Modular Structure and Inclusions of Twisted Araki-Woods Algebras

Gandalf Lechner
joint work with Ricardo Correa da Silva
arXiv:2212.02298

UC Berkeley Probabilistic Operator Algebra Seminar
January 30, 2023
Plan of the talk

1. Define twisted Araki-Woods Algebras $\mathcal{L}_T(H)$ on T-twisted Fock spaces (mostly review)
Plan of the talk

1. Define twisted Araki-Woods Algebras $\mathcal{L}_T(H)$ on T-twisted Fock spaces (mostly review)

2. Motivation and questions (background: mathematical physics, QFT)
Plan of the talk

1. Define twisted Araki-Woods Algebras $\mathcal{L}_T(H)$ on T-twisted Fock spaces (mostly review)

2. Motivation and questions (background: mathematical physics, QFT)

3. Standardness and modular data
Plan of the talk

1. Define twisted Araki-Woods Algebras $L_T(H)$ on T-twisted Fock spaces (mostly review)
2. Motivation and questions (background: mathematical physics, QFT)
3. Standardness and modular data
4. Inclusions of twisted Araki-Woods algebras (“twisted subfactors”)
Construction of $\mathcal{L}_T(H)$ on twisted Fock spaces

[Bożejko/Speicher '94; Jørgensen/Schmitt/Werner '95]

Setup: Fix Hilbert space \mathcal{H} and $T \in \mathcal{B}(\mathcal{H} \otimes \mathcal{H})$.

Idea: New scalar products $\langle \cdot, \cdot \rangle_T, n$ on $\mathcal{H} \otimes_n$.

Notation: $T_k : = 1 \otimes (k - 1) \mathcal{H} \otimes T \otimes 1 \otimes (n - k - 1) \mathcal{H} \in \mathcal{B}(\mathcal{H} \otimes_n)$, $1 \leq k \leq n - 1$.

Kernels: $P_T, 1 = 1$, $P_T, 2 = 1 + T$, $P_T, 3 = 1 + T_1 + T_2 + T_1 T_2$, $P_T, n + 1 = (1 \otimes P_T, n)(1 + T_1 + T_2 + \ldots + T_n)$.

Definition twisted: $T = T^*$, $\|T\| \leq 1$, $P_T, n \geq 0$ for all n.

Strict twist: In addition $\ker P_T, n = \{0\}$.

Definition T-twisted Fock space $\mathcal{F}_T(\mathcal{H})$: $= \bigoplus_{n \geq 0} \mathcal{H} \otimes_n / \ker P_T, n \langle \cdot, \cdot \rangle_T$.
Construction of $\mathcal{L}_T(H)$ on twisted Fock spaces

[Bożejko/Speicher '94; Jørgensen/Schmitt/Werner '95]

- **Setup:** Fix Hilbert space \mathcal{H} and $T \in \mathcal{B}(\mathcal{H} \otimes \mathcal{H})$.
- **Idea:** New scalar products $\langle \cdot, \cdot \rangle_{T,n} := \langle \cdot, P_{T,n} \cdot \rangle$ on $\mathcal{H}^\otimes n$.

\triangleright Notation: $T_k := 1 \otimes (k - 1) \mathcal{H} \otimes T \otimes 1 \otimes (n - k - 1) \mathcal{H} \in \mathcal{B}(\mathcal{H} \otimes n)$, $1 \leq k \leq n - 1$.

\triangleright Kernels: $P_{T,1} = 1$, $P_{T,2} = 1 + T$, $P_{T,3} = 1 + T_1 + T_2 + T_1 T_2 + T_2 T_1$, $P_{T,n+1} = (1 \otimes P_{T,n}) (1 + T_1 + T_1 T_2 + \ldots + T_n)$.

Definition T-twist: $T = T^*$, $\|T\| \leq 1$, $P_{T,n} \geq 0$ for all n.

Strict twist: In addition $\ker P_{T,n} = \{0\}$.

Definition T-twisted Fock space $F_T(H) := \bigoplus_{n \geq 0} \mathcal{H} \otimes n / \ker P_{T,n} \langle \cdot, \cdot \rangle_{T,n}$.
Construction of $\mathcal{L}_T(H)$ on twisted Fock spaces

[Bożejko/Speicher '94; Jørgensen/Schmitt/Werner '95]

- **Setup:** Fix Hilbert space \mathcal{H} and $T \in \mathcal{B}(\mathcal{H} \otimes \mathcal{H})$.
- **Idea:** New scalar products $\langle \cdot, \cdot \rangle_{T,n} := \langle \cdot, P_{T,n} \cdot \rangle$ on $\mathcal{H}^{\otimes n}$.
- **Notation:**

 $$T_k := 1_{\mathcal{H}}^{\otimes (k-1)} \otimes T \otimes 1_{\mathcal{H}}^{\otimes (n-k-1)} \in \mathcal{B}(\mathcal{H}^{\otimes n}), \quad 1 \leq k \leq n - 1$$

