The Fuglede-Kadison determinant of matrix-valued semicircular elements and the capacity of completely positive maps

Tobias Mai

(joint work with Roland Speicher)

Saarland University

Probabilistic Operator Algebra Seminar University of California, Berkeley

August 2, 2024

Basics from noncommutative probability theory

Basics from noncommutative probability theory

Throughout the following, let (\mathcal{M}, τ) be a tracial W^* -probability space, i.e., a finite von Neumann algebra \mathcal{M} which is endowed with a faithful normal tracial state $\tau : \mathcal{M} \to \mathbb{C}$.

Basics from noncommutative probability theory

Throughout the following, let (\mathcal{M}, τ) be a tracial W^* -probability space, i.e., a finite von Neumann algebra \mathcal{M} which is endowed with a faithful normal tracial state $\tau : \mathcal{M} \to \mathbb{C}$.

Definition

For $x = x^* \in \mathcal{M}$, the (analytic) distribution of x is the Borel probability measure μ_x on the real line \mathbb{R} which is uniquely determined by

 $\phi((z\mathbf{1}-x)^{-1}) = \mathcal{G}_{\mu_x}(z) \quad \text{for all } z \in \mathbb{C}^+.$

Notation: For any Borel probability measure μ on $\mathbb R$, we denote by

$$\mathcal{G}_{\mu}: \mathbb{C}^+ \to \mathbb{C}^-, \quad z \mapsto \int_{\mathbb{R}} \frac{1}{z-t} \,\mathrm{d}\mu(t),$$

where $\mathbb{C}^{\pm} := \{z \in \mathbb{C} \mid \pm \operatorname{Im}(z) > 0\}$, the Cauchy transform of μ .

Matrix-valued semicircular elements I

Matrix-valued semicircular elements I

Definition

An operator $s = s^* \in \mathcal{M}$ which satisfies

$$d\mu_s(t) = \frac{1}{2\pi} \sqrt{4 - t^2} \,\mathbf{1}_{[-2,2]}(t) \,dt$$

is called (standard) semicircular element.

Let us consider now the "augmented" tracial W^* -probability space $(M_m(\mathbb{C}) \otimes \mathcal{M}, \operatorname{tr}_m \otimes \tau)$, where $\operatorname{tr}_m = \frac{1}{m} \operatorname{Tr}_m$, $\operatorname{Tr}_m((a_{ij})_{i,j=1}^m) = \sum_{i=1}^m a_{ii}$.

Matrix-valued semicircular elements I

Definition

An operator $s = s^* \in \mathcal{M}$ which satisfies

$$d\mu_s(t) = \frac{1}{2\pi} \sqrt{4 - t^2} \,\mathbf{1}_{[-2,2]}(t) \,dt$$

is called (standard) semicircular element.

Let us consider now the "augmented" tracial W^* -probability space $(M_m(\mathbb{C}) \otimes \mathcal{M}, \operatorname{tr}_m \otimes \tau)$, where $\operatorname{tr}_m = \frac{1}{m} \operatorname{Tr}_m$, $\operatorname{Tr}_m((a_{ij})_{i,j=1}^m) = \sum_{i=1}^m a_{ii}$.

Definition

A matrix-valued semicircular element is a noncommutative random variable in $(M_m(\mathbb{C}) \otimes \mathcal{M}, \operatorname{tr}_m \otimes \tau)$ which is of the form

 $S := a_1 \otimes s_1 + \dots + a_n \otimes s_n$

with 1 s₁,..., s_n freely independent semicircular elements in M;
2 a₁,..., a_n selfadjoint matrices in M_m(C).

Tobias Mai (Saarland University)

Fuglede-Kadison determinant

Matrix-valued semicircular elements II

 $S := a_1 \otimes s_1 + \cdots + a_n \otimes s_n$ is a centered operator-valued semicircular element with the covariance $\eta : M_m(\mathbb{C}) \to M_m(\mathbb{C})$ which is given by

$$\eta(b) := \mathbb{E}[SbS] = \sum_{j=1}^{n} a_j b a_j$$
 with $\mathbb{E} := \mathrm{id}_{M_m(\mathbb{C})} \otimes \tau$.

Matrix-valued semicircular elements II

 $S := a_1 \otimes s_1 + \cdots + a_n \otimes s_n$ is a centered operator-valued semicircular element with the covariance $\eta : M_m(\mathbb{C}) \to M_m(\mathbb{C})$ which is given by

$$\eta(b) := \mathbb{E}[SbS] = \sum_{j=1}^n a_j b a_j$$
 with $\mathbb{E} := \mathrm{id}_{M_m(\mathbb{C})} \otimes \tau.$

• The operator-valued Cauchy transform of S, which is given by $G_S: \mathbb{H}^+(M_m(\mathbb{C})) \to \mathbb{H}^-(M_m(\mathbb{C})), \quad b \mapsto \mathbb{E}[(b \otimes 1 - S)^{-1}],$ where $\mathbb{H}^{\pm}(M_m(\mathbb{C})) := \{b \in M_m(\mathbb{C}) \mid \pm \operatorname{Im}(b) > 0\}$, is determined uniquely by the Dyson equation

 $bG_S(b) = \mathbf{1}_m + \eta(G_S(b))G_S(b)$ for all $b \in \mathbb{H}^+(M_m(B))$.

Matrix-valued semicircular elements II

 $S := a_1 \otimes s_1 + \cdots + a_n \otimes s_n$ is a centered operator-valued semicircular element with the covariance $\eta : M_m(\mathbb{C}) \to M_m(\mathbb{C})$ which is given by

$$\eta(b) := \mathbb{E}[SbS] = \sum_{j=1}^{n} a_j b a_j$$
 with $\mathbb{E} := \mathrm{id}_{M_m(\mathbb{C})} \otimes \tau.$

• The operator-valued Cauchy transform of S, which is given by $G_S: \mathbb{H}^+(M_m(\mathbb{C})) \to \mathbb{H}^-(M_m(\mathbb{C})), \quad b \mapsto \mathbb{E}[(b \otimes 1 - S)^{-1}],$ where $\mathbb{H}^{\pm}(M_m(\mathbb{C})) := \{b \in M_m(\mathbb{C}) \mid \pm \operatorname{Im}(b) > 0\}$, is determined uniquely by the Dyson equation

 $bG_S(b) = \mathbf{1}_m + \eta(G_S(b))G_S(b)$ for all $b \in \mathbb{H}^+(M_m(B))$.

ullet The scalar-valued Cauchy transform of μ_S is related to G_S by

 $\mathcal{G}_{\mu_S}(z) = \operatorname{tr}_m(G_S(z\mathbf{1}_m)) \quad \text{for all } z \in \mathbb{C}^+.$

We obtain μ_S from \mathcal{G}_S with the help of Stieltjes inversion.

Consider the matrix-valued semicircular element

$$S = \begin{bmatrix} 0 & 2 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \otimes s_1 + \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \otimes s_2 + \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \otimes s_3.$$

We obtain for μ_S the following (approximate) density:

Let $\mathbb{C}\langle \mathbf{x}_1, \ldots, \mathbf{x}_n \rangle$ be the algebra of noncommutative polynomials in the formal non-commuting ideterminates $\mathbf{x}_1, \ldots, \mathbf{x}_n$.

Let $\mathbb{C}\langle \mathbf{x}_1, \dots, \mathbf{x}_n \rangle$ be the algebra of noncommutative polynomials in the formal non-commuting ideterminates $\mathbf{x}_1, \dots, \mathbf{x}_n$.

Definition

Let $A \in M_m(\mathbb{C}\langle \mathbf{x}_1, \dots, \mathbf{x}_n \rangle)$ be given.

For A ≠ 0, the (inner) rank rank(A) of A is the least integer k ≥ 1 for which A can be written as A = R₁R₂ with some rectangular matrices R₁ ∈ M_{m×k}(C⟨x₁,...,x_n⟩) and R₂ ∈ M_{k×m}(C⟨x₁,...,x_n⟩). In the particular case A = 0, we put rank(A) = 0.
We say that A is full if it has full rank, i.e., if rank(A) = m.

Let $\mathbb{C}\langle \mathbf{x}_1, \ldots, \mathbf{x}_n \rangle$ be the algebra of noncommutative polynomials in the formal non-commuting ideterminates $\mathbf{x}_1, \ldots, \mathbf{x}_n$.

Definition

Let $A \in M_m(\mathbb{C}\langle \mathbf{x}_1, \dots, \mathbf{x}_n \rangle)$ be given.

