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Plan of the talk

@ Define twisted Araki-Woods Algebras L1 (H) on T-twisted Fock
spaces (mostly review)

@ Motivation and questions (background: mathematical physics, QFT)
© Standardness and modular data

@ |Inclusions of twisted Araki-Woods algebras (“twisted subfactors")
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[Bozejko/Speicher '94; Jgrgensen/Schmitt/Werner '95]
» Setup: Fix Hilbert space H and T' e B(H® H).
» ldea: New scalar products (-, -7, := (-, Pr,-) on H®".
» Notation:
T =135V eTe12 D e BH®), 1<k<n-1
» Kernels:
Pri=1, Pro=1+T, Pras=1+T1+To+Th1To+ 1T +T>T1 15,
Proi=(1®Pr,)(1+Ti+TiTa+...+T1--Ty).

@ Twist: T=T", |T| <1, Pry >0 for all n.
@ Strict twist: In addition ker Pr,, = {0}.
T-twisted Fock space

Fr(H) = @ Hew ket Py 7

n=0
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@ T=qF, -1<q<1: Fyr(H) = g-Fock space

@ T =0: Fo(H) = full Fock space

@ T=-1. Fi(H)=CoH.

Theorem ( )
Let T=T"eB(H®H), |T|<1.
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Examples
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H=L*(R,d), s:R—S', s(-0) =5(0). Then
(Tf)(01, 92) = 8(91 = 92) . f(eg, 91) is a unitary twist.
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@ T'=qF, -1<q<1: Fyr(H) = g-Fock space

@ T =0: Fo(H) = full Fock space

® T=-1: F.1,(H)=CoH.

Theorem ( )
Let T=T" e B(HoH), |T| <1
Q If|T| <3, then T is a strict twist.
@ IfT >0, then T is a strict twist.
Q If
TWITh = ToTh T (Yang-Baxter equation)

then T is a twist (strict twist if |T| < 1).

An example from QFT (“S-Matrix Model")
H = L*(R~ K,df), s: R - U(K ® K) solves YBE w.spec.par., s(-8) = s(0)*.
(Tf)(017 02) = 8(01 = 92) . f(027 01) is a unitary twist.
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From now on: H Hilbert space, 1" twist.

» On Fr(H), have (left) creation/annihilation operators ar (&), £ € H:
ar L (§)Q=¢, ar,7(£)Q =0, Q : Fock vacuum

ap1(O)[ W] = €0 W,], ¥, e HO,
aL,T(f)[\I/n] = [G,L,o(é)(l + T1 + ...+ T1--~Tn71)\11n:|

These are bounded for |T'|| < 1.
» Relations (dimH < oo, (ex) ONB, a; :=ar,r(e;))

aia; =y (e; ®er, T(e; ® er))ajar + i - 1 (aiaj = T]'l}”akal +0i5)
kol

» Left field operators:
orr(€) =apr(€) +ar,r(§).

(Left) twisted Araki-Woods Algebra (with H c )
Lr(H) = {¢rr(h) : he HY' c B(Fr(H))

w.l.o.g.: H c H closed R-linear subspace.
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and separating) for L7 (H).
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Standardness and standard subspaces

We are interested in the situation that the Fock vacuum  is standard (cyclic
and separating) for L7 (H).
» ¢r7(h)=arr(h)+arr(h) and i¢r r(ih) = —ay, (k) +arr(h)
= need H niH = {0} for Q separating
» Lemma: If H +iH c H is dense, then Q is cyclic for Lo (H).

