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Introduction Matrix-valued semicircular elements

Basics from noncommutative probability theory

Throughout the following, let (M, τ) be a tracial W ∗-probability space,
i.e., a �nite von Neumann algebra M which is endowed with a faithful
normal tracial state τ : M → C.

De�nition

For x = x∗ ∈ M, the (analytic) distribution of x is the Borel probability
measure µx on the real line R which is uniquely determined by

ϕ
(
(z1− x)−1

)
= Gµx(z) for all z ∈ C+.

Notation: For any Borel probability measure µ on R, we denote by

Gµ : C+ → C−, z 7→
∫
R

1

z − t
dµ(t),

where C± := {z ∈ C | ± Im(z) > 0}, the Cauchy transform of µ.
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Introduction Matrix-valued semicircular elements

Matrix-valued semicircular elements I

De�nition

An operator s = s∗ ∈ M which satis�es

dµs(t) =
1

2π

√
4− t2 1[−2,2](t) dt

is called (standard) semicircular element.
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Let us consider now the �augmented� tracial W ∗-probability space
(Mm(C)⊗M, trm⊗τ), where trm = 1

m Trm, Trm((aij)
m
i,j=1) =

∑m
i=1 aii.

De�nition

A matrix-valued semicircular element is a noncommutative random variable
in (Mm(C)⊗M, trm⊗τ) which is of the form

S := a1 ⊗ s1 + · · ·+ an ⊗ sn

with 1 s1, . . . , sn freely independent semicircular elements in M;

2 a1, . . . , an selfadjoint matrices in Mm(C).
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Introduction Matrix-valued semicircular elements

Matrix-valued semicircular elements II

S := a1 ⊗ s1 + · · ·+ an ⊗ sn is a centered operator-valued semicircular
element with the covariance η : Mm(C) → Mm(C) which is given by

η(b) := E[SbS] =
n∑

j=1

ajbaj with E := idMm(C)⊗τ .

The operator-valued Cauchy transform of S, which is given by

GS : H+(Mm(C)) → H−(Mm(C)), b 7→ E
[
(b⊗ 1− S)−1

]
,

where H±(Mm(C)) := {b ∈ Mm(C) | ± Im(b) > 0}, is determined
uniquely by the Dyson equation

bGS(b) = 1m + η(GS(b))GS(b) for all b ∈ H+(Mm(B)).

The scalar-valued Cauchy transform of µS is related to GS by

GµS (z) = trm(GS(z1m)) for all z ∈ C+.

We obtain µS from GS with the help of Stieltjes inversion.
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Introduction Matrix-valued semicircular elements

Example

Consider the matrix-valued semicircular element

S =

0 2 0
2 0 0
0 0 0

⊗ s1 +

0 0 1
0 0 0
1 0 0

⊗ s2 +

0 1 0
1 0 1
0 1 0

⊗ s3.

We obtain for µS the following (approximate) density:
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Introduction The noncommutative Edmonds' problem

The noncommutative Edmond's problem

Let C⟨x1, . . . ,xn⟩ be the algebra of noncommutative polynomials in the
formal non-commuting ideterminates x1, . . . ,xn.

De�nition

Let A ∈ Mm(C⟨x1, . . . ,xn⟩) be given.

For A ̸= 0, the (inner) rank rank(A) of A is the least integer k ≥ 1 for
which A can be written as A = R1R2 with some rectangular matrices

R1 ∈ Mm×k(C⟨x1, . . . ,xn⟩) and R2 ∈ Mk×m(C⟨x1, . . . ,xn⟩).
In the particular case A = 0, we put rank(A) = 0.

We say that A is full if it has full rank, i.e., if rank(A) = m.

Noncommutative Edmonds' problem

Decide fullness (or, more generally, compute the inner rank) of

A = a1x1 + · · ·+ anxn ∈ Mm(C⟨x1, . . . ,xn⟩).