- **Kernels:**

 $$P_{T,1} = 1, \quad P_{T,2} = 1 + T, \quad P_{T,3} = 1 + T_1 + T_2 + T_1T_2 + T_2T_1 + T_2T_1T_2,$$

 $$P_{T,n+1} = (1 \otimes P_{T,n})(1 + T_1 + T_1T_2 + \ldots + T_1\cdots T_n).$$
Construction of $\mathcal{L}_T(H)$ on twisted Fock spaces

[Bożejko/Speicher ’94; Jørgensen/Schmitt/Werner ’95]

▶ **Setup:** Fix Hilbert space \mathcal{H} and $T \in \mathcal{B}(\mathcal{H} \otimes \mathcal{H})$.
▶ **Idea:** New scalar products $\langle \cdot, \cdot \rangle_{T,n} := \langle \cdot, P_{T,n} \cdot \rangle$ on $\mathcal{H}^\otimes n$.
▶ **Notation:**

$$T_k := 1_{\mathcal{H}}^{\otimes (k-1)} \otimes T \otimes 1_{\mathcal{H}}^{\otimes (n-k-1)} \in \mathcal{B}(\mathcal{H}^\otimes n), \quad 1 \leq k \leq n-1$$

▶ **Kernels:**

$$P_{T,1} = 1, \quad P_{T,2} = 1 + T, \quad P_{T,3} = 1 + T_1 + T_2 + T_1T_2 + T_2T_1 + T_2T_1T_2,$$

$$P_{T,n+1} = (1 \otimes P_{T,n})(1 + T_1 + T_1T_2 + \ldots + T_1\ldots T_n).$$

Definition

- **Twist:** $T = T^*$, $\|T\| \leq 1$, $P_{T,n} \succeq 0$ for all n.
- **Strict twist:** In addition $\ker P_{T,n} = \{0\}$.
Construction of $\mathcal{L}_T(H)$ on twisted Fock spaces

[Bożejko/Speicher '94; Jørgensen/Schmitt/Werner '95]

- **Setup:** Fix Hilbert space \mathcal{H} and $T \in \mathcal{B}(\mathcal{H} \otimes \mathcal{H})$.
- **Idea:** New scalar products $\langle \cdot , \cdot \rangle_{T,n} := \langle \cdot , P_{T,n} \cdot \rangle$ on $\mathcal{H}^\otimes n$.
- **Notation:**
 \[T_k := 1_{\mathcal{H}}^{\otimes (k-1)} \otimes T \otimes 1_{\mathcal{H}}^{\otimes (n-k-1)} \in \mathcal{B}(\mathcal{H}^\otimes n), \quad 1 \leq k \leq n - 1 \]
- **Kernels:**
 \[P_{T,1} = 1, \quad P_{T,2} = 1 + T, \quad P_{T,3} = 1 + T_1 + T_2 + T_1 T_2 + T_2 T_1 + T_2 T_1 T_2, \]
 \[P_{T,n+1} = (1 \otimes P_{T,n})(1 + T_1 + T_1 T_2 + \ldots + T_1 \cdots T_n). \]

Definition

- **Twist:** $T = T^*$, $\|T\| \leq 1$, $P_{T,n} \geq 0$ for all n.
- **Strict twist:** In addition $\ker P_{T,n} = \{0\}$.

Definition

T-twisted Fock space

\[\mathcal{F}_T(\mathcal{H}) := \bigoplus_{n \geq 0} \mathcal{H}^\otimes n / \ker P_{T,n} \langle \cdot , \cdot \rangle_{T,n} \]
Examples

- $T = F : v \otimes w \mapsto w \otimes v$ (flip): $\mathcal{F}_F(\mathcal{H}) = \text{Bose Fock space}$
Examples

- $T = F : v \otimes w \mapsto w \otimes v$ (flip): $\mathcal{F}_F(\mathcal{H}) = \text{Bose Fock space}$
- $T = qF, -1 \leq q \leq 1$: $\mathcal{F}_{qF}(\mathcal{H}) = q\text{-Fock space}$
Examples

- $T = F : v \otimes w \mapsto w \otimes v$ (flip): $\mathcal{F}_F(\mathcal{H}) = \text{Bose Fock space}$
- $T = qF, -1 \leq q \leq 1$: $\mathcal{F}_{qF}(\mathcal{H}) = q$-Fock space
- $T = 0$: $\mathcal{F}_0(\mathcal{H}) = \text{full Fock space}$
- $T = -1$: $\mathcal{F}_{-1}(\mathcal{H}) = \mathbb{C} \oplus \mathcal{H}$.
Examples