» Consider from now on only standard subspaces: closed R-linear
subspaces H c ‘H with

H+iH ="M, HniH = {0}.
Reminder on standard subspaces and modular theory
» Tomita operator
SH:H+iH—>H+iH, h1+ih2l—>h1—ih2.
» Polar decomposition: Sg = JHA}f with Jg antiunitary and Ag > 0.
» Tomita's Theorem for standard subspaces:
AYH=H, JyH=H ={he¢H :Im(h,h')=0VheH}
H' is also a standard subspace, and (H')' = H.
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Real Hilbert spaces vs. standard subspaces

Proposition ( )

There is a one to one correspondence between
@ (real) standard subspaces of a complex Hilbert spaces, H c H,

@ real Hilbert spaces Hgr with a strongly continuous one parameter
orthogonal group U (t)

H<MHp, Afln<—U(t)
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Real Hilbert spaces vs. standard subspaces

Proposition ( )

There is a one to one correspondence between
@ (real) standard subspaces of a complex Hilbert spaces, H c H,

@ real Hilbert spaces Hr with a strongly continuous one parameter
orthogonal group U (t)

H «— Hg, A?HH — U(t)

Examples
» T =0and H =R-span(ONB), i.e. Ay =1 (or: U(t) =1 on Hg).
Then Lo(H) = L(Faim). (free Gaussian functor, [Voiculescu '85])
» T =gF and H =R-span(ONB), with -1 <¢g<1
g-Gaussian v. Neum. alg., [Bozejko/Speicher '91]. Il1-factors [Ricard '05]
» T'=0 and H arbitrary
(free Araki-Woods factors, [Shlyakhtenko '97])
» T =qF and H arbitrary

(g-deformed Araki-Woods factors, [Kumar, Skalski, Wasilewski '23])
L7 (H) is non-injective, of type Ill unless Ay =1
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Questions

» For general T' (and general H), only little is known about L7 (H).

» Motivated from QFT background, we do not focus on internal properties
of Lr(H), but rather on interplay with €, and inclusions.

» QFT: H encodes a localization region in some spacetime, T a
two-particle interaction

@ For which T, H is ) separating (hence standard) for L7 (H)?
In case Q) is separating, what are the modular data of (L1 (H),Q)?

@ For which inclusions of standard subspaces K ¢ H and which T does the
inclusion of von Neumann algebras

Lr(K)cLr(H)
have “large” relative commutant? (e.g.  cyclic, type lll, or at least

non-trivial relative commutant)

In the following: H c # an arbitrary standard subspace (i.e. arbitrary U(t)
resp. modular group A%), and T a twist.
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Separating vacuum

Basic assumption: T and H are compatible in the sense [T, A% ® A%] = 0.

Lemma: If Q is separating for L7 (H) and H,T are compatible, then the
modular data A, J of (L7 (H),Q) restrict to Ay, Jg on H.
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Separating vacuum

Basic assumption: T and H are compatible in the sense [T, A% ® A%] = 0.

Lemma: If Q is separating for L7 (H) and H,T are compatible, then the
modular data A, J of (L7 (H),Q) restrict to Ay, Jg on H.

» In order to have Q2 separating for L1 (H), need KMS-property. Consider
n-point functions (h1,...,h, € H)

fa(t) = (Q7¢L,T(h1)"'¢L,T(hn—1)Ait(bL’T(hn)Qh“ =(12... (n=1)ny).

Need
fn(=2) =(Q, ¢, 7(he)pr,7(h1) L1 (hn-1)Qr=(n12 ... (n-1))

» Graphical notation (~[Bozejko/Speicher])

4 1 6 1
S w &
3 2 473

(Juhi, A%hs),  (1,2)-(3,A%4), (30T(201),T(4®5)®6;)
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Six-point function (12 ... 6;)
6 1 6 1 6 1 6 1 6 1
A N O
4 3 4 3 4 3 4 3 4 3
6 1 6 1 6 1 6 1 6 1 6 1
8o o 2
4 3 4 3 4 3 4 3 4 3 4 3
6 1 6 1 6 1
L o5

4 3 4 3 4 3
6 1
5 2
4 3
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By imposing the KMS condition, one can extract two properties of T":
@ Crossing symmetry (analytic)
@ Yang-Baxter equation (algebraic)