☞ [Garg, Gurvits, Oliveira, Wigderson (2016,2020)], . . .
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Introduction The noncommutative Edmonds' problem

An analytic approach using matrix-valued semicirculars I

Let A = a1x1 + · · ·+ anxn ∈ Mm(C⟨x1, . . . ,xn⟩) be given.

By passing to the hermitization

Ah =

[
0 a1
a∗1 0

]
x1 + · · ·+

[
0 an
a∗n 0

]
xn

in M2m(C⟨x1, . . . ,xn⟩), we may assume without loss of generality
that A is hermitian; note that rank(Ah) = 2 rank(A).

To A = A∗, we associate the matrix-valued semicircular element
S = a1 ⊗ s1 + · · ·+ an ⊗ sn in (Mm(C)⊗M, trm⊗τ), where
s1, . . . , sn are freely independent semicircular elements in (M, τ).

Theorem (Shlyakhtenko, Skoufranis (2015); M., Speicher, Yin (2023))

1 The analytic distribution µS of S is of �regular type�.

2 The only possible values of µS({0}) are { k
m | k = 0, 1, . . . ,m}.

3 We have rank(A) = m
(
1− µS({0})

)
.
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Introduction The noncommutative Edmonds' problem

An analytic approach using matrix-valued semicirculars II

Now, our task is to compute µS({0}).

Recall that GS and hence GµS can be computed e�ciently.
☞ [Helton, Rashidi Far, Speicher (2007)]

There are a priori and a posteriori error bounds.
☞ [M., Speicher, Ho�mann (2023)]

Proposition (M., Speicher, Ho�mann (2023))

Let µ be a Borel probability measure on R. We de�ne the function

θµ : R+ → R+, y 7→ −y Im(Gµ(iy)) = Re(iyGµ(iy))

on R+ := (0,∞), where Gµ : C+ → C− is the Cauchy transform of µ.
Then, the following statements hold true:

1 We have limy→∞ θµ(y) = 1 and limy→0 θµ(y) = µ({0}).
2 The function θµ is increasing.

3 We have µ({0}) ≤ θµ(y) for all y ∈ R+.

Tobias Mai (Saarland University) Fuglede-Kadison determinant August 2, 2024 8 / 25



Introduction The noncommutative Edmonds' problem

An analytic approach using matrix-valued semicirculars II

Now, our task is to compute µS({0}).
Recall that GS and hence GµS can be computed e�ciently.

☞ [Helton, Rashidi Far, Speicher (2007)]

There are a priori and a posteriori error bounds.
☞ [M., Speicher, Ho�mann (2023)]

Proposition (M., Speicher, Ho�mann (2023))

Let µ be a Borel probability measure on R. We de�ne the function

θµ : R+ → R+, y 7→ −y Im(Gµ(iy)) = Re(iyGµ(iy))

on R+ := (0,∞), where Gµ : C+ → C− is the Cauchy transform of µ.
Then, the following statements hold true:

1 We have limy→∞ θµ(y) = 1 and limy→0 θµ(y) = µ({0}).
2 The function θµ is increasing.

3 We have µ({0}) ≤ θµ(y) for all y ∈ R+.

Tobias Mai (Saarland University) Fuglede-Kadison determinant August 2, 2024 8 / 25



Introduction The noncommutative Edmonds' problem

An analytic approach using matrix-valued semicirculars II

Now, our task is to compute µS({0}).
Recall that GS and hence GµS can be computed e�ciently.

☞ [Helton, Rashidi Far, Speicher (2007)]

There are a priori and a posteriori error bounds.
☞ [M., Speicher, Ho�mann (2023)]

Proposition (M., Speicher, Ho�mann (2023))

Let µ be a Borel probability measure on R. We de�ne the function

θµ : R+ → R+, y 7→ −y Im(Gµ(iy)) = Re(iyGµ(iy))

on R+ := (0,∞), where Gµ : C+ → C− is the Cauchy transform of µ.
Then, the following statements hold true:

1 We have limy→∞ θµ(y) = 1 and limy→0 θµ(y) = µ({0}).
2 The function θµ is increasing.

3 We have µ({0}) ≤ θµ(y) for all y ∈ R+.

Tobias Mai (Saarland University) Fuglede-Kadison determinant August 2, 2024 8 / 25



Introduction The noncommutative Edmonds' problem

An analytic approach using matrix-valued semicirculars II

Now, our task is to compute µS({0}).
Recall that GS and hence GµS can be computed e�ciently.

