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Plan of the talk
1 Define twisted Araki-Woods Algebras LT (H) on T -twisted Fock

spaces (mostly review)

2 Motivation and questions (background: mathematical physics, QFT)
3 Standardness and modular data
4 Inclusions of twisted Araki-Woods algebras (“twisted subfactors”)
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Construction of LT (H) on twisted Fock spaces
[Bożejko/Speicher ’94; Jørgensen/Schmitt/Werner ’95]
▶ Setup: Fix Hilbert space H and T ∈ B(H⊗H).

▶ Idea: New scalar products ⟨ ⋅ , ⋅ ⟩T,n ∶= ⟨ ⋅ , PT,n ⋅ ⟩ on H⊗n.
▶ Notation:

Tk ∶= 1⊗(k−1)H ⊗ T ⊗ 1
⊗(n−k−1)
H ∈ B(H⊗n), 1 ≤ k ≤ n − 1

▶ Kernels:
PT,1 = 1, PT,2 = 1 + T, PT,3 = 1 + T1 + T2 + T1T2 + T2T1 + T2T1T2,

PT,n+1 = (1⊗ PT,n)(1 + T1 + T1T2 + . . . + T1⋯Tn).

Definition

Twist: T = T ∗, ∥T ∥ ≤ 1, PT,n ≥ 0 for all n.
Strict twist: In addition kerPT,n = {0}.

Definition
T -twisted Fock space

FT (H) ∶=⊕
n≥0
H⊗n/kerPT,n

⟨ ⋅ , ⋅ ⟩T,n
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Examples

T = F ∶ v ⊗w ↦ w ⊗ v (flip): FF (H) = Bose Fock space

T = qF , −1 ≤ q ≤ 1: FqF (H) = q-Fock space
T = 0: F0(H) = full Fock space
T = −1: F−1(H) = C⊕H.

Theorem ([Jørgensen/Schmitt/Werner; Bożejko/Speicher])
Let T = T ∗ ∈ B(H⊗H), ∥T ∥ ≤ 1.

1 If ∥T ∥ ≤ 1
2
, then T is a strict twist.

2 If T ≥ 0, then T is a strict twist.
3 If

T1T2T1 = T2T1T2 (Yang-Baxter equation)

then T is a twist (strict twist if ∥T ∥ < 1).
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, then T is a strict twist.

2 If T ≥ 0, then T is a strict twist.
3 If

T1T2T1 = T2T1T2 (Yang-Baxter equation)

then T is a twist (strict twist if ∥T ∥ < 1).

An example from QFT (“S-Matrix Model”)

H = L2(R, dθ), s ∶ R→ S1, s(−θ) = s(θ). Then

(Tf)(θ1, θ2) = s(θ1 − θ2) ⋅ f(θ2, θ1) is a unitary twist.
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3 If

T1T2T1 = T2T1T2 (Yang-Baxter equation)

then T is a twist (strict twist if ∥T ∥ < 1).

An example from QFT (“S-Matrix Model”)

H = L2(R→ K, dθ), s ∶ R→ U(K ⊗K) solves YBE w.spec.par., s(−θ) = s(θ)∗.

(Tf)(θ1, θ2) = s(θ1 − θ2) ⋅ f(θ2, θ1) is a unitary twist.
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From now on: H Hilbert space, T twist.

▶ On FT (H), have (left) creation/annihilation operators aL,T (ξ), ξ ∈H:

a⋆T,L(ξ)Ω = ξ, aL,T (ξ)Ω = 0, Ω ∶ Fock vacuum
a⋆L,T (ξ)[Ψn] = [ξ ⊗Ψn], Ψn ∈H⊗n,
aL,T (ξ)[Ψn] = [aL,0(ξ)(1 + T1 + . . . + T1⋯Tn−1)Ψn]

These are bounded for ∥T ∥ < 1.
▶
▶ Left field operators:

ϕL,T (ξ) ∶= a⋆L,T (ξ) + aL,T (ξ).

(Left) twisted Araki-Woods Algebra (with H ⊂H)

LT (H) ∶= {ϕL,T (h) ∶ h ∈H}′′ ⊂ B(FT (H))

w.l.o.g.: H ⊂H closed R-linear subspace.
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Standardness and standard subspaces
We are interested in the situation that the Fock vacuum Ω is standard (cyclic
and separating) for LT (H).

▶ ϕL,T (h) = a⋆L,T (h) + aL,T (h) and iϕL,T (ih) = −a⋆L,T (h) + aL,T (h)
⇒ need H ∩ iH = {0} for Ω separating

▶ Lemma: If H + iH ⊂H is dense, then Ω is cyclic for LT (H).
▶ Consider from now on only standard subspaces: closed R-linear

subspaces H ⊂H with

H + iH =H, H ∩ iH = {0}.