- For $A \neq 0$, the (inner) rank rank(A) of A is the least integer $k \geq 1$ for which A can be written as $A = R_1 R_2$ with some rectangular matrices $R_1 \in M_{m \times k}(\mathbb{C}\langle \mathbf{x}_1, \dots, \mathbf{x}_n \rangle)$ and $R_2 \in M_{k \times m}(\mathbb{C}\langle \mathbf{x}_1, \dots, \mathbf{x}_n \rangle)$. In the particular case A = 0, we put rank(A) = 0.
- We say that A is full if it has full rank, i.e., if rank(A) = m.

Noncommutative Edmonds' problem

Decide fullness (or, more generally, compute the inner rank) of

 $A = a_1 \mathbf{x}_1 + \dots + a_n \mathbf{x}_n \in M_m(\mathbb{C}\langle \mathbf{x}_1, \dots, \mathbf{x}_n \rangle).$

🖙 [Garg, Gurvits, Oliveira, Wigderson (2016,2020)], ...

Let $A = a_1 \mathbf{x}_1 + \dots + a_n \mathbf{x}_n \in M_m(\mathbb{C}\langle \mathbf{x}_1, \dots, \mathbf{x}_n \rangle)$ be given.

- Let $A = a_1 \mathbf{x}_1 + \dots + a_n \mathbf{x}_n \in M_m(\mathbb{C}\langle \mathbf{x}_1, \dots, \mathbf{x}_n \rangle)$ be given.
 - By passing to the hermitization

$$A^{\mathrm{h}} = \begin{bmatrix} 0 & a_1 \\ a_1^* & 0 \end{bmatrix} \mathbf{x}_1 + \dots + \begin{bmatrix} 0 & a_n \\ a_n^* & 0 \end{bmatrix} \mathbf{x}_n$$

in $M_{2m}(\mathbb{C}\langle \mathbf{x}_1, \ldots, \mathbf{x}_n \rangle)$, we may assume without loss of generality that A is hermitian; note that $\operatorname{rank}(A^{\mathrm{h}}) = 2\operatorname{rank}(A)$.

- Let $A = a_1 \mathbf{x}_1 + \dots + a_n \mathbf{x}_n \in M_m(\mathbb{C}\langle \mathbf{x}_1, \dots, \mathbf{x}_n \rangle)$ be given.
 - By passing to the hermitization

$$A^{\mathrm{h}} = \begin{bmatrix} 0 & a_1 \\ a_1^* & 0 \end{bmatrix} \mathbf{x}_1 + \dots + \begin{bmatrix} 0 & a_n \\ a_n^* & 0 \end{bmatrix} \mathbf{x}_n$$

in $M_{2m}(\mathbb{C}\langle \mathbf{x}_1, \ldots, \mathbf{x}_n \rangle)$, we may assume without loss of generality that A is hermitian; note that $\operatorname{rank}(A^{\mathrm{h}}) = 2\operatorname{rank}(A)$.

• To $A = A^*$, we associate the matrix-valued semicircular element $S = a_1 \otimes s_1 + \cdots + a_n \otimes s_n$ in $(M_m(\mathbb{C}) \otimes \mathcal{M}, \operatorname{tr}_m \otimes \tau)$, where s_1, \ldots, s_n are freely independent semicircular elements in (\mathcal{M}, τ) .

- Let $A = a_1 \mathbf{x}_1 + \dots + a_n \mathbf{x}_n \in M_m(\mathbb{C}\langle \mathbf{x}_1, \dots, \mathbf{x}_n \rangle)$ be given.
 - By passing to the hermitization

$$A^{\mathrm{h}} = \begin{bmatrix} 0 & a_1 \\ a_1^* & 0 \end{bmatrix} \mathbf{x}_1 + \dots + \begin{bmatrix} 0 & a_n \\ a_n^* & 0 \end{bmatrix} \mathbf{x}_n$$

in $M_{2m}(\mathbb{C}\langle \mathbf{x}_1, \ldots, \mathbf{x}_n \rangle)$, we may assume without loss of generality that A is hermitian; note that $\operatorname{rank}(A^{\mathrm{h}}) = 2\operatorname{rank}(A)$.

• To $A = A^*$, we associate the matrix-valued semicircular element $S = a_1 \otimes s_1 + \cdots + a_n \otimes s_n$ in $(M_m(\mathbb{C}) \otimes \mathcal{M}, \operatorname{tr}_m \otimes \tau)$, where s_1, \ldots, s_n are freely independent semicircular elements in (\mathcal{M}, τ) .

Theorem (Shlyakhtenko, Skoufranis (2015); M., Speicher, Yin (2023))

- **1** The analytic distribution μ_S of S is of "regular type".
- 2 The only possible values of $\mu_S(\{0\})$ are $\{\frac{k}{m} \mid k = 0, 1, \dots, m\}$.
- We have $rank(A) = m(1 \mu_S(\{0\})).$

Now, our task is to compute $\mu_S(\{0\})$.

Now, our task is to compute $\mu_S(\{0\})$.

• Recall that G_S and hence \mathcal{G}_{μ_S} can be computed efficiently.

🖙 [Helton, Rashidi Far, Speicher (2007)]

Now, our task is to compute $\mu_S(\{0\})$.

• Recall that G_S and hence \mathcal{G}_{μ_S} can be computed efficiently.

[Helton, Rashidi Far, Speicher (2007)]
 There are a priori and a posteriori error bounds.

📧 [M., Speicher, Hoffmann (2023)]

Now, our task is to compute $\mu_S(\{0\})$.

ullet Recall that G_S and hence \mathcal{G}_{μ_S} can be computed efficiently.

[Helton, Rashidi Far, Speicher (2007)]
 There are a priori and a posteriori error bounds.

🖙 [M., Speicher, Hoffmann (2023)]

Proposition (M., Speicher, Hoffmann (2023))

Let μ be a Borel probability measure on $\mathbb R.$ We define the function

 $\theta_{\mu}: \mathbb{R}^{+} \to \mathbb{R}^{+}, \quad y \mapsto -y \operatorname{Im}(\mathcal{G}_{\mu}(iy)) = \operatorname{Re}(iy\mathcal{G}_{\mu}(iy))$

on $\mathbb{R}^+ := (0, \infty)$, where $\mathcal{G}_{\mu} : \mathbb{C}^+ \to \mathbb{C}^-$ is the Cauchy transform of μ . Then, the following statements hold true:

• We have $\lim_{y\to\infty} \theta_{\mu}(y) = 1$ and $\lim_{y\to0} \theta_{\mu}(y) = \mu(\{0\})$.

Now, our task is to compute $\mu_S(\{0\})$.

 \bullet Recall that G_S and hence \mathcal{G}_{μ_S} can be computed efficiently.

[Helton, Rashidi Far, Speicher (2007)]
 There are a priori and a posteriori error bounds.

🖙 [M., Speicher, Hoffmann (2023)]

Proposition (M., Speicher, Hoffmann (2023))

Let μ be a Borel probability measure on $\mathbb R.$ We define the function

 $\theta_{\mu}: \mathbb{R}^{+} \to \mathbb{R}^{+}, \quad y \mapsto -y \operatorname{Im}(\mathcal{G}_{\mu}(iy)) = \operatorname{Re}(iy\mathcal{G}_{\mu}(iy))$

on $\mathbb{R}^+ := (0, \infty)$, where $\mathcal{G}_{\mu} : \mathbb{C}^+ \to \mathbb{C}^-$ is the Cauchy transform of μ . Then, the following statements hold true:

- We have $\lim_{y\to\infty} \theta_{\mu}(y) = 1$ and $\lim_{y\to0} \theta_{\mu}(y) = \mu(\{0\})$.
- **2** The function θ_{μ} is increasing.

Now, our task is to compute $\mu_S(\{0\})$.

 \bullet Recall that G_S and hence \mathcal{G}_{μ_S} can be computed efficiently.

[Helton, Rashidi Far, Speicher (2007)]
 There are a priori and a posteriori error bounds.

🖙 [M., Speicher, Hoffmann (2023)]

Proposition (M., Speicher, Hoffmann (2023))

Let μ be a Borel probability measure on $\mathbb R.$ We define the function

 $\theta_{\mu}: \mathbb{R}^{+} \to \mathbb{R}^{+}, \quad y \mapsto -y \operatorname{Im}(\mathcal{G}_{\mu}(iy)) = \operatorname{Re}(iy\mathcal{G}_{\mu}(iy))$

on $\mathbb{R}^+ := (0, \infty)$, where $\mathcal{G}_{\mu} : \mathbb{C}^+ \to \mathbb{C}^-$ is the Cauchy transform of μ . Then, the following statements hold true:

- We have $\lim_{y\to\infty} \theta_{\mu}(y) = 1$ and $\lim_{y\to0} \theta_{\mu}(y) = \mu(\{0\})$.
- **2** The function θ_{μ} is increasing.
- We have $\mu(\{0\}) \le \theta_{\mu}(y)$ for all $y \in \mathbb{R}^+$.