☞ [Helton, Rashidi Far, Speicher (2007)]

There are a priori and a posteriori error bounds.
☞ [M., Speicher, Ho�mann (2023)]

Proposition (M., Speicher, Ho�mann (2023))

Let µ be a Borel probability measure on R. We de�ne the function

θµ : R+ → R+, y 7→ −y Im(Gµ(iy)) = Re(iyGµ(iy))

on R+ := (0,∞), where Gµ : C+ → C− is the Cauchy transform of µ.
Then, the following statements hold true:

1 We have limy→∞ θµ(y) = 1 and limy→0 θµ(y) = µ({0}).

2 The function θµ is increasing.

3 We have µ({0}) ≤ θµ(y) for all y ∈ R+.

Tobias Mai (Saarland University) Fuglede-Kadison determinant August 2, 2024 8 / 25



Introduction The noncommutative Edmonds' problem

An analytic approach using matrix-valued semicirculars II

Now, our task is to compute µS({0}).
Recall that GS and hence GµS can be computed e�ciently.

☞ [Helton, Rashidi Far, Speicher (2007)]

There are a priori and a posteriori error bounds.
☞ [M., Speicher, Ho�mann (2023)]

Proposition (M., Speicher, Ho�mann (2023))

Let µ be a Borel probability measure on R. We de�ne the function

θµ : R+ → R+, y 7→ −y Im(Gµ(iy)) = Re(iyGµ(iy))

on R+ := (0,∞), where Gµ : C+ → C− is the Cauchy transform of µ.
Then, the following statements hold true:

1 We have limy→∞ θµ(y) = 1 and limy→0 θµ(y) = µ({0}).
2 The function θµ is increasing.

3 We have µ({0}) ≤ θµ(y) for all y ∈ R+.

Tobias Mai (Saarland University) Fuglede-Kadison determinant August 2, 2024 8 / 25



Introduction The noncommutative Edmonds' problem

An analytic approach using matrix-valued semicirculars II

Now, our task is to compute µS({0}).
Recall that GS and hence GµS can be computed e�ciently.

☞ [Helton, Rashidi Far, Speicher (2007)]

There are a priori and a posteriori error bounds.
☞ [M., Speicher, Ho�mann (2023)]

Proposition (M., Speicher, Ho�mann (2023))

Let µ be a Borel probability measure on R. We de�ne the function

θµ : R+ → R+, y 7→ −y Im(Gµ(iy)) = Re(iyGµ(iy))

on R+ := (0,∞), where Gµ : C+ → C− is the Cauchy transform of µ.
Then, the following statements hold true:

1 We have limy→∞ θµ(y) = 1 and limy→0 θµ(y) = µ({0}).
2 The function θµ is increasing.

3 We have µ({0}) ≤ θµ(y) for all y ∈ R+.

Tobias Mai (Saarland University) Fuglede-Kadison determinant August 2, 2024 8 / 25



Introduction The noncommutative Edmonds' problem

Example

Consider again the matrix-valued semicircular element

S =

0 2 0
2 0 0
0 0 0

⊗ s1 +

0 0 1
0 0 0
1 0 0

⊗ s2 +

0 1 0
1 0 1
0 1 0

⊗ s3.

We can obtain arbitrarily good approximations θ̃ for θµS (y):

How small must y > 0
be chosen so that we
can decide whether
µS({0}) < 1

m or not?
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Introduction The noncommutative Edmonds' problem

How close do we have to get to the real axis?

