_M A_2$ iff $A_2 \prec_M A_1$.
- $A_1 \prec_M A_2$ iff there exists a unitary $u \in M$ and projections $p \in A_1$, $q \in A_2$ with $uA_1pu^* = A_2q$.
- $A_1 \not\prec_M A_2$ (or A_1 and A_2 are **disjoint**) iff there is no partial isometry $v \in M$ with $vA_1v^* \subset A_2$.

A (10) × (10)

Theorem (Popa 16)

Let *M* be a separable II₁ factor. Then there is an uncountable family $\{A_i\}_{i \in I}$ of singular MASAs $A_i \subset M$ with $A_i \not\prec A_j$ for all $i \neq j$.

- 3 ▶

Image: A matrix and a matrix

Definition (Boutonnet, Drimbe, Ioana, Popa 23)

- The singular abelian core of M is the (unique up to unitary conjugacy) largest abelian *-subalgebra A ⊂ M := B(ℓ²K) ⊗ M (for some |K| ≥ 2^{|U(M)|}) generated by finite projections with A ⊂ 1_AM1_A singular.
- The singular abelian rank of M is

$$r(M) := \operatorname{Tr}(1_{\mathcal{A}})$$

- r(M) is an invariant
- r(M) "counts" the largest number of of disjoint singular MASA that fit in M.
- The previous result of Popa implies $r(M) = \mathfrak{c}$ for M separable.

Definition (Boutonnet, Drimbe, Ioana, Popa 23)

- The non-separable singular abelian core, or sans core, of *M* is the (unique up to unitary conjugacy) largest purely non-separable abelian *-subalgebra *A*_{ns} ⊂ *M* := *B*(*ℓ*²*K*) ⊗ *M* (for some |*K*| ≥ 2^{|*U*(*M*)|}) generated by finite projections with *A* ⊂ 1_{*A*}*M*1_{*A*} singular.
- The sans rank of M is

$$r_{\mathrm{ns}}(M) := \mathrm{Tr}(1_{\mathcal{A}_{\mathrm{ns}}})$$

- $r_{\rm ns}(M)$ is an invariant that can distinguish between II₁ factors
- E.g. [BDIP 23] showed $r_{ns}(A^{*n}) = nr_{ns}(A)$.

• It was observed in [BDIP 23] that for a separable II_1 factor M that

$$r_{\mathrm{ns}}(M^{\omega}) = r(M^{\omega}) \ge r(M) = \mathfrak{c}$$

Question

- Is $r_{
 m ns}(M)>\mathfrak{c}$ for all ultraproduct II $_1$ factors? (E.g. for M^ω or $\prod_\omega M_n(\mathbb{C}))$
- As an invariant, can $r_{
 m ns}(M)$ distinguish between ultraproduct II $_1$ factors?

• Answer: Yes. $r_{ns}(M) > \mathfrak{c}$ for all ultraproduct II₁ factors, but it is not a good invariant.

Theorem (HP24)

Let $\{M_n\}_{n\geq 1}$ be a sequence of separable tracial factors with $\dim(M_n) \to \infty$ and ω a free ultrafilter on \mathbb{N} . Denote $M = \prod_{\omega} M_n$ the associated ultraproduct II₁ factor. If we assume the continuum hypothesis then $r(M) > \mathfrak{c}$. If we further assume the strong continuum hypothesis, then $r(M) = 2^{\mathfrak{c}}$.

- In fact, the above result depends only a bicommutant property of ultraproducts, namely $(A' \cap M)' \cap M = A$ for any separable abelian $A \subset M$.
- We will show the above result holds for a broader class of II_1 factors.