11/22



By imposing the KMS condition, one can extract two properties of T":
@ Crossing symmetry (analytic)
@ Yang-Baxter equation (algebraic)

@ Analytic continuation of diagrams:

6, 1 5 6

4 SIS tart—i .
_— 5 2 —4 1

3 2 2 1 43 39
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By imposing the KMS condition, one can extract two properties of T

@ Crossing symmetry (analytic)
@ Yang-Baxter equation (algebraic)

@ Analytic continuation of diagrams:

4
I
3

2: 1

t'\»t+
(2:®1,T(3®4¢)) = T
3 4

This is a condition on T'.

e
@ﬁ

5__6¢
G0
372

1 ®4t7T(2t ® 3))
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By imposing the KMS condition, one can extract two properties of T
@ Crossing symmetry (analytic)
@ Yang-Baxter equation (algebraic)

5 6y

@ Analytic continuation of diagrams:
4 t~1t
g ==t =
3 372

2: 1
t'\»t+
(2:®1,T(3®4;)) = # é (1®4:,T(2: ®3))
3 4,

This is a condition on T'.

@ The two possible triple crossing terms in the 6-point function differ by a
Reidemeister move of type Ill.

6 1 6 1
D W
4 3 4 3
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T
t~ot+ i
T -,
T
[ ]
4 5 6

By exploiting KMS condition, one can show that one must have

/N

L —

T

4

3

b

i

5

6;

RHS = LHS (- Yang-Baxter equation.)

T

|
4 5 6
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T is called crossing-symmetric (w.r.t. H) if for all 11,...,14 € H, the function
Tp2ot(t) = (ha @1, (A @ )T (10 Af")(¥s ® a))
has an analytic continuation to the strip Sy/5 (...) and
Ty2 it (t+5) = (Y1 ® Jute, (18 Af)T(AK' ® 1)(Juts © ¢3))

_ 1, Jga
=T s (1)
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T2 0i(t) = (o @ Y1, (Al @ NT(1® Ax") (13 ® ¥a))
has an analytic continuation to the strip Sy/; (...) and

TP20(t+ ) = (1 ® Jutpa, (1® AF)T(AH' © 1) (Jutz ®s))

_ 1, Jga
=T s (1)

@ Trivially satisfied for T" = ¢F, trivially violated for T" = g1

@ For S-matrix model crossing holds if s has the right analytic properties
(many examples exist)

Theorem

Let H c ‘H be a standard subspace and T' a compatible twist. The following are
equivalent:

a) Q is separating for L7 (H).

b) T is braided and crossing symmetric w.r.t. H.
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Braided twists and left-right duality

How does the argument “YBE+-crossing == 2 separating” work?

For braided twists (YBE T1 1571 = 1271115 holds), also right
creation/annihilation operators exist:

ar,r(E)[Tn] = [Tn ®E],
ar,T(E)[Yn]=[aro(E)(A+Th+ ...+ Tpo1--T1)¥,]
or,1(€) = arr(§) +arr(§)
... generating “right” twisted Araki-Woods algebras R ().

» With crossing symmetry and YBE one can show that L7 (H) and
Rr(H') commute.

Let T be braided and crossing symmetric.

a) The Tomita operator S of (L1 (H),Q) is given by
SY1®...0 Yn] =[SEHYn ®...® SHY1]
b) Left-right duality holds:

Lr(H) =Rr(H).
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Remarks on standardness question

» From our perspective, the braided and crossing-symmetric twists are the
most interesting ones (Classification unknown).

» Both the Yang-Baxter equation and crossing symmetry have their origins
in physics, but can here be derived from modular theory.