Reminder on standard subspaces and modular theory
▶ Tomita operator

SH ∶H + iH →H + iH, h1 + ih2 ↦ h1 − ih2.

▶ Polar decomposition: SH = JH∆
1/2
H with JH antiunitary and ∆H > 0.

▶ Tomita’s Theorem for standard subspaces:

∆it
HH =H, JHH =H ′ = {h′ ∈H ∶ Im⟨h,h′⟩ = 0∀h ∈H}

H ′ is also a standard subspace, and (H ′)′ =H.
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subspaces H ⊂H with

H + iH =H, H ∩ iH = {0}.

Reminder on standard subspaces and modular theory
▶ Tomita operator

SH ∶H + iH →H + iH, h1 + ih2 ↦ h1 − ih2.

▶ Polar decomposition: SH = JH∆
1/2
H with JH antiunitary and ∆H > 0.

▶ Tomita’s Theorem for standard subspaces:

∆it
HH =H, JHH =H ′ = {h′ ∈H ∶ Im⟨h,h′⟩ = 0∀h ∈H}

H ′ is also a standard subspace, and (H ′)′ =H.
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Real Hilbert spaces vs. standard subspaces
Proposition ([Shlyakhtenko ’97])
There is a one to one correspondence between

(real) standard subspaces of a complex Hilbert spaces, H ⊂H,
real Hilbert spaces HR with a strongly continuous one parameter
orthogonal group U(t)

H ←→HR, ∆it
H ∣H ←→ U(t)

Examples
▶ T = 0 and H = R-span(ONB), i.e. ∆H = 1 (or: U(t) = 1 on HR).

Then L0(H) = L(FdimH). (free Gaussian functor, [Voiculescu ’85])
▶ T = qF and H = R-span(ONB), with −1 < q < 1

q-Gaussian v. Neum. alg., [Bożejko/Speicher ’91]. II1-factors [Ricard ’05]
▶ T = 0 and H arbitrary

(free Araki-Woods factors, [Shlyakhtenko ’97])
▶ T = qF and H arbitrary

(q-deformed Araki-Woods algebras
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Questions
▶ For general T (and general H), only little is known about LT (H).

▶ Motivated from QFT background, we do not focus on internal properties
of LT (H), but rather on interplay with Ω, and inclusions.

▶ QFT: H encodes a localization region in some spacetime, T a
two-particle interaction

Main Questions
1 For which T,H is Ω separating (hence standard) for LT (H)?

In case Ω is separating, what are the modular data of (LT (H),Ω)?
2 For which inclusions of standard subspaces K ⊂H and which T does the

inclusion of von Neumann algebras

LT (K) ⊂ LT (H)

have “large” relative commutant? (e.g. Ω cyclic, type III, or at least
non-trivial relative commutant)

In the following: H ⊂H an arbitrary standard subspace (i.e. arbitrary U(t)
resp. modular group ∆it

H), and T a twist.
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Separating vacuum
Basic assumption: T and H are compatible in the sense [T,∆it

H ⊗∆it
H] = 0.

Lemma: If Ω is separating for LT (H) and H,T are compatible, then the
modular data ∆, J of (LT (H),Ω) restrict to ∆H , JH on H.

▶ In order to have Ω separating for LT (H), need KMS-property. Consider
n-point functions (h1, . . . , hn ∈H)

fn(t) ∶= ⟨Ω, ϕL,T (h1)⋯ϕL,T (hn−1)∆itϕL,T (hn)Ω⟩T = ⟨12 . . . (n − 1)nt⟩.

Need

fn(−i) = ⟨Ω, ϕL,T (hn)ϕL,T (h1)⋯ϕL,T (hn−1)Ω⟩T = ⟨n12 . . . (n − 1)⟩

▶ Graphical notation (∼[Bożejko/Speicher])

12t

1

23

4 1

2

34

5

6

⟨JHh1,∆
it
Hh2⟩, ⟨1̄,2⟩ ⋅ ⟨3̄,∆it

H4⟩, ⟨3̄⊗ T (2̄⊗ 1̄), T (4⊗ 5)⊗ 6t⟩
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Six-point function ⟨12 . . . 6t⟩