イロト イヨト イヨト ・

Definition (HP24)

Let M be a II₁ factor. We say M has property

- U_0 if $(A' \cap M)' \cap M = A$ for any separable abelian subalgebra $A \subset M$.
- U₁ if any trace preserving automorphism Φ : A₁ → A₂ between separable diffuse abelian subalgebras in M is implemented by some u ∈ U(M).
- Any ultraproduct II₁ factor M satisfies U_0 and U_1 . (Popa, Connes)

Theorem (HP24)

A II₁ factor is U_0 iff it is U_1 . Moreover, U_0 and U_1 are stable properties. (i.e. M has U_0 iff M^t has U_0 for all t > 0)

- We say M is a **U-factor** if M has U_0 (respectively U_1).
- Any ultraproduct II₁ factor $M = \prod_{\omega} M_n$ is a U factor.
- A result of Gao, Kunnawalkam Elayavalli, Patchell, Tan (24) shows there are *U* factors that are not ultraproduct II₁ factors

Definition (HP24)

Let M be a II₁ factor. We say M has property

- U₁ if any trace preserving automorphism Φ : A₁ → A₂ between separable diffuse abelian subalgebras in M is implemented by some u ∈ U(M).
- U₂ if for any A₁, A₂ separable diffuse abelian subalgebras of M there is a unitary u ∈ U(M) with uA₁u^{*} = A₂.
- I.e. U₂ says for A₁ ≅ A₂ ⊂ M separable abelian at least one automorphisms Φ : A₁ → A₂ is implemented by a unitary.

• $U_0 \Leftrightarrow U_1 \Rightarrow U_2$

イロト イヨト イヨト ・

Theorem (Structural Results for U factors (Popa))

If M has U_2 (E.g. M is a U factor).

- Given any MASA A in M, there exists a diffuse abelian von Neumann subalgebra $B_0 \subset M$ orthogonal to A.
- Any separable abelian von Neumann subalgebra A₀ ⊂ M has type II₁ relative commutant A'₀ ∩ M.
- Any MASA in *M* is purely non-separable.
- *M* has no Cartan MASA.
- *M* is prime.

Theorem (HP24)

Let M be a II₁ U-factor with the property that the cardinality of its unitary group $\mathcal{U}(M)$ is equal to \mathfrak{c} . If the continuum hypothesis, $\mathfrak{c} = \aleph_1$, is assumed, then M contains more than \mathfrak{c} many mutually disjoint singular MASAs, i.e., $r(M) > \mathfrak{c}$. Moreover, if the strong continuum hypothesis $2^{\mathfrak{c}} = \aleph_2$ is assumed, then $r(M) = 2^{\mathfrak{c}}$. Sketch of the proof:

- Inspired by a technique of Popa
- Imagine we want to construct a singular MASA B ⊂ M with some properties (i.e. B ⊀ A_i for some family of algebrs {A_i}_{i∈I}).
- We use transfinite induction to build up $B = \overline{\bigcup_{i \in I} B_i}^{\text{wo}}$ as a tower of separable abelian algebras B_i .
- At each stage, we choose $B_{i+1} \subset B'_i \cap M$ to look "more singular" and "more disjoint" from the A_i .
- The key ingredients will be
 - $B'_i \cap M$ is type II₁
 - $(B'_i \cap M)' \cap M = B_i$

What does it mean to be "more singular"?

- At step *i*, we prevent a new partial isometry $v_i \in M$ from giving rise to a non-trivial element of the normalizer $\mathcal{N}_M(B)$.
- I.e. we construct B_i so that if $v_i^* v_i, v_i v_i^* \in B_i$ then $[v_i B_i v_i^*, B_i v_i v_i^*] \neq 0.$

What does it mean to be "more disjoint"?

- At step *i*, we prevent a new partial isometry $v_i \in M$ from intertwining *B* into A_i .
- I.e. we construct B_i so that if $v_i^* v_i \in B$ and $v_i v_i^* \in A_i$, then $[v_i B_i v_i^*, A_i v_i v_i^*] \neq 0$.

Setup:

- Let (I, \leq) be the set of all ordinals $\alpha < \aleph_1$.
- By CH, we can index the partial isometries of M with \mathfrak{c} repetition by $\{v_i\}_{i\in I}$.
- Take $\{A_i\}_{i \in I}$ a family of singular MASAs in M.

Claim

There is an increasing family of separable abelian subalgebras $\{B_i\}_{i\in I}$ such that

•
$$B = \overline{\bigcup_{i \in I} B_i}^{\text{wo}}$$
 is a singular MASA in M .