- $T = F : v \otimes w \mapsto w \otimes v$ (flip): $\mathcal{F}_F(\mathcal{H}) = $ Bose Fock space
- $T = qF, -1 \leq q \leq 1$: $\mathcal{F}_{qF}(\mathcal{H}) = q$-Fock space
- $T = 0$: $\mathcal{F}_0(\mathcal{H}) = $ full Fock space
- $T = -1$: $\mathcal{F}_{-1}(\mathcal{H}) = \mathbb{C} \oplus \mathcal{H}$.

Theorem ([Jørgensen/Schmitt/Werner; Bożejko/Speicher])

Let $T = T^* \in \mathcal{B}(\mathcal{H} \otimes \mathcal{H}), \|T\| \leq 1$.

1. If $\|T\| \leq \frac{1}{2}$, then T is a strict twist.
2. If $T \geq 0$, then T is a strict twist.
3. If

$$T_1T_2T_1 = T_2T_1T_2 \quad \text{(Yang-Baxter equation)}$$

then T is a twist (strict twist if $\|T\| < 1$).
Examples

- $T = F : v \otimes w \mapsto w \otimes v$ (flip): $\mathcal{F}_F(\mathcal{H}) = \text{Bose Fock space}$
- $T = qF, -1 \leq q \leq 1$: $\mathcal{F}_q(\mathcal{H}) = q\text{-Fock space}$
- $T = 0$: $\mathcal{F}_0(\mathcal{H}) = \text{full Fock space}$
- $T = -1$: $\mathcal{F}_{-1}(\mathcal{H}) = \mathbb{C} \oplus \mathcal{H}$.

Theorem ([Jørgensen/Schmitt/Werner; Bożejko/Speicher])

Let $T = T^* \in \mathcal{B}(\mathcal{H} \otimes \mathcal{H}), \|T\| \leq 1$.

1. If $\|T\| \leq \frac{1}{2}$, then T is a strict twist.
2. If $T \geq 0$, then T is a strict twist.
3. If

$$T_1 T_2 T_1 = T_2 T_1 T_2$$ (Yang-Baxter equation)

then T is a twist (strict twist if $\|T\| < 1$).

An example from QFT (“S-Matrix Model”)

$\mathcal{H} = L^2(\mathbb{R}, d\theta), s : \mathbb{R} \rightarrow S^1, s(-\theta) = \overline{s(\theta)}$. Then

$$(Tf)(\theta_1, \theta_2) = s(\theta_1 - \theta_2) \cdot f(\theta_2, \theta_1)$$

is a unitary twist.
Examples

- $T = F : v \otimes w \mapsto w \otimes v$ (flip): $\mathcal{F}_F(\mathcal{H}) = \text{Bose Fock space}$
- $T = qF, -1 \leq q \leq 1$: $\mathcal{F}_{qF}(\mathcal{H}) = q\text{-Fock space}$
- $T = 0$: $\mathcal{F}_0(\mathcal{H}) = \text{full Fock space}$
- $T = -1$: $\mathcal{F}_{-1}(\mathcal{H}) = \mathbb{C} \oplus \mathcal{H}$.

Theorem ([Jørgensen/Schmitt/Werner; Bożejko/Speicher])

Let $T = T^* \in \mathcal{B}(\mathcal{H} \otimes \mathcal{H}), \|T\| \leq 1$.

1. If $\|T\| \leq \frac{1}{2}$, then T is a strict twist.
2. If $T \geq 0$, then T is a strict twist.
3. If

$$T_1 T_2 T_1 = T_2 T_1 T_2 \quad \text{(Yang-Baxter equation)}$$

then T is a twist (strict twist if $\|T\| < 1$).

An example from QFT ("S-Matrix Model")

$\mathcal{H} = L^2(\mathbb{R} \to \mathcal{K}, d\theta), \quad s : \mathbb{R} \to \mathcal{U}(\mathcal{K} \otimes \mathcal{K})$ solves YBE w.spec.par., $s(-\theta) = s(\theta)^*$.

$$(Tf)(\theta_1, \theta_2) = s(\theta_1 - \theta_2) \cdot f(\theta_2, \theta_1) \quad \text{is a unitary twist.}$$
From now on: \mathcal{H} Hilbert space, T twist.
From now on: \mathcal{H} Hilbert space, T twist.