Consider again the matrix-valued semicircular element

$$S = \begin{bmatrix} 0 & 2 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \otimes s_1 + \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \otimes s_2 + \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \otimes s_3.$$

We can obtain arbitrarily good approximations $\tilde{ heta}$ for $heta_{\mu_S}(y)$:

Tobias Mai (Saarland University)

Consider again the matrix-valued semicircular element

$$S = \begin{bmatrix} 0 & 2 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \otimes s_1 + \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \otimes s_2 + \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \otimes s_3.$$

We can obtain arbitrarily good approximations $\tilde{ heta}$ for $heta_{\mu_S}(y)$:

How small must y > 0be chosen so that we can decide whether $\mu_S(\{0\}) < \frac{1}{m}$ or not?

August 2, 2024

Consider again the matrix-valued semicircular element

$$S = \begin{bmatrix} 0 & 2 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \otimes s_1 + \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \otimes s_2 + \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \otimes s_3.$$

We can obtain arbitrarily good approximations $\tilde{ heta}$ for $heta_{\mu_S}(y)$:

How small must y > 0be chosen so that we can decide whether $\mu_S(\{0\}) < \frac{1}{m}$ or not?

Definition

A Borel probability measure μ is said to be of regular type if it is of the form

 $\mu = \mu(\{0\})\delta_0 + \nu$

for some finite Borel measure ν for which there are $c\geq 0,\ \beta\in(0,1]$ and $r_0>0$ such that

 $\nu([-r,r]) \leq c r^\beta \qquad \text{for all } 0 < r < r_0.$

Definition

A Borel probability measure μ is said to be of regular type if it is of the form

 $\mu = \mu(\{0\})\delta_0 + \nu$

for some finite Borel measure ν for which there are $c\geq 0,\ \beta\in(0,1]$ and $r_0>0$ such that

 $\nu([-r,r]) \leq c r^\beta \qquad \text{for all } 0 < r < r_0.$

Proposition (M., Speicher, Hoffmann (2023))

Let μ be of regular type. Put $\gamma := rac{2}{2+eta}$ and $y_0 := r_0^{1/\gamma}$; then

 $\theta_{\mu}(y) - \mu(\{0\}) \le (c + \nu(\mathbb{R}))y^{\frac{2\beta}{2+\beta}}$ for all $0 < y < y_0$.

Definition

A Borel probability measure μ is said to be of regular type if it is of the form

 $\mu = \mu(\{0\})\delta_0 + \nu$

for some finite Borel measure ν for which there are $c\geq 0,\ \beta\in(0,1]$ and $r_0>0$ such that

 $\nu([-r,r]) \leq c r^\beta \qquad \text{for all } 0 < r < r_0.$

Proposition (M., Speicher, Hoffmann (2023))

Let μ be of regular type. Put $\gamma := rac{2}{2+eta}$ and $y_0 := r_0^{1/\gamma}$; then

 $\theta_{\mu}(y) - \mu(\{0\}) \le (c + \nu(\mathbb{R}))y^{\frac{2\beta}{2+\beta}}$ for all $0 < y < y_0$.

Problem: Parameters c, β, r_0 are not known in general.

Definition

A Borel probability measure μ is said to be of regular type if it is of the form

 $\mu = \mu(\{0\})\delta_0 + \nu$

for some finite Borel measure ν for which there are $c\geq 0,\ \beta\in(0,1]$ and $r_0>0$ such that

 $\nu([-r,r]) \leq c r^\beta \qquad \text{for all } 0 < r < r_0.$

Proposition (M., Speicher, Hoffmann (2023))

Let μ be of regular type. Put $\gamma := rac{2}{2+eta}$ and $y_0 := r_0^{1/\gamma}$; then

 $\theta_{\mu}(y) - \mu(\{0\}) \le (c + \nu(\mathbb{R}))y^{\frac{2\beta}{2+\beta}}$ for all $0 < y < y_0$.

Problem: Parameters c, β, r_0 are not known in general. Idea: Use Fuglede-Kadison determinant instead!

Tobias Mai (Saarland University)

Fuglede-Kadison determinant

The Fuglede-Kadison determinant ...

The Fuglede-Kadison determinant ...

Definition (Fuglede, Kadison (1952))

For a (not necessarily selfadjoint) operator $x \in M$ its Fuglede-Kadison determinant is defined by

$$\Delta(x):=\exp\left(\int_0^\infty\log(t)\,d\mu_{|x|}(t)
ight)\in[0,\infty),$$

where $|x| := (x^*x)^{1/2}$.

The Fuglede-Kadison determinant ...

Definition (Fuglede, Kadison (1952))

For a (not necessarily selfadjoint) operator $x \in M$ its Fuglede-Kadison determinant is defined by

$$\Delta(x) := \exp\left(\int_0^\infty \log(t) \, d\mu_{|x|}(t)
ight) \in [0,\infty),$$

where $|x| := (x^*x)^{1/2}$.

Fact: For $(\mathcal{M}, \tau) = (M_m(\mathbb{C}), \operatorname{tr}_m)$, we get $\Delta(b) = |\det(b)|^{1/m}$.
The Fuglede-Kadison determinant ...

Definition (Fuglede, Kadison (1952))

For a (not necessarily selfadjoint) operator $x \in M$ its Fuglede-Kadison determinant is defined by

$$\Delta(x) := \exp\left(\int_0^\infty \log(t) \, d\mu_{|x|}(t)
ight) \in [0,\infty),$$

where $|x| := (x^*x)^{1/2}$.

Fact: For $(\mathcal{M}, \tau) = (M_m(\mathbb{C}), \operatorname{tr}_m)$, we get $\Delta(b) = |\det(b)|^{1/m}$.

Lemma (M., Speicher, Hoffmann (2024))

Let $x = x^* \in \mathcal{M}$ be invertible. Then, for all $0 < \varepsilon < \|x\|$, we have

$$\mu_x([-\varepsilon,\varepsilon]) \le \frac{\log \|x\| - \log \Delta(x)}{\log \|x\| - \log \varepsilon}$$

... of matrix-valued semicircular elements

Statement of the first main result

of matrix-valued semicircular elements

Definition (Gurvits (2004))

The capacity of a positive map $\eta: M_m(\mathbb{C}) \to M_m(\mathbb{C})$ is defined by

 $\operatorname{cap}(\eta) := \inf \{ \det(\eta(b)) \mid b \in M_m(\mathbb{C}), b > 0, \det(b) = 1 \}.$

... of matrix-valued semicircular elements

Definition (Gurvits (2004))

The capacity of a positive map $\eta: M_m(\mathbb{C}) o M_m(\mathbb{C})$ is defined by

 $\operatorname{cap}(\eta) := \inf \{ \det(\eta(b)) \mid b \in M_m(\mathbb{C}), b > 0, \det(b) = 1 \}.$

Theorem (M., Speicher (2024))

Consider a (not necessarily selfadjoint) matrix-valued semicircular element

 $S = a_1 \otimes s_1 + \dots + a_n \otimes s_n$ for $a_1, \dots, a_n \in M_m(\mathbb{C})$ with the associated covariance map

$$\eta: M_m(\mathbb{C}) \to M_m(\mathbb{C}), \quad b \mapsto \sum_{i=1}^n a_i b a_i^*.$$

Then we have for the Fuglede-Kadison determinant of \boldsymbol{S} that

 $\Delta(S) = \operatorname{cap}(\eta)^{\frac{1}{2m}} e^{-\frac{1}{2}}.$

To a matrix-valued semicircular element $S = a_1 \otimes s_1 + \cdots + a_n \otimes s_n$, we can associate two completely positive maps $\eta, \eta^* : M_m(\mathbb{C}) \to M_m(\mathbb{C})$ by

$$\eta(b) = \mathbb{E}[SbS^*] = \sum_{i=1}^n a_i ba_i^*$$
 and $\eta^*(b) = \mathbb{E}[S^*bS] = \sum_{i=1}^n a_i^* ba_i.$

To a matrix-valued semicircular element $S = a_1 \otimes s_1 + \cdots + a_n \otimes s_n$, we can associate two completely positive maps $\eta, \eta^* : M_m(\mathbb{C}) \to M_m(\mathbb{C})$ by

 $\eta(b) = \mathbb{E}[SbS^*] = \sum_{i=1}^n a_i ba_i^*$ and $\eta^*(b) = \mathbb{E}[S^*bS] = \sum_{i=1}^n a_i^* ba_i.$

Remark

• These maps $\eta, \eta^* : M_m(\mathbb{C}) \to M_m(\mathbb{C})$ are related by

 $\langle \eta(b_1), b_2 \rangle = \langle b_1, \eta^*(b_2) \rangle$ for all $b_1, b_2 \in M_m(\mathbb{C})$,

where $\langle \cdot, \cdot \rangle$ is the inner product on $M_m(\mathbb{C})$ which is defined by $\langle b_1, b_2 \rangle := \operatorname{tr}_m(b_1 b_2^*)$; thus, η^* is the dual to η with respect to $\langle \cdot, \cdot \rangle$.