De�nition

A Borel probability measure µ is said to be of regular type if it is of the form

µ = µ({0})δ0 + ν

for some �nite Borel measure ν for which there are c ≥ 0, β ∈ (0, 1] and
r0 > 0 such that

ν([−r, r]) ≤ crβ for all 0 < r < r0.

Proposition (M., Speicher, Ho�mann (2023))

Let µ be of regular type. Put γ := 2
2+β and y0 := r

1/γ
0 ; then

θµ(y)− µ({0}) ≤ (c+ ν(R))y
2β
2+β for all 0 < y < y0.

Problem: Parameters c, β, r0 are not known in general.
Idea: Use Fuglede-Kadison determinant instead!
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Fuglede-Kadison determinant of matrix-valued semicirculars Statement of the �rst main result

The Fuglede-Kadison determinant ...

De�nition (Fuglede, Kadison (1952))

For a (not necessarily selfadjoint) operator x ∈ M its Fuglede-Kadison
determinant is de�ned by

∆(x) := exp

(∫ ∞

0
log(t) dµ|x|(t)

)
∈ [0,∞),

where |x| := (x∗x)1/2.

Fact: For (M, τ) = (Mm(C), trm), we get ∆(b) = |det(b)|1/m.

Lemma (M., Speicher, Ho�mann (2024))

Let x = x∗ ∈ M be invertible. Then, for all 0 < ε < ∥x∥, we have

µx([−ε, ε]) ≤ log ∥x∥ − log∆(x)

log ∥x∥ − log ε
.

Tobias Mai (Saarland University) Fuglede-Kadison determinant August 2, 2024 11 / 25



Fuglede-Kadison determinant of matrix-valued semicirculars Statement of the �rst main result

The Fuglede-Kadison determinant ...

De�nition (Fuglede, Kadison (1952))

For a (not necessarily selfadjoint) operator x ∈ M its Fuglede-Kadison
determinant is de�ned by

∆(x) := exp

(∫ ∞

0
log(t) dµ|x|(t)

)
∈ [0,∞),

where |x| := (x∗x)1/2.

Fact: For (M, τ) = (Mm(C), trm), we get ∆(b) = |det(b)|1/m.

Lemma (M., Speicher, Ho�mann (2024))

Let x = x∗ ∈ M be invertible. Then, for all 0 < ε < ∥x∥, we have

µx([−ε, ε]) ≤ log ∥x∥ − log∆(x)

log ∥x∥ − log ε
.

Tobias Mai (Saarland University) Fuglede-Kadison determinant August 2, 2024 11 / 25



Fuglede-Kadison determinant of matrix-valued semicirculars Statement of the �rst main result

The Fuglede-Kadison determinant ...

De�nition (Fuglede, Kadison (1952))

For a (not necessarily selfadjoint) operator x ∈ M its Fuglede-Kadison
determinant is de�ned by

∆(x) := exp

(∫ ∞

0
log(t) dµ|x|(t)

)
∈ [0,∞),

where |x| := (x∗x)1/2.

Fact: For (M, τ) = (Mm(C), trm), we get ∆(b) = |det(b)|1/m.

Lemma (M., Speicher, Ho�mann (2024))

Let x = x∗ ∈ M be invertible. Then, for all 0 < ε < ∥x∥, we have

µx([−ε, ε]) ≤ log ∥x∥ − log∆(x)

log ∥x∥ − log ε
.

Tobias Mai (Saarland University) Fuglede-Kadison determinant August 2, 2024 11 / 25



Fuglede-Kadison determinant of matrix-valued semicirculars Statement of the �rst main result

The Fuglede-Kadison determinant ...

De�nition (Fuglede, Kadison (1952))

For a (not necessarily selfadjoint) operator x ∈ M its Fuglede-Kadison
determinant is de�ned by

∆(x) := exp

(∫ ∞

0
log(t) dµ|x|(t)

)
∈ [0,∞),

where |x| := (x∗x)1/2.