- On $\mathcal{F}_T(\mathcal{H})$, have (left) creation/annihilation operators $a_{L,T}(\xi), \xi \in \mathcal{H}$:

 \[
 a_{T,L}^*(\xi)\Omega = \xi, \quad a_{L,T}(\xi)\Omega = 0, \quad \Omega: \text{Fock vacuum}
 \]

 \[
 a_{L,T}^*(\xi)[\Psi_n] = [\xi \otimes \Psi_n], \quad \Psi_n \in \mathcal{H}^\otimes n,
 \]

 \[
 a_{L,T}(\xi)[\Psi_n] = [a_{L,0}(\xi)(1 + T_1 + \ldots + T_1\ldots T_{n-1})\Psi_n]
 \]

 These are bounded for $\|T\| < 1$.

From now on: \mathcal{H} Hilbert space, T twist.

- On $\mathcal{F}_T(\mathcal{H})$, have (left) creation/annihilation operators $a_{L,T}(\xi), \xi \in \mathcal{H}$:

\[
\begin{align*}
a_{T,L}^*(\xi)\Omega &= \xi, \quad a_{L,T}(\xi)\Omega = 0, \quad \Omega : \text{Fock vacuum} \\
\left[a_{L,T}^*(\xi)\right][\Psi_n] &= [\xi \otimes \Psi_n], \quad \Psi_n \in \mathcal{H}^\otimes n, \\
\left[a_{L,T}(\xi)\right][\Psi_n] &= [a_{L,0}(\xi)(1 + T_1 + \ldots + T_1\cdots T_{n-1})\Psi_n]
\end{align*}
\]

These are **bounded** for $\|T\| < 1$.

- Relations ($\dim \mathcal{H} < \infty$, (e_k) ONB, $a_i := a_{L,T}(e_i)$)

\[
\begin{align*}
a_i a_j^* &= \sum_{k,l} \langle e_i \otimes e_k, T(e_j \otimes e_l) \rangle a_k^* a_l + \delta_{i,j} \cdot 1
\end{align*}
\]
From now on: \(\mathcal{H} \) Hilbert space, \(T \) twist.

- On \(\mathcal{F}_T(\mathcal{H}) \), have (left) creation/annihilation operators \(a_{L,T}(\xi), \xi \in \mathcal{H} \):
 \[
 a_{T,L}^*(\xi)\Omega = \xi, \quad a_{L,T}(\xi)\Omega = 0, \quad \Omega : \text{Fock vacuum}
 \]
 \[
 a_{L,T}^*(\xi)[\Psi_n] = [\xi \otimes \Psi_n], \quad \Psi_n \in \mathcal{H}^\otimes n,
 \]
 \[
 a_{L,T}(\xi)[\Psi_n] = [a_{L,0}(\xi)(1 + T_1 + \ldots + T_1\cdots T_{n-1})\Psi_n]
 \]
 These are **bounded** for \(\|T\| < 1 \).

- Relations (\(\dim \mathcal{H} < \infty, (e_k) \text{ ONB}, a_i := a_{L,T}(e_i) \))
 \[
 a_i a_j^* = \sum_{k,l} (e_i \otimes e_k, T(e_j \otimes e_l))a_k^*a_l + \delta_{ij} \cdot 1 \quad (a_i a_j^* = T_{jk}^{ik} a_k^*a_l + \delta_{ij})
 \]
From now on: \mathcal{H} Hilbert space, T twist.

On $\mathcal{F}_T(\mathcal{H})$, have (left) creation/annihilation operators $a_{L,T}(\xi)$, $\xi \in \mathcal{H}$:

$$a_{T,L}^*(\xi)\Omega = \xi, \quad a_{L,T}(\xi)\Omega = 0, \quad \Omega: \text{Fock vacuum}$$

$$a_{L,T}^*(\xi)[\Psi_n] = [\xi \otimes \Psi_n], \quad \Psi_n \in \mathcal{H}^\otimes n,$$

$$a_{L,T}(\xi)[\Psi_n] = [a_{L,0}(\xi)(1 + T_1 + \ldots + T_1\ldots T_{n-1})\Psi_n]$$

These are **bounded** for $\|T\| < 1$.

Relations (dim $\mathcal{H} < \infty$, (e_k) ONB, $a_i := a_{L,T}(e_i)$)

$$a_i a_j^* = \sum_{k,l} (e_i \otimes e_k, T(e_j \otimes e_l)) a_k^* a_l + \delta_{ij} \cdot 1 \quad (a_i a_j^* = T_{j,l}^{ik} a_k^* a_l + \delta_{ij})$$

Left field operators:

$$\phi_{L,T}(\xi) := a_{L,T}^*(\xi) + a_{L,T}(\xi).$$

Left twisted Araki-Woods Algebra (with $H \subset \mathcal{H}$)

$$\mathcal{L}_T(H) := \{\phi_{L,T}(h) : h \in H\}'' \subset \mathcal{B}(\mathcal{F}_T(\mathcal{H}))$$

w.l.o.g.: $H \subset \mathcal{H}$ closed \mathbb{R}-linear subspace.
Standardness and standard subspaces

We are interested in the situation that the Fock vacuum Ω is standard (cyclic and separating) for $\mathcal{L}_T(H)$.
Standardness and standard subspaces

We are interested in the situation that the Fock vacuum Ω is **standard** (cyclic and separating) for $\mathcal{L}_T(H)$.