To a matrix-valued semicircular element $S = a_1 \otimes s_1 + \cdots + a_n \otimes s_n$, we can associate two completely positive maps $\eta, \eta^* : M_m(\mathbb{C}) \to M_m(\mathbb{C})$ by

 $\eta(b) = \mathbb{E}[SbS^*] = \sum_{i=1}^n a_i ba_i^*$ and $\eta^*(b) = \mathbb{E}[S^*bS] = \sum_{i=1}^n a_i^* ba_i.$

Remark

• These maps $\eta, \eta^* : M_m(\mathbb{C}) \to M_m(\mathbb{C})$ are related by $\langle \eta(b_1), b_2 \rangle = \langle b_1, \eta^*(b_2) \rangle$ for all $b_1, b_2 \in M_m(\mathbb{C})$,

where $\langle \cdot, \cdot \rangle$ is the inner product on $M_m(\mathbb{C})$ which is defined by $\langle b_1, b_2 \rangle := \operatorname{tr}_m(b_1 b_2^*)$; thus, η^* is the dual to η with respect to $\langle \cdot, \cdot \rangle$.

• Since $\Delta(S) = \Delta(S^*)$, our theorem readily implies $\operatorname{cap}(\eta) = \operatorname{cap}(\eta^*)$. This is consistent with the fact that

The selfadjoint, doubly stochastic case

n

The selfadjoint, doubly stochastic case

Proposition (M., Speicher (2024))

Consider a selfadjoint matrix-valued semicircular element

$$S = a_1 \otimes s_1 + \dots + a_n \otimes s_n$$
 for $a_1, \dots, a_n \in M_m(\mathbb{C})_{\mathrm{sat}}$

with the associated self-dual covariance map

$$\eta: M_m(\mathbb{C}) \to M_m(\mathbb{C}), \quad b \mapsto \sum_{i=1} a_i b a_i.$$

If η is doubly stochastic, that is, if $\eta(\mathbf{1}_m) = \mathbf{1}_m$, then μ_S is the standard semicircle distribution [Nica, Shlyakhtenko, Speicher (2002)] and thus

$$\Delta(S) = e^{-\frac{1}{2}}.$$

n

The selfadjoint, doubly stochastic case

Proposition (M., Speicher (2024))

Consider a selfadjoint matrix-valued semicircular element

$$S = a_1 \otimes s_1 + \dots + a_n \otimes s_n$$
 for $a_1, \dots, a_n \in M_m(\mathbb{C})_{\mathrm{sa}}$

with the associated self-dual covariance map

$$\eta: M_m(\mathbb{C}) \to M_m(\mathbb{C}), \quad b \mapsto \sum_{i=1} a_i b a_i.$$

If η is doubly stochastic, that is, if $\eta(\mathbf{1}_m) = \mathbf{1}_m$, then μ_S is the standard semicircle distribution [Nica, Shlyakhtenko, Speicher (2002)] and thus

$$\Delta(S) = e^{-\frac{1}{2}}.$$

n

The selfadjoint, doubly stochastic case

Proposition (M., Speicher (2024))

Consider a selfadjoint matrix-valued semicircular element

$$S = a_1 \otimes s_1 + \dots + a_n \otimes s_n$$
 for $a_1, \dots, a_n \in M_m(\mathbb{C})_{\mathrm{sa}}$

with the associated self-dual covariance map

$$\eta: M_m(\mathbb{C}) \to M_m(\mathbb{C}), \quad b \mapsto \sum_{i=1} a_i b a_i.$$

If η is doubly stochastic, that is, if $\eta(\mathbf{1}_m) = \mathbf{1}_m$, then μ_S is the standard semicircle distribution [Nica, Shlyakhtenko, Speicher (2002)] and thus

$$\Delta(S) = e^{-\frac{1}{2}}.$$

Proof.

 $\begin{aligned} \mathrm{d}\mu_S(t) &= \frac{1}{2\pi} \sqrt{4 - t^2} \, \mathbf{1}_{[-2,2]}(t) \, \mathrm{d}t \text{ yields } \mathrm{d}\mu_{|S|}(t) &= \frac{1}{\pi} \sqrt{4 - t^2} \, \mathbf{1}_{[0,2]}(t) \, \mathrm{d}t; \\ \text{hence, we get } \Delta(S) &= \exp\left(\int_{[0,2]} \log(t) \, \mathrm{d}\mu_{|S|}(t)\right) = e^{-\frac{1}{2}}. \end{aligned}$

Tobias Mai (Saarland University)

Definition (Gurvits (2004))

A positive linear map $\eta: M_m(\mathbb{C}) \to M_m(\mathbb{C})$ is said to be

0 doubly stochastic if both $\eta(\mathbf{1}_m) = \mathbf{1}_m$ and $\eta^*(\mathbf{1}_m) = \mathbf{1}_m$;

Definition (Gurvits (2004))

A positive linear map $\eta: M_m(\mathbb{C}) \to M_m(\mathbb{C})$ is said to be

- **(** doubly stochastic if both $\eta(\mathbf{1}_m) = \mathbf{1}_m$ and $\eta^*(\mathbf{1}_m) = \mathbf{1}_m$;
- 2 rank non-decreasing if $rank(\eta(b)) \ge rank(b)$ for all $b \ge 0$;

Definition (Gurvits (2004))

A positive linear map $\eta: M_m(\mathbb{C}) \to M_m(\mathbb{C})$ is said to be

- **0** doubly stochastic if both $\eta(\mathbf{1}_m) = \mathbf{1}_m$ and $\eta^*(\mathbf{1}_m) = \mathbf{1}_m$;
- 2 rank non-decreasing if $rank(\eta(b)) \ge rank(b)$ for all $b \ge 0$;
- Some indecomposable if rank($\eta(b)$) > rank(b) for all b ≥ 0 which satisfy the condition 1 ≤ rank(b) < m.</p>

Definition (Gurvits (2004))

A positive linear map $\eta: M_m(\mathbb{C}) \to M_m(\mathbb{C})$ is said to be

- **0** doubly stochastic if both $\eta(\mathbf{1}_m) = \mathbf{1}_m$ and $\eta^*(\mathbf{1}_m) = \mathbf{1}_m$;
- 2 rank non-decreasing if $rank(\eta(b)) \ge rank(b)$ for all $b \ge 0$;
- indecomposable if $rank(\eta(b)) > rank(b)$ for all $b \ge 0$ which satisfy the condition $1 \le rank(b) < m$.

Proposition (Gurvits (2004))

• η is rank non-decreasing if and only if $cap(\eta) > 0$.

Definition (Gurvits (2004))

A positive linear map $\eta: M_m(\mathbb{C}) \to M_m(\mathbb{C})$ is said to be

- **0** doubly stochastic if both $\eta(\mathbf{1}_m) = \mathbf{1}_m$ and $\eta^*(\mathbf{1}_m) = \mathbf{1}_m$;
- **2** rank non-decreasing if $rank(\eta(b)) \ge rank(b)$ for all $b \ge 0$;
- Some indecomposable if rank($\eta(b)$) > rank(b) for all b ≥ 0 which satisfy the condition 1 ≤ rank(b) < m.</p>

Proposition (Gurvits (2004))

- η is rank non-decreasing if and only if $cap(\eta) > 0$.
- 2 η is indecomposable if and only if there is a unique positive definite matrix $c \in M_m(\mathbb{C})$ with $\det(c) = 1$ and $\det(\eta(c)) = \operatorname{cap}(\eta)$.