Fact: For (M, τ) = (Mm(C), trm), we get ∆(b) = |det(b)|1/m.

Lemma (M., Speicher, Ho�mann (2024))

Let x = x∗ ∈ M be invertible. Then, for all 0 < ε < ∥x∥, we have

µx([−ε, ε]) ≤ log ∥x∥ − log∆(x)

log ∥x∥ − log ε
.

Tobias Mai (Saarland University) Fuglede-Kadison determinant August 2, 2024 11 / 25



Fuglede-Kadison determinant of matrix-valued semicirculars Statement of the �rst main result

... of matrix-valued semicircular elements

De�nition (Gurvits (2004))

The capacity of a positive map η : Mm(C) → Mm(C) is de�ned by

cap(η) := inf{det(η(b)) | b ∈ Mm(C), b > 0,det(b) = 1}.

Theorem (M., Speicher (2024))

Consider a (not necessarily selfadjoint) matrix-valued semicircular element

S = a1 ⊗ s1 + · · ·+ an ⊗ sn for a1, . . . , an ∈ Mm(C)
with the associated covariance map

η : Mm(C) → Mm(C), b 7→
n∑

i=1

aiba
∗
i .

Then we have for the Fuglede-Kadison determinant of S that

∆(S) = cap(η)
1

2m e−
1
2 .
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Fuglede-Kadison determinant of matrix-valued semicirculars Statement of the �rst main result

The dual covariance map

To a matrix-valued semicircular element S = a1 ⊗ s1 + · · ·+ an ⊗ sn, we
can associate two completely positive maps η, η∗ : Mm(C) → Mm(C) by

η(b) = E[SbS∗] =
n∑

i=1

aiba
∗
i and η∗(b) = E[S∗bS] =

n∑
i=1

a∗i bai.

Remark

These maps η, η∗ : Mm(C) → Mm(C) are related by

⟨η(b1), b2⟩ = ⟨b1, η∗(b2)⟩ for all b1, b2 ∈ Mm(C),

where ⟨·, ·⟩ is the inner product on Mm(C) which is de�ned by
⟨b1, b2⟩ := trm(b1b

∗
2); thus, η

∗ is the dual to η with respect to ⟨·, ·⟩.
Since ∆(S) = ∆(S∗), our theorem readily implies cap(η) = cap(η∗).
This is consistent with the fact that

cap(η)
1
m = inf{trm(η(b1)b2) | b1, b2 > 0,det(b1) = det(b2) = 1}.

☞ [Garg, Gurvits, Oliveira, Wigderson (2016,2020)]
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Fuglede-Kadison determinant of matrix-valued semicirculars Steps in the proof of the �rst main theorem

The selfadjoint, doubly stochastic case

Proposition (M., Speicher (2024))

Consider a selfadjoint matrix-valued semicircular element

S = a1 ⊗ s1 + · · ·+ an ⊗ sn for a1, . . . , an ∈ Mm(C)sa
with the associated self-dual covariance map

η : Mm(C) → Mm(C), b 7→
n∑

i=1

aibai.

If η is doubly stochastic, that is, if η(1m) = 1m, then µS is the standard
semicircle distribution [Nica, Shlyakhtenko, Speicher (2002)] and thus

∆(S) = e−
1
2 .

Proof.

dµS(t) =
1
2π

√
4− t2 1[−2,2](t) dt yields dµ|S|(t) =

1
π

√
4− t2 1[0,2](t) dt;

hence, we get ∆(S) = exp
( ∫

[0,2] log(t) dµ|S|(t)
)
= e−

1
2 .
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Fuglede-Kadison determinant of matrix-valued semicirculars Steps in the proof of the �rst main theorem

Indecomposable positive linear maps

De�nition (Gurvits (2004))

A positive linear map η : Mm(C) → Mm(C) is said to be

1 doubly stochastic if both η(1m) = 1m and η∗(1m) = 1m;

2 rank non-decreasing if rank(η(b)) ≥ rank(b) for all b ≥ 0;

3 indecomposable if rank(η(b)) > rank(b) for all b ≥ 0 which satisfy the
condition 1 ≤ rank(b) < m.