- $\phi_{L,T}(h) = a_{L,T}^*(h) + a_{L,T}(h)$ and $i\phi_{L,T}(ih) = -a_{L,T}^*(h) + a_{L,T}(h)$
Standardness and standard subspaces

We are interested in the situation that the Fock vacuum Ω is standard (cyclic and separating) for $\mathcal{L}_T(H)$.

- $\phi_{L,T}(h) = a^*_{L,T}(h) + a_{L,T}(h)$ and $i\phi_{L,T}(ih) = -a^*_{L,T}(h) + a_{L,T}(h)$
 - \Rightarrow need $H \cap iH = \{0\}$ for Ω separating
Standardness and standard subspaces

We are interested in the situation that the Fock vacuum Ω is **standard** (cyclic and separating) for $\mathcal{L}_T(H)$.

- $\phi_{L,T}(h) = a^*_{L,T}(h) + a_{L,T}(h)$ and $i\phi_{L,T}(ih) = -a^*_{L,T}(h) + a_{L,T}(h)$

 \Rightarrow need $H \cap iH = \{0\}$ for Ω separating

- **Lemma:** If $H + iH \subset \mathcal{H}$ is dense, then Ω is cyclic for $\mathcal{L}_T(H)$.
We are interested in the situation that the Fock vacuum Ω is \textbf{standard} (cyclic and separating) for $\mathcal{L}_T(H)$.

- $\phi_{L,T}(h) = a_{L,T}^*(h) + a_{L,T}(h)$ and $i\phi_{L,T}(ih) = -a_{L,T}^*(h) + a_{L,T}(h)$
 - \Rightarrow need $H \cap iH = \{0\}$ for Ω separating

- \textbf{Lemma:} If $H + iH \subset \mathcal{H}$ is dense, then Ω is cyclic for $\mathcal{L}_T(H)$.

- Consider from now on only \textbf{standard subspaces}: closed \mathbb{R}-linear subspaces $H \subset \mathcal{H}$ with

\[
H + iH = \mathcal{H}, \quad H \cap iH = \{0\}.
\]
Standardness and standard subspaces

We are interested in the situation that the Fock vacuum Ω is standard (cyclic and separating) for $\mathcal{L}_T(H)$.

- $\phi_{L,T}(h) = a^{*}_{L,T}(h) + a_{L,T}(h)$ and $i\phi_{L,T}(ih) = -a^{*}_{L,T}(h) + a_{L,T}(h)$

\Rightarrow need $H \cap iH = \{0\}$ for Ω separating

- **Lemma:** If $H + iH \subset \mathcal{H}$ is dense, then Ω is cyclic for $\mathcal{L}_T(H)$.

- Consider from now on only **standard subspaces**: closed \mathbb{R}-linear subspaces $H \subset \mathcal{H}$ with

$$H + iH = \mathcal{H}, \quad H \cap iH = \{0\}.$$

Reminder on standard subspaces and modular theory
Standardness and standard subspaces

We are interested in the situation that the Fock vacuum Ω is standard (cyclic and separating) for $\mathcal{L}_T(H)$.

- $\phi_{L,T}(h) = a_{L,T}^*(h) + a_{L,T}(h)$ and $i\phi_{L,T}(ih) = -a_{L,T}^*(h) + a_{L,T}(h)$

 \Rightarrow need $H \cap iH = \{0\}$ for Ω separating

- **Lemma:** If $H + iH \subset \mathcal{H}$ is dense, then Ω is cyclic for $\mathcal{L}_T(H)$.

- Consider from now on only **standard subspaces**: closed \mathbb{R}-linear subspaces $H \subset \mathcal{H}$ with

 $H + iH = \mathcal{H}, \quad H \cap iH = \{0\}.$

Reminder on standard subspaces and modular theory

- Tomita operator

 $$S_H : H + iH \rightarrow H + iH, \quad h_1 + ih_2 \mapsto h_1 - ih_2.$$

- Polar decomposition: $S_H = J_H \Delta_H^{1/2}$ with J_H antiunitary and $\Delta_H > 0$.
Standardness and standard subspaces

We are interested in the situation that the Fock vacuum Ω is standard (cyclic and separating) for $\mathcal{L}_T(H)$.