Definition (Gurvits (2004))

A positive linear map $\eta: M_m(\mathbb{C}) \to M_m(\mathbb{C})$ is said to be

- **0** doubly stochastic if both $\eta(\mathbf{1}_m) = \mathbf{1}_m$ and $\eta^*(\mathbf{1}_m) = \mathbf{1}_m$;
- **2** rank non-decreasing if $rank(\eta(b)) \ge rank(b)$ for all $b \ge 0$;
- Some indecomposable if rank($\eta(b)$) > rank(b) for all b ≥ 0 which satisfy the condition 1 ≤ rank(b) < m.</p>

Proposition (Gurvits (2004))

- η is rank non-decreasing if and only if $cap(\eta) > 0$.
- 2 η is indecomposable if and only if there is a unique positive definite matrix $c \in M_m(\mathbb{C})$ with $\det(c) = 1$ and $\det(\eta(c)) = \operatorname{cap}(\eta)$.
- ${f 0}$ If η is indecomposable (and hence rank non-decreasing), then

$$\begin{split} \eta_{\eta(c)^{-1/2},c^{1/2}}: \ M_m(\mathbb{C}) \to M_m(\mathbb{C}), \ b \mapsto \eta(c)^{-1/2} \eta(c^{1/2} b c^{1/2}) \eta(c)^{-1/2} \\ \text{is doubly stochastic.} \end{split}$$

Operator scaling

Operator scaling

Definition (Gurvits (2004))

For a positive linear map $\eta: M_m(\mathbb{C}) \to M_m(\mathbb{C})$ and arbitrary matrices $c_1, c_2 \in M_m(\mathbb{C})$, we define the operator scaling

 $\eta_{c_1,c_2}: M_m(\mathbb{C}) \to M_m(\mathbb{C}), \quad b \mapsto c_1 \eta(c_2^* b c_2) c_1^*.$

Operator scaling

Definition (Gurvits (2004))

For a positive linear map $\eta: M_m(\mathbb{C}) \to M_m(\mathbb{C})$ and arbitrary matrices $c_1, c_2 \in M_m(\mathbb{C})$, we define the operator scaling

 $\eta_{c_1,c_2}: M_m(\mathbb{C}) \to M_m(\mathbb{C}), \quad b \mapsto c_1 \eta(c_2^* b c_2) c_1^*.$

Lemma (M., Speicher (2024))

Let $S = \sum_{i=1}^{n} a_i \otimes s_i$ be a matrix-valued semicircular element with the associated pair (η, η^*) of dual covariance maps and let $c_1, c_2 \in M_m(\mathbb{C})$. Then the associated pair of dual covariance maps of

$$\widetilde{S} := \sum_{i=1}^{n} (c_1 a_i c_2) \otimes s_i$$

is given by $(\eta_{c_1,c_2},(\eta^*)_{c_2,c_1})$ and we have that

 $\Delta(\widetilde{S}) = |\det(c_1)|^{\frac{1}{m}} |\det(c_2)|^{\frac{1}{m}} \Delta(S).$

Hermitization

Hermitization

Lemma (M., Speicher (2024))

Let $S = \sum_{i=1}^{n} a_i \otimes s_i$ be a matrix-valued semicircular element with the associated pair (η, η^*) of dual covariance maps $\eta, \eta^* : M_m(\mathbb{C}) \to M_m(\mathbb{C})$. The selfadjoint $M_{2m}(\mathbb{C})$ -valued semicircular element defined by

$$S^{\mathbf{h}} := \sum_{i=1}^{n} \begin{bmatrix} 0 & a_i \\ a_i^* & 0 \end{bmatrix} \otimes s_i$$

has the self-dual covariance map $\eta^{
m h}: M_{2m}(\mathbb{C}) o M_{2m}(\mathbb{C})$ given by

$$\eta^{\rm h} \left(\begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} \right) = \begin{bmatrix} \eta(b_{22}) & \rho(b_{21}) \\ \rho^*(b_{12}) & \eta^*(b_{11}) \end{bmatrix}$$

with $ho(b):=\sum_{i=1}^n a_i b a_i$. We call $S^{
m h}$ the hermitization of S. Then

 $\Delta(S^{\mathbf{h}}) = \Delta(S).$

Proposition (M., Speicher (2024))

Let $S = \sum_{i=1}^{n} a_i \otimes s_i$ be a matrix-valued semicircular element for which the associated covariance map $\eta : M_m(\mathbb{C}) \to M_m(\mathbb{C}), b \mapsto \sum_{i=1}^{n} a_i b a_i^*$ is indecomposable (and hence rank non-decreasing). Then we have that

 $\Delta(S) = cap(\eta)^{\frac{1}{2m}} e^{-\frac{1}{2}}.$

Proposition (M., Speicher (2024))

Let $S = \sum_{i=1}^{n} a_i \otimes s_i$ be a matrix-valued semicircular element for which the associated covariance map $\eta : M_m(\mathbb{C}) \to M_m(\mathbb{C}), b \mapsto \sum_{i=1}^{n} a_i b a_i^*$ is indecomposable (and hence rank non-decreasing). Then we have that $\Delta(S) = \operatorname{cap}(\eta)^{\frac{1}{2m}} e^{-\frac{1}{2}}.$

Proof.

 Take c > 0 with det(c) = 1 and det(η(c)) = cap(η). Then the operator-scaling η̃ := η_{η(c)-1/2,c^{1/2}} is doubly stochastic and for the corresponding matrix-valued semicircular element S̃, we get
 Δ(S) = det(η(c))^{1/2m} det(c)^{-1/2m} Δ(S̃) = cap(η)^{1/2m} Δ(S̃).

Proposition (M., Speicher (2024))

Let $S = \sum_{i=1}^{n} a_i \otimes s_i$ be a matrix-valued semicircular element for which the associated covariance map $\eta : M_m(\mathbb{C}) \to M_m(\mathbb{C}), b \mapsto \sum_{i=1}^{n} a_i b a_i^*$ is indecomposable (and hence rank non-decreasing). Then we have that $\Delta(S) = \operatorname{cap}(\eta)^{\frac{1}{2m}} e^{-\frac{1}{2}}.$

Proof.

- Take c > 0 with $\det(c) = 1$ and $\det(\eta(c)) = \operatorname{cap}(\eta)$. Then the operator-scaling $\widetilde{\eta} := \eta_{\eta(c)^{-1/2}, c^{1/2}}$ is doubly stochastic and for the corresponding matrix-valued semicircular element \widetilde{S} , we get $\Delta(S) = \det(\eta(c))^{\frac{1}{2m}} \det(c)^{-\frac{1}{2m}} \Delta(\widetilde{S}) = \operatorname{cap}(\eta)^{\frac{1}{2m}} \Delta(\widetilde{S}).$
- For the hermitization \widetilde{S}^{h} , we have $\Delta(\widetilde{S}) = \Delta(\widetilde{S}^{h})$.

Proposition (M., Speicher (2024))

Let $S = \sum_{i=1}^{n} a_i \otimes s_i$ be a matrix-valued semicircular element for which the associated covariance map $\eta : M_m(\mathbb{C}) \to M_m(\mathbb{C}), b \mapsto \sum_{i=1}^{n} a_i b a_i^*$ is indecomposable (and hence rank non-decreasing). Then we have that $\Delta(S) = \operatorname{cap}(\eta)^{\frac{1}{2m}} e^{-\frac{1}{2}}.$

Proof.

• Take c > 0 with $\det(c) = 1$ and $\det(\eta(c)) = \operatorname{cap}(\eta)$. Then the operator-scaling $\tilde{\eta} := \eta_{\eta(c)^{-1/2}, c^{1/2}}$ is doubly stochastic and for the corresponding matrix-valued semicircular element \tilde{S} , we get

 $\Delta(S) = \det(\eta(c))^{\frac{1}{2m}} \det(c)^{-\frac{1}{2m}} \Delta(\widetilde{S}) = \operatorname{cap}(\eta)^{\frac{1}{2m}} \Delta(\widetilde{S}).$

- For the hermitization \widetilde{S}^{h} , we have $\Delta(\widetilde{S}) = \Delta(\widetilde{S}^{h})$.
- Then $\widetilde{\eta}^{\rm h}$ satisfies $\widetilde{\eta}^{\rm h}(\mathbf{1}_{2m}) = \mathbf{1}_{2m}$; hence, $\Delta(\widetilde{S}^{\rm h}) = e^{-\frac{1}{2}}$.

Let $S = \sum_{i=1}^{n} a_i \otimes s_i$ be a matrix-valued semicircular element with the associated pair (η, η^*) of dual covariance maps.

Let $S = \sum_{i=1}^{n} a_i \otimes s_i$ be a matrix-valued semicircular element with the associated pair (η, η^*) of dual covariance maps.

• Without loss of generality, we may assume that $cap(\eta) > 0$.

RF . [M., Speicher, Yin (2023)]

Let $S = \sum_{i=1}^{n} a_i \otimes s_i$ be a matrix-valued semicircular element with the associated pair (η, η^*) of dual covariance maps.

• Without loss of generality, we may assume that $ext{cap}(\eta)>0.$

🖙 [M., Speicher, Yin (2023)]

• Let S^b be a selfadjoint matrix-valued semicircular element whose covariance map is the completely depolarizing channel

 $\eta^{\flat}: \ M_m(\mathbb{C}) \to M_m(\mathbb{C}), \quad b \mapsto \operatorname{tr}_m(b)\mathbf{1}_m.$

Suppose that S and S^{\flat} are free with amalgamation over $M_m(\mathbb{C})$.