Proposition (Gurvits (2004))

1 η is rank non-decreasing if and only if cap(η) > 0.

2 η is indecomposable if and only if there is a unique positive de�nite
matrix c ∈ Mm(C) with det(c) = 1 and det(η(c)) = cap(η).

3 If η is indecomposable (and hence rank non-decreasing), then

ηη(c)−1/2,c1/2 : Mm(C) → Mm(C), b 7→ η(c)−1/2η(c1/2bc1/2)η(c)−1/2

is doubly stochastic.
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Fuglede-Kadison determinant of matrix-valued semicirculars Steps in the proof of the �rst main theorem

Operator scaling

De�nition (Gurvits (2004))

For a positive linear map η : Mm(C) → Mm(C) and arbitrary matrices
c1, c2 ∈ Mm(C), we de�ne the operator scaling

ηc1,c2 : Mm(C) → Mm(C), b 7→ c1η(c
∗
2bc2)c

∗
1.

Lemma (M., Speicher (2024))

Let S =
∑n

i=1 ai ⊗ si be a matrix-valued semicircular element with the
associated pair (η, η∗) of dual covariance maps and let c1, c2 ∈ Mm(C).
Then the associated pair of dual covariance maps of

S̃ :=

n∑
i=1

(c1aic2)⊗ si

is given by (ηc1,c2 , (η
∗)c2,c1) and we have that

∆(S̃) = |det(c1)|
1
m |det(c2)|

1
m∆(S).
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Fuglede-Kadison determinant of matrix-valued semicirculars Steps in the proof of the �rst main theorem

Hermitization

Lemma (M., Speicher (2024))

Let S =
∑n

i=1 ai ⊗ si be a matrix-valued semicircular element with the
associated pair (η, η∗) of dual covariance maps η, η∗ : Mm(C) → Mm(C).
The selfadjoint M2m(C)-valued semicircular element de�ned by

Sh :=

n∑
i=1

[
0 ai
a∗i 0

]
⊗ si

has the self-dual covariance map ηh : M2m(C) → M2m(C) given by

ηh
([

b11 b12
b21 b22

])
=

[
η(b22) ρ(b21)
ρ∗(b12) η∗(b11)

]
with ρ(b) :=

∑n
i=1 aibai. We call Sh the hermitization of S. Then

∆(Sh) = ∆(S).
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Fuglede-Kadison determinant of matrix-valued semicirculars Steps in the proof of the �rst main theorem

The indecomposable case

Proposition (M., Speicher (2024))

Let S =
∑n

i=1 ai ⊗ si be a matrix-valued semicircular element for which
the associated covariance map η : Mm(C) → Mm(C), b 7→

∑n
i=1 aiba

∗
i is

indecomposable (and hence rank non-decreasing). Then we have that

∆(S) = cap(η)
1

2m e−
1
2 .

Proof.

Take c > 0 with det(c) = 1 and det(η(c)) = cap(η). Then the
operator-scaling η̃ := ηη(c)−1/2,c1/2 is doubly stochastic and for the

corresponding matrix-valued semicircular element S̃, we get

∆(S) = det(η(c))
1

2m det(c)−
1

2m∆(S̃) = cap(η)
1

2m∆(S̃).

For the hermitization S̃h, we have ∆(S̃) = ∆(S̃h).

Then η̃h satis�es η̃h(12m) = 12m; hence, ∆(S̃h) = e−
1
2 .
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Fuglede-Kadison determinant of matrix-valued semicirculars Steps in the proof of the �rst main theorem

The general case: proof of the lower bound

Let S =
∑n

i=1 ai ⊗ si be a matrix-valued semicircular element with the
associated pair (η, η∗) of dual covariance maps.