- $\phi_{L,T}(h) = a_{L,T}^*(h) + a_{L,T}(h)$ and $i\phi_{L,T}(ih) = -a_{L,T}^*(h) + a_{L,T}(h)$
 \Rightarrow need $H \cap iH = \{0\}$ for Ω separating

- **Lemma:** If $H + iH \subset \mathcal{H}$ is dense, then Ω is cyclic for $\mathcal{L}_T(H)$.

- Consider from now on only **standard subspaces**: closed \mathbb{R}-linear subspaces $H \subset \mathcal{H}$ with

 $$H + iH = \mathcal{H}, \quad H \cap iH = \{0\}.$$

Reminder on standard subspaces and modular theory

- Tomita operator

 $$S_H : H + iH \rightarrow H + iH, \quad h_1 + ih_2 \mapsto h_1 - ih_2.$$

- Polar decomposition: $S_H = J_H \Delta_H^{1/2}$ with J_H antiunitary and $\Delta_H > 0$.

- Tomita’s Theorem for standard subspaces:

 $$\Delta_H^{it}H = H, \quad J_HH = H' = \{h' \in \mathcal{H} : \text{Im}\langle h, h' \rangle = 0 \forall h \in H\}$$

 H' is also a standard subspace, and $(H')' = H$.
Real Hilbert spaces vs. standard subspaces

Proposition ([Shlyakhtenko ’97])

There is a one to one correspondence between

- (real) standard subspaces of a complex Hilbert spaces, $H \subset \mathcal{H}$,
- real Hilbert spaces \mathcal{H}_R with a strongly continuous one parameter orthogonal group $U(t)$

\[H \leftrightarrow \mathcal{H}_R, \quad \Delta_H^{it}|_H \leftrightarrow U(t) \]
Real Hilbert spaces vs. standard subspaces

Proposition ([Shlyakhtenko '97])

There is a one to one correspondence between

- (real) standard subspaces of a complex Hilbert spaces, \(H \subset \mathcal{H} \),
- real Hilbert spaces \(\mathcal{H}_\mathbb{R} \) with a strongly continuous one parameter orthogonal group \(U(t) \)

\[
H \leftrightarrow \mathcal{H}_\mathbb{R}, \quad \Delta_H^{it}|_H \leftrightarrow U(t)
\]

Examples

- \(T = 0 \) and \(H = \overline{\mathbb{R}\text{-span(ONB)}} \), i.e. \(\Delta_H = 1 \) (or: \(U(t) = 1 \) on \(\mathcal{H}_\mathbb{R} \)).
 Then \(\mathcal{L}_0(H) = \mathcal{L}(\mathbb{F}_{\dim \mathcal{H}}) \). (free Gaussian functor, [Voiculescu '85])
Real Hilbert spaces vs. standard subspaces

Proposition ([Shlyakhtenko '97])

There is a one to one correspondence between

1. (real) standard subspaces of a complex Hilbert spaces, $H \subset \mathcal{H}$,
2. real Hilbert spaces $\mathcal{H}_\mathbb{R}$ with a strongly continuous one parameter orthogonal group $U(t)$

$$H \leftrightarrow \mathcal{H}_\mathbb{R}, \quad \Delta_H^{it}|_H \leftrightarrow U(t)$$

Examples

- $T = 0$ and $H = \mathbb{R}$-span(ONB), i.e. $\Delta_H = 1$ (or: $U(t) = 1$ on $\mathcal{H}_\mathbb{R}$).
 Then $\mathcal{L}_0(H) = \mathcal{L}(\mathbb{F}_{\dim \mathcal{H}})$. (free Gaussian functor, [Voiculescu '85])

- $T = qF$ and $H = \mathbb{R}$-span(ONB), with $-1 < q < 1$
 q-Gaussian v. Neum. alg., [Bożejko/Speicher '91]. II_1-factors [Ricard '05]
Real Hilbert spaces vs. standard subspaces

Proposition ([Shlyakhtenko '97])

There is a one to one correspondence between
- (real) standard subspaces of a complex Hilbert spaces, $H \subset \mathcal{H}$,
- real Hilbert spaces $\mathcal{H}_\mathbb{R}$ with a strongly continuous one parameter orthogonal group $U(t)$

$$H \leftrightarrow \mathcal{H}_\mathbb{R}, \quad \Delta_H^{it}|_H \leftrightarrow U(t)$$

Examples

- $T = 0$ and $H = \mathbb{R}$-span(ONB), i.e. $\Delta_H = 1$ (or: $U(t) = 1$ on $\mathcal{H}_\mathbb{R}$).
 Then $\mathcal{L}_0(H) = \mathcal{L}(F_{\dim \mathcal{H}})$. (free Gaussian functor, [Voiculescu '85])