•
$$B \not\prec A_j$$
 for all $j \in I$

- We proceed by transfinite induction.
- Assume we have $\{B_j\}_{j \in I}$.

Induction Step 1: Let $B_i^0 = \overline{\bigcup_{j < i} B_j}^{\text{wo}}$

- Note B_i^0 is still separable abelian
- B_i^0 is larger than the previous algebras B_j for j < i.

Induction Step 2: Prevenet v_i from intertwining B into A_j for $j \leq i$.

- I.e. prevent v_i^{*}v_i ∈ B, v_iv_i^{*} ∈ A_j, and v_iBv_i^{*} ⊂ A_j (so v_i moves a corner of B into a corner of into A_i).
- This could happen if $v_i^* v_i \in Q := (B_i^0)' \cap M$ and $v_i v_i^* \in A_j$.
- But look at the countable set

$$K = \{j \leq i \mid v_i^* v_i \in Q, v_i v_i^* \in A_j\}$$

- Then since Q is type II₁, $Q \setminus \bigcup_{j \in K} v_i^* A_j v_i$ is dense G_{δ} in Q.
- So $\exists x \in Q \setminus \bigcup_{j \in K} v_i^* A_j v_i$ self adjoint.

• Call $B_i^1 = B_i^0 \vee \{x\}''$

Induction Step 3: Make B "more singular"

- I.e. We want to avoid $v_i^* v_i, v_i v_i^* \in B$, and $v_i B v_i^* = B v_i v_i^*$, but $v_i \notin B$. (so v_i moves a corner of B to another corner of B).
- Calling $Q := (B_i^1)' \cap M$, this could happen if either
- Case A: $v_i \in Q$ but $v_i \notin B_i^1$. (i.e. v_i could be in B but we haven't added it in yet).
- Case B: v_i ∉ Q but v_iv^{*}_i, v^{*}_iv_i ∈ Q. (i.e. v_i can't be in B, but the support projects of v_i might be in B)
- For Case A, just take $B_i^2 = B_i^1 \vee \{v_i\}''$.

For Case B:

- If $v_i B_i^1 v_i^* \neq B_i^1 v_i v_i^*$ then by U_0 , $\exists a_1 \in B_i^1$ and $a_2 \in Q$ self adjoint with $[v_i a_1 v_i^*, a_2] \neq 0$. Then we take $B_i^2 = B_i^1 \lor \{a_2\}''$
- If $v_i B_i^1 v_i^* = B_i^1 v_i v_i^*$, take orthogonal central projections $z_1, z_2 \in Q$ with $z_1 \leq v_i^* v_i$, $z_2 \leq v_i v_i^*$ and $v_i z_1 v_i^* = z_2$.
- Qz_1 is type II₁, so contains non-commuting self adjoints u, w. Letting $c = u + v_i w v_i^*$ gives $[v_i(cz_1)v_i^*, cz_2] \neq 0$. We then let $B_2^i = B_i^1 \vee \{c\}''$.

Induction Step 4:

- We let $B_i = B_i^2$.
- We claim this family $\{B_i\}_{i \in I}$ satisfies our earlier claim.
- I.e. let $B = \overline{\bigcup_{i \in I} B_i}^{\text{wo}}$. Then
- B is a MASA: any partial isometry v = v_i ∈ B' ∩ M ⊂ B'_i ∩ M would have been added to B at step i.
- *B* is singular: follows from step 3
- *B* is disjoint from all *A_i*: follows from step 2.

Therefore, $\{A_i\}_{i \in I}$ can't be a maximal family of disjoint singular MASAs. Hence r(M) > c.

21/22

Theorem

Let M be a II₁ U-factor M with the property that the cardinality of its unitary group $\mathcal{U}(M)$ is equal to \mathfrak{c} . If the continuum hypothesis, $\mathfrak{c} = \aleph_1$, is assumed, then M contains more than \mathfrak{c} many mutually disjoint singular MASAs, i.e., $r(M) > \mathfrak{c}$. Moreover, if the strong continuum hypothesis $2^{\mathfrak{c}} = \aleph_2$ is assumed, then $r(M) = 2^{\mathfrak{c}}$.