Without loss of generality, we may assume that cap(η) > 0.
☞ [M., Speicher, Yin (2023)]

Let S♭ be a selfadjoint matrix-valued semicircular element whose
covariance map is the completely depolarizing channel

η♭ : Mm(C) → Mm(C), b 7→ trm(b)1m.

Suppose that S and S♭ are free with amalgamation over Mm(C).
For t ≥ 0, St := S +

√
tS♭ is a matrix-valued semicircular element

with the associated pair (ηt, η
∗
t ) of dual covariance maps given by

ηt(b) = η(b) + tη♭(b) and η∗t (b) = η∗(b) + tη♭(b).

For all t > 0, ηt is indecomposable. Thus, ∆(St) = cap(ηt)
1

2m e−
1
2 .
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Fuglede-Kadison determinant of matrix-valued semicirculars Steps in the proof of the �rst main theorem

The general case: proof of the lower bound

Since ηt ≥ η, we get cap(ηt) ≥ cap(η) for all t ≥ 0.

We have ∥ηht − ηh∥ = t and hence limt↘0 ∥ηht − ηh∥ = 0. It follows
that the hermitizations Sh

t converge in distribution to Sh as t ↘ 0.
☞ [Banna, M. (2023)]

We conclude that ∆(S) ≥ cap(η)
1

2m e−
1
2 using the following result.

Proposition

Let Tn (n ∈ N) and T be positive operators in some tracial W ∗-probability
space (M, τ), such that (Tn)n∈N converges in distribution to T , that is

lim
n→∞

τ(T k
n ) = τ(T k) for all k ∈ N.

Assume that all Tn and T have trivial kernel and that supn ∥Tn∥ < ∞.
Then we have

∆(T ) ≥ lim sup
n→∞

∆(Tn).
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Let Tn (n ∈ N) and T be positive operators in some tracial W ∗-probability
space (M, τ), such that (Tn)n∈N converges in distribution to T , that is

lim
n→∞

τ(T k
n ) = τ(T k) for all k ∈ N.

Assume that all Tn and T have trivial kernel and that supn ∥Tn∥ < ∞.
Then we have

∆(T ) ≥ lim sup
n→∞

∆(Tn).
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Fuglede-Kadison determinant of matrix-valued semicirculars Steps in the proof of the �rst main theorem

Positive maps close to being doubly stochastic

De�nition (Gurvits (2004))

For a positive linear map η : Mm(C) → Mm(C), we de�ne

ds(η) := Trm
(
(η(1m)− 1m)2

)
+Trm

(
(η∗(1m)− 1m)2

)
.

Note: η doubly stochastic ⇐⇒ ds(η) = 0

Proposition (Garg, Gurvits, Oliveira, Wigderson (2020))

Let η : Mm(C) → Mm(C) be completely positive with cap(η) > 0 and let
c > 0 be an �approximate minimizer� of cap(η) in the sense that

cap(η) ≥ e−δ · det(η(c))
det(c)

for some δ ∈ (0, 16 ]. Then

ds(ηη(c)−1/2,c1/2) = Trm
(
(cη∗(η(c)−1)− 1m)2

)
≤ 6δ.

Recall: ηη(c)−1/2,c1/2(b) = η(c)−1/2η(c1/2bc1/2)η(c)−1/2.
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Fuglede-Kadison determinant of matrix-valued semicirculars Steps in the proof of the �rst main theorem

The general case: proof of the upper bound

Let S =
∑n

i=1 ai ⊗ si be a matrix-valued semicircular element with the
associated pair (η, η∗) of dual covariance maps. Suppose cap(η) > 0.

For δ ∈ (0, 16 ], choose an �approximate minimizer� cδ > 0 of cap(η) in
the sense that

cap(η) ≥ e−δ · det(η(cδ))
det(cδ)

.

De�ne ηδ := η
η(cδ)−1/2,c

1/2
δ

; then ds(ηδ) ≤ 6δ.