Let $S = \sum_{i=1}^{n} a_i \otimes s_i$ be a matrix-valued semicircular element with the associated pair (η, η^*) of dual covariance maps.

• Without loss of generality, we may assume that $ext{cap}(\eta)>0.$

🖙 [M., Speicher, Yin (2023)]

• Let S^b be a selfadjoint matrix-valued semicircular element whose covariance map is the completely depolarizing channel

 $\eta^{\flat}: M_m(\mathbb{C}) \to M_m(\mathbb{C}), \quad b \mapsto \operatorname{tr}_m(b)\mathbf{1}_m.$

Suppose that S and S^{\flat} are free with amalgamation over $M_m(\mathbb{C})$. • For $t \ge 0$, $S_t := S + \sqrt{t}S^{\flat}$ is a matrix-valued semicircular element with the associated pair (η_t, η_t^*) of dual covariance maps given by

 $\eta_t(b) = \eta(b) + t\eta^{\flat}(b)$ and $\eta^*_t(b) = \eta^*(b) + t\eta^{\flat}(b).$

Let $S = \sum_{i=1}^{n} a_i \otimes s_i$ be a matrix-valued semicircular element with the associated pair (η, η^*) of dual covariance maps.

• Without loss of generality, we may assume that $ext{cap}(\eta)>0.$

🖙 [M., Speicher, Yin (2023)]

• Let S^b be a selfadjoint matrix-valued semicircular element whose covariance map is the completely depolarizing channel

 $\eta^{\flat}:\ M_m(\mathbb{C})\to M_m(\mathbb{C}),\quad b\mapsto \mathrm{tr}_m(b)\mathbf{1}_m.$

Suppose that S and S^{\flat} are free with amalgamation over $M_m(\mathbb{C})$.

• For $t \ge 0$, $S_t := S + \sqrt{t}S^{\flat}$ is a matrix-valued semicircular element with the associated pair (η_t, η_t^*) of dual covariance maps given by

 $\eta_t(b) = \eta(b) + t\eta^\flat(b) \qquad \text{and} \qquad \eta_t^*(b) = \eta^*(b) + t\eta^\flat(b).$

• For all t > 0, η_t is indecomposable. Thus, $\Delta(S_t) = \operatorname{cap}(\eta_t)^{\frac{1}{2m}} e^{-\frac{1}{2}}$.

• Since $\eta_t \ge \eta$, we get $\operatorname{cap}(\eta_t) \ge \operatorname{cap}(\eta)$ for all $t \ge 0$.
• Since $\eta_t \geq \eta$, we get $\operatorname{cap}(\eta_t) \geq \operatorname{cap}(\eta)$ for all $t \geq 0$.

• We have $\|\eta_t^h - \eta^h\| = t$ and hence $\lim_{t \to 0} \|\eta_t^h - \eta^h\| = 0$. It follows that the hermitizations S_t^h converge in distribution to S^h as $t \searrow 0$. [Banna, M. (2023)] 137

• Since $\eta_t \geq \eta$, we get $\operatorname{cap}(\eta_t) \geq \operatorname{cap}(\eta)$ for all $t \geq 0$.

- We have $\|\eta_t^h \eta^h\| = t$ and hence $\lim_{t \searrow 0} \|\eta_t^h \eta^h\| = 0$. It follows that the hermitizations S_t^h converge in distribution to S^h as $t \searrow 0$. [Banna, M. (2023)]
- We conclude that $\Delta(S) \ge \operatorname{cap}(\eta)^{\frac{1}{2m}} e^{-\frac{1}{2}}$ using the following result.

Proposition

Let T_n $(n \in \mathbb{N})$ and T be positive operators in some tracial W^* -probability space (\mathcal{M}, τ) , such that $(T_n)_{n \in \mathbb{N}}$ converges in distribution to T, that is

$$\lim_{n \to \infty} \tau(T_n^k) = \tau(T^k) \qquad \text{for all } k \in \mathbb{N}.$$

Assume that all T_n and T have trivial kernel and that $\sup_n \|T_n\| < \infty.$ Then we have

$$\Delta(T) \ge \limsup_{n \to \infty} \Delta(T_n).$$

Tobias Mai (Saarland University)

Definition (Gurvits (2004))

For a positive linear map $\eta: M_m(\mathbb{C}) \to M_m(\mathbb{C})$, we define

 $ds(\eta) := \operatorname{Tr}_m \left((\eta(\mathbf{1}_m) - \mathbf{1}_m)^2 \right) + \operatorname{Tr}_m \left((\eta^*(\mathbf{1}_m) - \mathbf{1}_m)^2 \right).$

Definition (Gurvits (2004))

For a positive linear map $\eta: M_m(\mathbb{C}) \to M_m(\mathbb{C})$, we define

$$ds(\eta) := \operatorname{Tr}_m \left((\eta(\mathbf{1}_m) - \mathbf{1}_m)^2 \right) + \operatorname{Tr}_m \left((\eta^*(\mathbf{1}_m) - \mathbf{1}_m)^2 \right).$$

Note: η doubly stochastic \iff $ds(\eta) = 0$

Definition (Gurvits (2004))

For a positive linear map $\eta: M_m(\mathbb{C}) \to M_m(\mathbb{C})$, we define

$$ds(\eta) := \operatorname{Tr}_m \left((\eta(\mathbf{1}_m) - \mathbf{1}_m)^2 \right) + \operatorname{Tr}_m \left((\eta^*(\mathbf{1}_m) - \mathbf{1}_m)^2 \right)$$

Note: η doubly stochastic \iff $ds(\eta) = 0$

Proposition (Garg, Gurvits, Oliveira, Wigderson (2020))

Let $\eta: M_m(\mathbb{C}) \to M_m(\mathbb{C})$ be completely positive with $\operatorname{cap}(\eta) > 0$ and let c > 0 be an "approximate minimizer" of $\operatorname{cap}(\eta)$ in the sense that $\operatorname{cap}(\eta) \ge e^{-\delta} \cdot \frac{\operatorname{det}(\eta(c))}{\operatorname{det}(c)}$

for some $\delta \in (0, \frac{1}{6}]$. Then

$$ds(\eta_{\eta(c)^{-1/2},c^{1/2}}) = Tr_m\left((c\eta^*(\eta(c)^{-1}) - \mathbf{1}_m)^2\right) \le 6\delta.$$

Recall:

:
$$\eta_{\eta(c)^{-1/2},c^{1/2}}(b) = \eta(c)^{-1/2}\eta(c^{1/2}bc^{1/2})\eta(c)^{-1/2}$$

Tobias Mai (Saarland University)

Let $S = \sum_{i=1}^{n} a_i \otimes s_i$ be a matrix-valued semicircular element with the associated pair (η, η^*) of dual covariance maps. Suppose $\operatorname{cap}(\eta) > 0$.

Let $S = \sum_{i=1}^{n} a_i \otimes s_i$ be a matrix-valued semicircular element with the associated pair (η, η^*) of dual covariance maps. Suppose $\operatorname{cap}(\eta) > 0$.

• For $\delta \in (0, \frac{1}{6}]$, choose an "approximate minimizer" $c_{\delta} > 0$ of $\operatorname{cap}(\eta)$ in the sense that

$$\operatorname{cap}(\eta) \ge e^{-\delta} \cdot \frac{\operatorname{det}(\eta(c_{\delta}))}{\operatorname{det}(c_{\delta})}$$

Let $S = \sum_{i=1}^{n} a_i \otimes s_i$ be a matrix-valued semicircular element with the associated pair (η, η^*) of dual covariance maps. Suppose $\operatorname{cap}(\eta) > 0$.

• For $\delta \in (0, \frac{1}{6}]$, choose an "approximate minimizer" $c_{\delta} > 0$ of $cap(\eta)$ in the sense that

$$\operatorname{cap}(\eta) \ge e^{-\delta} \cdot \frac{\operatorname{det}(\eta(c_{\delta}))}{\operatorname{det}(c_{\delta})}$$

• Define $\eta_{\delta} := \eta_{\eta(c_{\delta})^{-1/2}, c_{\delta}^{1/2}}$; then $ds(\eta_{\delta}) \le 6\delta$.

Let $S = \sum_{i=1}^{n} a_i \otimes s_i$ be a matrix-valued semicircular element with the associated pair (η, η^*) of dual covariance maps. Suppose $\operatorname{cap}(\eta) > 0$.