1

2

34

5

6 1

2

34

5

6 1

2

34

5

6 1

2

34

5

6 1

2

34

5

6

1

2

34

5

6 1

2

34

5

6 1

2

34

5

6 1

2

34

5

6 1

2

34

5

6 1

2

34

5

6

1

2

34

5

6 1

2

34

5

6 1

2

34

5

6

1

2

34

5

6
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By imposing the KMS condition, one can extract two properties of T :
1 Crossing symmetry (analytic)
2 Yang-Baxter equation (algebraic)

1 Analytic continuation of diagrams:

1

23

4t
t↝ t − i

12

3 4t 1

2

34

5

6t
t↝ t − i

1

23

4

5 6t

⟨2t ⊗ 1, T (3⊗ 4t)⟩ = T

2t 1

3 4t

t↝ t + i
2

T

2t 1

3 4t

= ⟨1⊗ 4t, T (2t ⊗ 3)⟩

This is a condition on T .
2 The two possible triple crossing terms in the 6-point function differ by a

Reidemeister move of type III.
1

2

34

5

6 1

2

34

5

6
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T

T

T

3t

4

2 1

5 6t

t↝ t + i
2

T

T

T

3t

4

2 1

5 6t

= T

T

T

1

6t

23t

54

By exploiting KMS condition, one can show that one must have
RHS = LHS (→ Yang-Baxter equation.)
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Definition
T is called crossing-symmetric (w.r.t. H) if for all ψ1, . . . , ψ4 ∈H, the function

Tψ2,ψ1
ψ3,ψ4

(t) ∶= ⟨ψ2 ⊗ψ1, (∆it
H ⊗ 1)T (1⊗∆−itH )(ψ3 ⊗ψ4)⟩

has an analytic continuation to the strip S1/2 (...) and

Tψ2,ψ1
ψ3,ψ4

(t + i
2
) = ⟨ψ1 ⊗ JHψ4, (1⊗∆it

H)T (∆−itH ⊗ 1)(JHψ2 ⊗ψ3)⟩

= Tψ1,JHψ4
JHψ2,ψ3

(−t).

Trivially satisfied for T = qF , trivially violated for T = q1
For S-matrix model crossing holds if s has the right analytic properties
(many examples exist)

Theorem
Let H ⊂H be a standard subspace and T a compatible twist. The following are
equivalent:

a) Ω is separating for LT (H).
b) T is braided and crossing symmetric w.r.t. H.
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Let H ⊂H be a standard subspace and T a compatible twist. The following are
equivalent:

a) Ω is separating for LT (H).
b) T is braided and crossing symmetric w.r.t. H.
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Braided twists and left-right duality
How does the argument “YBE+crossing Ô⇒ Ω separating” work?

For braided twists (YBE T1T2T1 = T2T1T2 holds), also right
creation/annihilation operators exist:

a⋆R,T (ξ)[Ψn] = [Ψn ⊗ ξ],
aR,T (ξ)[Ψn] = [aR,0(ξ)(1 + Tn + . . . + Tn−1⋯T1)Ψn]

ϕR,T (ξ) ∶= a⋆R,T (ξ) + aR,T (ξ)
... generating “right” twisted Araki-Woods algebras RT (H).
▶ With crossing symmetry and YBE one can show that LT (H) and
RT (H ′) commute.

Proposition
Let T be braided and crossing symmetric.

a) The Tomita operator S of (LT (H),Ω) is given by

S[ψ1 ⊗ . . .⊗ψn] = [SHψn ⊗ . . .⊗ SHψ1]

b) Left-right duality holds:

LT (H)′ =RT (H ′).
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Remarks on standardness question
▶ From our perspective, the braided and crossing-symmetric twists are the

most interesting ones (Classification unknown).
▶ Both the Yang-Baxter equation and crossing symmetry have their origins

in physics, but can here be derived from modular theory.
▶ Definition of crossing is inspired by QFT crossing symmetry (scattering of

particles vs. scattering of antiparticles, JH=TCP operator)
▶ Result on modular data generalizes many known results

[Eckmann/Osterwalder ’73, Leyland/Roberts/Testard ’78, Shlyakhtenko
’97, Baumgärtel/Jurke/Lledo ’02, Buchholz/L/Summers ’11, L ’12]
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Inclusions
Have two maps

H z→ LT (H), H z→RT (H)

from T -comp. standard subspaces H ⊂H to v. Neumann algebras on FT (H).

▶ By definition: K ⊂H Ô⇒ LT (K) ⊂ LT (H), RT (K) ⊂RT (H).
▶ Inspired by QFT models: Investigate von Neumann algebra inclusions

LT (K) ⊂ LT (H).

LT (H) will be a factor (→ subfactors).