- $T = qF$ and $H = \mathbb{R}$-span(ONB), with $-1 < q < 1$
 q-Gaussian v. Neum. alg., [Bożejko/Speicher '91]. II$_1$-factors [Ricard '05]

- $T = 0$ and H arbitrary
 (free Araki-Woods factors, [Shlyakhtenko '97])
Real Hilbert spaces vs. standard subspaces

Proposition ([Shlyakhtenko '97])

There is a one to one correspondence between

- (real) standard subspaces of a complex Hilbert spaces, \(H \subset \mathcal{H} \),
- real Hilbert spaces \(\mathcal{H}_\mathbb{R} \) with a strongly continuous one parameter orthogonal group \(U(t) \)

\[
H \leftrightarrow \mathcal{H}_\mathbb{R}, \quad \Delta_H^{it}|_H \leftrightarrow U(t)
\]

Examples

- \(T = 0 \) and \(H = \mathbb{R}\text{-span}(\text{ONB}) \), i.e. \(\Delta_H = 1 \) (or: \(U(t) = 1 \) on \(\mathcal{H}_\mathbb{R} \)).
 Then \(\mathcal{L}_0(H) = \mathcal{L}(\mathbb{F}\text{dim}\mathcal{H}) \). (free Gaussian functor, [Voiculescu '85])

- \(T = qF \) and \(H = \mathbb{R}\text{-span}(\text{ONB}) \), with \(-1 < q < 1\)
 \(q \)-Gaussian v. Neum. alg., [Bożejko/Speicher '91]. \(II_1 \)-factors [Ricard '05]

- \(T = 0 \) and \(H \) arbitrary
 (free Araki-Woods factors, [Shlyakhtenko '97])

- \(T = qF \) and \(H \) arbitrary
 \((q\text{-deformed Araki-Woods algebras, [Hiai '01]}) \)
Real Hilbert spaces vs. standard subspaces

Proposition ([Shlyakhtenko ’97])

There is a one to one correspondence between

- (real) standard subspaces of a complex Hilbert spaces, \(H \subset \mathcal{H} \),
- real Hilbert spaces \(\mathcal{H}_R \) with a strongly continuous one parameter orthogonal group \(U(t) \)

\[
H \leftrightarrow \mathcal{H}_R, \quad \Delta_H^{it}|_H \leftrightarrow U(t)
\]

Examples

- \(T = 0 \) and \(H = \overline{\mathbb{R}}\text{-span(ONB)} \), i.e. \(\Delta_H = 1 \) (or: \(U(t) = 1 \) on \(\mathcal{H}_R \)). Then \(\mathcal{L}_0(H) = \mathcal{L}(F_{\text{dim } \mathcal{H}}) \). (free Gaussian functor, [Voiculescu ’85])

- \(T = qF \) and \(H = \overline{\mathbb{R}}\text{-span(ONB)} \), with \(-1 < q < 1\)
 \(q\)-Gaussian v. Neum. alg., [Bożejko/Speicher ’91]. II_1-factors [Ricard ’05]

- \(T = 0 \) and \(H \) arbitrary
 (free Araki-Woods factors, [Shlyakhtenko ’97])

- \(T = qF \) and \(H \) arbitrary
 \((q\text{-deformed Araki-Woods factors, [Kumar, Skalski, Wasilewski ’23]})\)
Real Hilbert spaces vs. standard subspaces

Proposition ([Shlyakhtenko '97])

There is a one to one correspondence between

- (real) standard subspaces of a complex Hilbert spaces, $H \subseteq \mathcal{H}$,
- real Hilbert spaces \mathcal{H}_R with a strongly continuous one parameter orthogonal group $U(t)$

$$H \leftrightarrow \mathcal{H}_R, \quad \Delta_H^{it}\big|_H \leftrightarrow U(t)$$

Examples

- $T = 0$ and $H = \overline{\mathbb{R}\text{-span}(\text{ONB})}$, i.e. $\Delta_H = 1$ (or: $U(t) = 1$ on \mathcal{H}_R).
 Then $\mathcal{L}_0(H) = \mathcal{L}(\mathbb{F}_{\text{dim } \mathcal{H}})$. (free Gaussian functor, [Voiculescu '85])

- $T = qF$ and $H = \overline{\mathbb{R}\text{-span}(\text{ONB})}$, with $-1 < q < 1$
 q-Gaussian v. Neum. alg., [Bożejko/Speicher '91]. II$_1$-factors [Ricard '05]

- $T = 0$ and H arbitrary
 (free Araki-Woods factors, [Shlyakhtenko '97])

- $T = qF$ and H arbitrary
 (q-deformed Araki-Woods factors, [Kumar, Skalski, Wasilewski '23])
 $\mathcal{L}_T(H)$ is non-injective, of type III unless $\Delta_H = 1$
Questions

- For general T (and general H), only little is known about $\mathcal{L}_T(H)$.