• For $\delta \in (0, \frac{1}{6}]$, choose an "approximate minimizer" $c_{\delta} > 0$ of $\operatorname{cap}(\eta)$ in the sense that

$$\operatorname{cap}(\eta) \ge e^{-\delta} \cdot \frac{\operatorname{det}(\eta(c_{\delta}))}{\operatorname{det}(c_{\delta})}$$

- Define $\eta_{\delta} := \eta_{\eta(c_{\delta})^{-1/2}, c_{\delta}^{1/2}}$; then $\mathrm{ds}(\eta_{\delta}) \leq 6\delta$.
- ullet For the corresponding matrix-valued semicircular element \widetilde{S}_{δ} , we get

$$\Delta(S) = \left(\frac{\det(\eta(c_{\delta}))}{\det(c_{\delta})}\right)^{\frac{1}{2m}} \Delta(\widetilde{S}_{\delta}) \le \operatorname{cap}(\eta)^{\frac{1}{2m}} e^{\frac{\delta}{2m}} \Delta(\widetilde{S}_{\delta}).$$

Let $S = \sum_{i=1}^{n} a_i \otimes s_i$ be a matrix-valued semicircular element with the associated pair (η, η^*) of dual covariance maps. Suppose $\operatorname{cap}(\eta) > 0$.

• For $\delta \in (0, \frac{1}{6}]$, choose an "approximate minimizer" $c_{\delta} > 0$ of $cap(\eta)$ in the sense that

$$\operatorname{cap}(\eta) \ge e^{-\delta} \cdot \frac{\operatorname{det}(\eta(c_{\delta}))}{\operatorname{det}(c_{\delta})}$$

- Define $\eta_{\delta} := \eta_{\eta(c_{\delta})^{-1/2}, c_{\delta}^{1/2}}$; then $\mathrm{ds}(\eta_{\delta}) \leq 6\delta$.
- ullet For the corresponding matrix-valued semicircular element \widetilde{S}_{δ} , we get

$$\Delta(S) = \left(\frac{\det(\eta(c_{\delta}))}{\det(c_{\delta})}\right)^{\frac{1}{2m}} \Delta(\widetilde{S}_{\delta}) \le \operatorname{cap}(\eta)^{\frac{1}{2m}} e^{\frac{\delta}{2m}} \Delta(\widetilde{S}_{\delta}).$$

• From $\lim_{\delta \searrow 0} ds(\eta_{\delta}) = 0$, it follows that $\lim_{\delta \searrow 0} ds(\eta_{\delta}^{h}) = 0$.

Let $S = \sum_{i=1}^{n} a_i \otimes s_i$ be a matrix-valued semicircular element with the associated pair (η, η^*) of dual covariance maps. Suppose $\operatorname{cap}(\eta) > 0$.

• For $\delta \in (0, \frac{1}{6}]$, choose an "approximate minimizer" $c_{\delta} > 0$ of $cap(\eta)$ in the sense that

$$\operatorname{cap}(\eta) \ge e^{-\delta} \cdot \frac{\operatorname{det}(\eta(c_{\delta}))}{\operatorname{det}(c_{\delta})}$$

- Define $\eta_{\delta} := \eta_{\eta(c_{\delta})^{-1/2}, c_{\delta}^{1/2}}$; then $\mathrm{ds}(\eta_{\delta}) \leq 6\delta$.
- ullet For the corresponding matrix-valued semicircular element \widetilde{S}_{δ} , we get

$$\Delta(S) = \left(\frac{\det(\eta(c_{\delta}))}{\det(c_{\delta})}\right)^{\frac{1}{2m}} \Delta(\widetilde{S}_{\delta}) \le \operatorname{cap}(\eta)^{\frac{1}{2m}} e^{\frac{\delta}{2m}} \Delta(\widetilde{S}_{\delta}).$$

- From $\lim_{\delta \searrow 0} ds(\eta_{\delta}) = 0$, it follows that $\lim_{\delta \searrow 0} ds(\eta_{\delta}^{h}) = 0$.
- From $\lim_{\delta \searrow 0} \mathrm{ds}(\eta^{\mathrm{h}}_{\delta}) = 0$, we infer that $\lim_{\delta \searrow 0} \|\eta^{\mathrm{h}}_{\delta}(\mathbf{1}_{2m}) \mathbf{1}_{2m}\| = 0$.

• Since $\lim_{\delta \searrow 0} \|\eta_{\delta}^{h}(\mathbf{1}_{2m}) - \mathbf{1}_{2m}\| = 0$, the next proposition shows that the hermitizations $\widetilde{S}_{\delta}^{h}$ converge in distribution to a standard semicircular element s as $\delta \searrow 0$.

• Since $\lim_{\delta \searrow 0} \|\eta^{\rm h}_{\delta}(\mathbf{1}_{2m}) - \mathbf{1}_{2m}\| = 0$, the next proposition shows that the hermitizations $\widetilde{S}^{\rm h}_{\delta}$ converge in distribution to a standard semicircular element s as $\delta \searrow 0$.

Proposition (M., Speicher (2024))

Let $S = \sum_{i=1}^{n} a_i \otimes s_i$ be selfadjoint with the associated self-dual covariance map $\eta : M_m(\mathbb{C}) \to M_m(\mathbb{C}), b \mapsto \sum_{i=1}^{n} a_i b a_i$. For all $k \in \mathbb{N}$, we have

$$(\operatorname{tr}_m \otimes \tau)(S^{2k}) - \int_{-2}^2 t^{2k} d\mu_s(t) \bigg| \le C_k \bigg(\sum_{j=0}^{k-1} \|\eta\|^j \bigg) \|\eta(\mathbf{1}_m) - \mathbf{1}_m\|,$$

where C_k denotes the k-th Catalan number.

- Since $\lim_{\delta \searrow 0} \|\eta_{\delta}^{h}(\mathbf{1}_{2m}) \mathbf{1}_{2m}\| = 0$, the next proposition shows that the hermitizations $\widetilde{S}_{\delta}^{h}$ converge in distribution to a standard semicircular element s as $\delta \searrow 0$.
- We infer that $\limsup_{\delta\searrow 0} \Delta(\widetilde{S}_{\delta}) = \limsup_{\delta\searrow 0} \Delta(\widetilde{S}^{\mathrm{h}}_{\delta}) \leq \Delta(s) = e^{-\frac{1}{2}}.$

Proposition (M., Speicher (2024))

Let $S = \sum_{i=1}^{n} a_i \otimes s_i$ be selfadjoint with the associated self-dual covariance map $\eta : M_m(\mathbb{C}) \to M_m(\mathbb{C}), b \mapsto \sum_{i=1}^{n} a_i b a_i$. For all $k \in \mathbb{N}$, we have

$$(\operatorname{tr}_m \otimes \tau)(S^{2k}) - \int_{-2}^2 t^{2k} d\mu_s(t) \bigg| \le C_k \bigg(\sum_{j=0}^{k-1} \|\eta\|^j \bigg) \|\eta(\mathbf{1}_m) - \mathbf{1}_m\|,$$

where C_k denotes the k-th Catalan number.

- Since $\lim_{\delta \searrow 0} \|\eta_{\delta}^{h}(\mathbf{1}_{2m}) \mathbf{1}_{2m}\| = 0$, the next proposition shows that the hermitizations $\widetilde{S}_{\delta}^{h}$ converge in distribution to a standard semicircular element s as $\delta \searrow 0$.
- We infer that $\limsup_{\delta > 0} \Delta(\widetilde{S}_{\delta}) = \limsup_{\delta > 0} \Delta(\widetilde{S}_{\delta}^{h}) \le \Delta(s) = e^{-\frac{1}{2}}.$
- Since $\Delta(S) \leq \operatorname{cap}(\eta)^{\frac{1}{2m}} e^{\frac{\delta}{2m}} \Delta(\widetilde{S}_{\delta})$, we get $\Delta(S) \leq \operatorname{cap}(\eta)^{\frac{1}{2m}} e^{-\frac{1}{2}}$.

Proposition (M., Speicher (2024))

Let $S = \sum_{i=1}^{n} a_i \otimes s_i$ be selfadjoint with the associated self-dual covariance map $\eta : M_m(\mathbb{C}) \to M_m(\mathbb{C}), b \mapsto \sum_{i=1}^{n} a_i b a_i$. For all $k \in \mathbb{N}$, we have

$$(\operatorname{tr}_m \otimes \tau)(S^{2k}) - \int_{-2}^2 t^{2k} d\mu_s(t) \bigg| \le C_k \bigg(\sum_{j=0}^{k-1} \|\eta\|^j \bigg) \|\eta(\mathbf{1}_m) - \mathbf{1}_m\|,$$

where C_k denotes the k-th Catalan number.

Theorem (M., Speicher (2024))

Consider a completely positive map of the form

$$\eta: M_m(\mathbb{C}) \to M_m(\mathbb{C}), \quad b \mapsto \sum_{i=1}^n a_i b a_i^* \qquad \text{with } a_i \in M_m(\mathbb{Z}).$$

If η is rank non-decreasing then $\operatorname{cap}(\eta) \geq 1$.