Lemma: Proper inclusions K ⊂H only exist if ∆H ,∆K are unbounded. In
particular dimH =∞ is needed.
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Twisted subfactors
▶ For T = qF , −1 < q < 1, it is known that LqF (H) is a non-injective factor

of type III if ∆H is unbounded [Kumar, Skalski, Wasilewski ’23].

▶ This is no longer true for q = 1, where LF (H) ∩LF (H)′ = LF (H ∩H ′)
(and LF (H) =RF (H)) holds [Leyland/Roberts/Testard ’78].

▶ We expect that for general (braided, crossing-symmetric) twist with
∥T ∥ < 1, it is still true that LT (H) is a non-injective factor of type III if
∆H is unbounded.

K ⊂H. Relative commutant

CT (K,H) ∶= LT (K)′ ∩LT (H) = LT (K)′ ∩RT (H ′)′.

In the following: Two results on LT (K) ⊂ LT (H) in different situations,
one “negative” (singular inclusions, CT (K,H) = C1)
one “positive” (large relative commutant, CT (K,H) ≠ C1)
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Half-sided inclusions
Let us consider a half-sided inclusion K ⊂H of standard subspaces:

have unitary one-parameter group V (x) with positive generator,
V (x)H ⊂H, x ≥ 0. Set K ∶= V (1)H.
[V (x)⊗ V (x), T ] = 0.

Well-studied scenario in CFT (translations on a lightray). Known:
▶ LT (H) is a III1 factor [Wiesbrock ’93].

Modular group acts by dilations, ∆it
HV (x)∆−itH = V (e−2πtx)

[Borchers’92].

Suppose ∥T ∥ < 1 and k ∈K, h′ ∈H ′. Then

ϕT,L(k)ϕT,R(h′) ∈ LT (K) ∨RT (H ′) = CT (K,H)′

ϕT,L(∆it
Hk)ϕT,R(∆it

Hh
′) ∈ LT (K) ∨RT (H ′) = CT (K,H)′, t < 0.

For ∥T ∥ < 1, weak limit t→ −∞ can be controlled. Gives vacuum projection PΩ.
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Singular inclusions
Theorem
Let K ⊂H be a half-sided inclusion of standard subspaces and T a compatible
braided crossing-symmetric twist with ∥T ∥ < 1. Then CT (K,H) = C1.

▶ For T = 0, the proof becomes quite easy.

▶ → easiest/most natural examples of singular half-sided inclusions (after
more complicated ones in [Longo/Tanimoto/Ueda ’19, L/Scotford ’22])

Generalization:
Theorem
Let K ⊂H be standard subspaces. Suppose there exist sequences of unit
vectors kn ∈K, h′n ∈H ′, such that

kn → 0, h′n → 0 weakly, ⟨kn, h′n⟩ /→ 0.

Then CT (K,H) = C1 (for ∥T ∥ < 1).
This is in particular the case when ∆

1/4
H ∆

−1/4
K is not compact.

Corollary: LT (H) is a factor for ∥T ∥ < 1 and dimH =∞.
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L2-inclusions

▶ The fact that many inclusions LT (K) ⊂ LT (H) are singular for ∥T ∥ < 1
is in line with proximity to extreme situation at T = 0.

▶ Surprisingly, LT (K) ⊂ LT (H) can also have very large relative
commutant for suitable K ⊂H and ∥T ∥ < 1.

Theorem

Let K ⊂H be an inclusion such that ∥∆1/4
H ∆

−1/4
K ∥1 < 1 (trace norm). Let T be

a braided crossing symmetric compatible twist with ∥T ∥ < 1. Then
a) LT (K) ⊂ LT (H) is split.
b) CT (K,H) ≅ LT (H)⊗RT (K′).

▶ Proof uses split property [Doplicher/Longo ’84] and modular density
conditions [D’Antoni/Longo/Radulescu’01,Buchholz/D’Antoni/Longo’07]
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For ∥T ∥ < 1:

∥∆1/4
H ∆

−1/4
K ∥1 < 1
⇓

LT (K) ⊂ LT (H) split
⇓

CT (K,H) ≠ C
⇓

∆
1/4
H ∆

−1/4
K compact

▶ Relation between ∆
1/4
H ∆

−1/4
K and CT (K,H) is much closer for

∥T ∥ < 1 than for ∥T ∥ = 1.
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σ(TF )

T = 0 T = FT = −F

S-model
qS-model

▶ Do there exist inclusions LT (K) ⊂ LT (H) that have non-trivial
relative commutant but are not split?

▶ Interesting regime: ∆
1/4
H ∆

−1/4
K compact, but not ∥∆1/4

H ∆
−1/4
K ∥1 < 1.

Can we say something about CT (K,H) (avoiding split)?
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