» Definition of crossing is inspired by QFT crossing symmetry (scattering of
particles vs. scattering of antiparticles, Jy=TCP operator)

» Result on modular data generalizes many known results
[Eckmann/Osterwalder '73, Leyland/Roberts/Testard '78, Shlyakhtenko
'97, Baumgartel /Jurke/Lledo '02, Buchholz/L/Summers '11, L '12]
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Inclusions
Have two maps

H+— Lr(H), H+— Rr(H)

from T-comp. standard subspaces H ¢ H to v. Neumann algebras on Fr(#H).

» By definition: K ¢ H = Lp(K)c Lr(H), Rr(K) c Rr(H).

» Inspired by QFT models: Investigate von Neumann algebra inclusions
,CT(K) C ,CT(H)

L (H) will be a factor (— subfactors).

Lemma: Proper inclusions K c H only exist if Ay, Ax are unbounded. In
particular dim = oo is needed.
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Twisted subfactors

» For T'=qF, -1<g<1,itis known that L,r(H) is a non-injective factor
of type Il if Ay is unbounded [Kumar, Skalski, Wasilewski '23].

» This is no longer true for g =1, where Lr(H)nLp(H) =Lr(HNnH')
(and Lr(H) =Rr(H)) holds [Leyland/Roberts/Testard '78].

» We expect that for general (braided, crossing-symmetric) twist with
||| <1, it is still true that L7 (H) is a non-injective factor of type Ill if
Ap is unbounded.

K c H. Relative commutant

Cr(K,H)=Lr(K) nLr(H)=Lr(K) nRr(H')'.
In the following: Two results on L7 (K) c Lr(H) in different situations,

@ one “negative” (singular inclusions, Cr (K, H) = C1)
@ one “positive” (large relative commutant, Cr (K, H) # C1)
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Half-sided inclusions

Let us consider a half-sided inclusion K ¢ H of standard subspaces:
@ have unitary one-parameter group V (x) with positive generator,
@ V(z)Hc H, z>0. Set K:=V(1)H.
o [V(z)®V(zx), T]=0.
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@ Modular group acts by dilations, A%V (2)A" = V(e > ')
[Borchers'92].

Suppose |T|| <1 and ke K, k' € H'. Then

¢r.0(k)pr.r(h") € Lr(K)vRr(H') =Cr(K, H)'

oL (ALK o R(AGR) € Lr(K)vRr(H') =Cr(K,H)', t<0.
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Singular inclusions

Let K c¢ H be a half-sided inclusion of standard subspaces and T' a compatible
braided crossing-symmetric twist with |T'| < 1. Then Cr (K, H) = C1.

» For T =0, the proof becomes quite easy.
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Theorem

Let K c H be standard subspaces. Suppose there exist sequences of unit
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» For T =0, the proof becomes quite easy.

» — easiest/most natural examples of singular half-sided inclusions (after
more complicated ones in [Longo/Tanimoto/Ueda '19, L/Scotford '22])

Generalization:

Theorem

Let K c H be standard subspaces. Suppose there exist sequences of unit
vectors k,, € K, hl, € H', such that

kn =0, hi;, >0 weakly, (kn,hy) 4 0.

® Then Cr(K,H) =Cl1 (for |T| < 1).

@ This is in particular the case when AZALA;/ * is not compact.

Corollary: L7 (H) is a factor for |T'|| <1 and dim H = co.
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For |T| < 1:
HA1/4 -1/4
U
Lr(K)cLp(H) split
U
CT(K, H)+C
U

A}JMA;M compact

<1
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For |T| < 1:
HA1/4 -1/4
U
Lr(K)cLp(H) split
U
CT(K, H)+C
U

A}{/4A;(1/4 compact

<1

» Relation between A}#A;M and Cr (K, H) is much closer for
|T|| <1 than for |T| = 1.
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o(TF)

S-model

qS-model

» Do there exist inclusions L(K) c L7 (H) that have non-trivial
relative commutant but are not split?

» Interesting regime: A}#A;M compact, but not |A}}

Can we say something about Cr (K, H) (avoiding split)?

1/4 —1/4H
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