🖙 [Garg, Gurvits, Oliveira, Wigderson (2016,2020)]

Theorem (M., Speicher (2024))

Consider a completely positive map of the form

$$\eta: M_m(\mathbb{C}) \to M_m(\mathbb{C}), \quad b \mapsto \sum_{i=1}^n a_i b a_i^* \qquad \text{with } a_i \in M_m$$

If η is rank non-decreasing then $\operatorname{cap}(\eta) \geq 1$.

🖙 [Garg, Gurvits, Oliveira, Wigderson (2016,2020)]

Proof.

• Consider $T := \sum_{i=1}^{n} a_i \otimes u_i$ in $(M_m(\mathbb{C}) \otimes L(\mathbb{F}_n), \operatorname{tr}_m \otimes \tau)$.

 $(\mathbb{Z}).$

Theorem (M., Speicher (2024))

Consider a completely positive map of the form

$$\eta: M_m(\mathbb{C}) \to M_m(\mathbb{C}), \quad b \mapsto \sum_{i=1}^n a_i b a_i^* \qquad \text{with } a_i \in M_m(\mathbb{Z}).$$

If η is rank non-decreasing then $\operatorname{cap}(\eta) \geq 1$.

🖙 [Garg, Gurvits, Oliveira, Wigderson (2016,2020)]

- Consider $T := \sum_{i=1}^{n} a_i \otimes u_i$ in $(M_m(\mathbb{C}) \otimes L(\mathbb{F}_n), \operatorname{tr}_m \otimes \tau)$.
- Since the determinantal conjecture is true for \mathbb{F}_n , we have $\Delta(T) \geq 1$.

Theorem (M., Speicher (2024))

Consider a completely positive map of the form

$$\eta: M_m(\mathbb{C}) \to M_m(\mathbb{C}), \quad b \mapsto \sum_{i=1}^n a_i b a_i^* \qquad \text{with } a_i \in M_m(\mathbb{Z}).$$

If η is rank non-decreasing then $\operatorname{cap}(\eta) \geq 1$.

🖙 [Garg, Gurvits, Oliveira, Wigderson (2016,2020)]

- Consider $T := \sum_{i=1}^n a_i \otimes u_i$ in $(M_m(\mathbb{C}) \otimes L(\mathbb{F}_n), \operatorname{tr}_m \otimes \tau)$.
- Since the determinantal conjecture is true for \mathbb{F}_n , we have $\Delta(T) \geq 1$.
- For b > 0 with det(b) = 1, define $\widetilde{T} := \sum_{i=1}^{n} \left(\eta(b)^{-1/2} a_i b^{1/2} \right) \otimes u_i$.

Theorem (M., Speicher (2024))

Consider a completely positive map of the form

$$\eta: M_m(\mathbb{C}) \to M_m(\mathbb{C}), \quad b \mapsto \sum_{i=1}^n a_i b a_i^* \qquad \text{with } a_i \in M_m(\mathbb{Z}).$$

If η is rank non-decreasing then $\operatorname{cap}(\eta) \geq 1$.

🖙 [Garg, Gurvits, Oliveira, Wigderson (2016,2020)]

- Consider $T := \sum_{i=1}^n a_i \otimes u_i$ in $(M_m(\mathbb{C}) \otimes L(\mathbb{F}_n), \operatorname{tr}_m \otimes \tau)$.
- Since the determinantal conjecture is true for \mathbb{F}_n , we have $\Delta(T) \geq 1$.
- For b > 0 with $\det(b) = 1$, define $\widetilde{T} := \sum_{i=1}^{n} \left(\eta(b)^{-1/2} a_i b^{1/2} \right) \otimes u_i$.
- By multiplicativity, $\Delta(\widetilde{T}) = \det(\eta(b))^{-\frac{1}{2m}} \Delta(T) \ge \det(\eta(b))^{-\frac{1}{2m}}$.

Theorem (M., Speicher (2024))

Consider a completely positive map of the form

$$\eta: M_m(\mathbb{C}) \to M_m(\mathbb{C}), \quad b \mapsto \sum_{i=1}^n a_i b a_i^* \qquad \text{with } a_i \in M_m(\mathbb{Z}).$$

If η is rank non-decreasing then $\operatorname{cap}(\eta) \geq 1$.

🖙 [Garg, Gurvits, Oliveira, Wigderson (2016,2020)]

- Consider $T := \sum_{i=1}^n a_i \otimes u_i$ in $(M_m(\mathbb{C}) \otimes L(\mathbb{F}_n), \operatorname{tr}_m \otimes \tau)$.
- Since the determinantal conjecture is true for \mathbb{F}_n , we have $\Delta(T) \geq 1$.
- For b > 0 with $\det(b) = 1$, define $\widetilde{T} := \sum_{i=1}^{n} \left(\eta(b)^{-1/2} a_i b^{1/2} \right) \otimes u_i$.
- By multiplicativity, $\Delta(\widetilde{T}) = \det(\eta(b))^{-\frac{1}{2m}} \Delta(T) \ge \det(\eta(b))^{-\frac{1}{2m}}$.
- On the other hand, $\Delta(\widetilde{T})^2 = \Delta(\widetilde{T}\widetilde{T}^*) \leq (\operatorname{tr}_m \otimes \tau)(\widetilde{T}\widetilde{T}^*) = 1.$

• Let $a_1, \ldots, a_n \in M_m(\mathbb{C})$ be given such that the completely positive map $\eta: M_m(\mathbb{C}) \to M_m(\mathbb{C}), b \mapsto \sum_{i=1}^n a_i b a_i^*$ is rank non-decreasing.

- Let $a_1, \ldots, a_n \in M_m(\mathbb{C})$ be given such that the completely positive map $\eta: M_m(\mathbb{C}) \to M_m(\mathbb{C}), b \mapsto \sum_{i=1}^n a_i b a_i^*$ is rank non-decreasing.
- Consider n independent GUE random matrices $X_1^{(N)}, \ldots, X_n^{(N)}$ and the Gaussian block random matrix

$$A_N = a_1 \otimes X_1^{(N)} + \dots + a_n \otimes X_n^{(N)}$$

- Let $a_1, \ldots, a_n \in M_m(\mathbb{C})$ be given such that the completely positive map $\eta: M_m(\mathbb{C}) \to M_m(\mathbb{C}), b \mapsto \sum_{i=1}^n a_i b a_i^*$ is rank non-decreasing.
- Consider n independent GUE random matrices $X_1^{(N)}, \ldots, X_n^{(N)}$ and the Gaussian block random matrix

$$A_N = a_1 \otimes X_1^{(N)} + \dots + a_n \otimes X_n^{(N)}$$

There exists N_0 such that for all $N \ge N_0$, A_N is almost surely invertible. [Collins, M., Miyagawa, Parraud, Yin (2024)]

- Let $a_1, \ldots, a_n \in M_m(\mathbb{C})$ be given such that the completely positive map $\eta: M_m(\mathbb{C}) \to M_m(\mathbb{C}), b \mapsto \sum_{i=1}^n a_i b a_i^*$ is rank non-decreasing.
- Consider n independent GUE random matrices $X_1^{(N)}, \ldots, X_n^{(N)}$ and the Gaussian block random matrix

$$A_N = a_1 \otimes X_1^{(N)} + \dots + a_n \otimes X_n^{(N)}$$

There exists N_0 such that for all $N \ge N_0$, A_N is almost surely invertible. [Collins, M., Miyagawa, Parraud, Yin (2024)]

Conjecture

We claim that in the situation described above, we even have that

$$\lim_{N \to \infty} \Delta(A_N) = \operatorname{cap}(\eta)^{\frac{1}{2m}} e^{-\frac{1}{2}},$$

both in expectation and almost surely.

- Let $a_1, \ldots, a_n \in M_m(\mathbb{C})$ be given such that the completely positive map $\eta: M_m(\mathbb{C}) \to M_m(\mathbb{C}), b \mapsto \sum_{i=1}^n a_i b a_i^*$ is rank non-decreasing.
- Consider n independent GUE random matrices $X_1^{(N)}, \ldots, X_n^{(N)}$ and the Gaussian block random matrix

$$A_N = a_1 \otimes X_1^{(N)} + \dots + a_n \otimes X_n^{(N)}$$

There exists N_0 such that for all $N \ge N_0$, A_N is almost surely invertible. [Collins, M., Miyagawa, Parraud, Yin (2024)]

Conjecture

We claim that in the situation described above, we even have that

$$\lim_{N \to \infty} \Delta(A_N) = \operatorname{cap}(\eta)^{\frac{1}{2m}} e^{-\frac{1}{2}},$$

both in expectation and almost surely.