For the corresponding matrix-valued semicircular element S̃δ, we get

∆(S) =

(
det(η(cδ))

det(cδ)

) 1
2m

∆(S̃δ) ≤ cap(η)
1

2m e
δ

2m∆(S̃δ).

From lim
δ↘0

ds(ηδ) = 0, it follows that lim
δ↘0

ds(ηhδ ) = 0.

From lim
δ↘0

ds(ηhδ ) = 0, we infer that lim
δ↘0

∥ηhδ (12m)− 12m∥ = 0.
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Fuglede-Kadison determinant of matrix-valued semicirculars Steps in the proof of the �rst main theorem

The general case: proof of the upper bound

Since lim
δ↘0

∥ηhδ (12m)− 12m∥ = 0, the next proposition shows that the

hermitizations S̃h
δ converge in distribution to a standard semicircular

element s as δ ↘ 0.

We infer that lim sup
δ↘0

∆(S̃δ) = lim sup
δ↘0

∆(S̃h
δ ) ≤ ∆(s) = e−

1
2 .

Since ∆(S) ≤ cap(η)
1

2m e
δ

2m∆(S̃δ), we get ∆(S) ≤ cap(η)
1

2m e−
1
2 .

Proposition (M., Speicher (2024))

Let S =
∑n

i=1 ai ⊗ si be selfadjoint with the associated self-dual covariance
map η : Mm(C) → Mm(C), b 7→

∑n
i=1 aibai. For all k ∈ N, we have∣∣∣∣(trm⊗τ)(S2k)−

∫ 2

−2
t2k dµs(t)

∣∣∣∣ ≤ Ck

( k−1∑
j=0

∥η∥j
)
∥η(1m)− 1m∥,

where Ck denotes the k-th Catalan number.
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Fuglede-Kadison determinant of matrix-valued semicirculars The second main result

A lower bound for the capacity

Theorem (M., Speicher (2024))

Consider a completely positive map of the form

η : Mm(C) → Mm(C), b 7→
n∑

i=1

aiba
∗
i with ai ∈ Mm(Z).

If η is rank non-decreasing then cap(η) ≥ 1.

☞ [Garg, Gurvits, Oliveira, Wigderson (2016,2020)]

Proof.

Consider T :=
∑n

i=1 ai ⊗ ui in (Mm(C)⊗ L(Fn), trm⊗τ).

Since the determinantal conjecture is true for Fn, we have ∆(T ) ≥ 1.

For b > 0 with det(b) = 1, de�ne T̃ :=
∑n

i=1

(
η(b)−1/2aib

1/2
)
⊗ ui.

By multiplicativity, ∆(T̃ ) = det(η(b))−
1

2m∆(T ) ≥ det(η(b))−
1

2m .

On the other hand, ∆(T̃ )2 = ∆(T̃ T̃ ∗) ≤ (trm⊗τ)(T̃ T̃ ∗) = 1.
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i=1

(
η(b)−1/2aib

1/2
)
⊗ ui.

By multiplicativity, ∆(T̃ ) = det(η(b))−
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2m∆(T ) ≥ det(η(b))−
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2m .
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Fuglede-Kadison determinant of matrix-valued semicirculars Conjecture

Determinants of Gaussian block random matrices

Let a1, . . . , an ∈ Mm(C) be given such that the completely positive
map η : Mm(C) → Mm(C), b 7→

∑n
i=1 aiba

∗
i is rank non-decreasing.

Consider n independent GUE random matrices X
(N)
1 , . . . , X

(N)
n and

the Gaussian block random matrix

AN = a1 ⊗X
(N)
1 + · · ·+ an ⊗X(N)

n .

There exists N0 such that for all N ≥ N0, AN is almost surely invertible.
☞ [Collins, M., Miyagawa, Parraud, Yin (2024)]

Conjecture

We claim that in the situation described above, we even have that

lim
N→∞

∆(AN ) = cap(η)
1

2m e−
1
2 ,

both in expectation and almost surely.

Thank you!
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