QFT: H encodes a localization region in some spacetime, T a two-particle interaction.
Questions

▶ For general T (and general H), only little is known about $\mathcal{L}_T(H)$.
▶ Motivated from QFT background, we do not focus on internal properties of $\mathcal{L}_T(H)$, but rather on interplay with Ω, and inclusions.
Questions

- For general T (and general H), only little is known about $L_T(H)$.
- Motivated from QFT background, we do not focus on *internal* properties of $L_T(H)$, but rather on interplay with Ω, and inclusions.
- QFT: H encodes a localization region in some spacetime, T a two-particle interaction
Questions

- For general T (and general H), only little is known about $\mathcal{L}_T(H)$.
- Motivated from QFT background, we do not focus on internal properties of $\mathcal{L}_T(H)$, but rather on interplay with Ω, and inclusions.
- QFT: H encodes a localization region in some spacetime, T a two-particle interaction

Main Questions

1. For which T, H is Ω separating (hence standard) for $\mathcal{L}_T(H)$?
Questions

- For general T (and general H), only little is known about $\mathcal{L}_T(H)$.
- Motivated from QFT background, we do not focus on internal properties of $\mathcal{L}_T(H)$, but rather on interplay with Ω, and inclusions.
- QFT: H encodes a localization region in some spacetime, T a two-particle interaction

Main Questions

1. For which T, H is Ω **separating** (hence standard) for $\mathcal{L}_T(H)$? In case Ω is separating, what are the modular data of $(\mathcal{L}_T(H), \Omega)$?
Questions

- For general T (and general H), only little is known about $\mathcal{L}_T(H)$.
- Motivated from QFT background, we do not focus on internal properties of $\mathcal{L}_T(H)$, but rather on interplay with Ω, and inclusions.
- QFT: H encodes a localization region in some spacetime, T a two-particle interaction

Main Questions

1. For which T, H is Ω separating (hence standard) for $\mathcal{L}_T(H)$? In case Ω is separating, what are the modular data of $(\mathcal{L}_T(H), \Omega)$?

2. For which inclusions of standard subspaces $K \subset H$ and which T does the inclusion of von Neumann algebras

$$\mathcal{L}_T(K) \subset \mathcal{L}_T(H)$$

have “large” relative commutant? (e.g. Ω cyclic, type III, or at least non-trivial relative commutant)
For general \(T \) (and general \(H \)), only little is known about \(\mathcal{L}_T(H) \).

Motivated from QFT background, we do not focus on *internal* properties of \(\mathcal{L}_T(H) \), but rather on interplay with \(\Omega \), and inclusions.

QFT: \(H \) encodes a localization region in some spacetime, \(T \) a two-particle interaction.

Main Questions

1. For which \(T, H \) is \(\Omega \) **separating** (hence standard) for \(\mathcal{L}_T(H) \)?
 In case \(\Omega \) is separating, what are the modular data of \((\mathcal{L}_T(H), \Omega) \)?

2. For which **inclusions** of standard subspaces \(K \subset H \) and which \(T \) does the inclusion of von Neumann algebras

 \[
 \mathcal{L}_T(K) \subset \mathcal{L}_T(H)
 \]

 have “large” relative commutant? (e.g. \(\Omega \) cyclic, type III, or at least non-trivial relative commutant)

In the following: \(H \subset \mathcal{H} \) an arbitrary standard subspace (i.e. arbitrary \(U(t) \) resp. modular group \(\Delta^i_H \)), and \(T \) a twist.
Separating vacuum

Basic assumption: T and H are compatible in the sense $[T, \Delta_H^{it} \otimes \Delta_H^{it}] = 0$.

Lemma: If Ω is separating for $\mathcal{L}_T(H)$ and H, T are compatible, then the modular data Δ, J of $(\mathcal{L}_T(H), \Omega)$ restrict to Δ_H, J_H on \mathcal{H}.
Separating vacuum

Basic assumption: T and H are **compatible** in the sense $[T, \Delta^{it}_H \otimes \Delta^{it}_H] = 0$.

Lemma: If Ω is separating for $\mathcal{L}_T(H)$ and H,T are compatible, then the modular data Δ, J of $(\mathcal{L}_T(H), \Omega)$ restrict to Δ_H, J_H on \mathcal{H}.

In order to have Ω separating for $\mathcal{L}_T(H)$, need **KMS-property**. Consider n-point functions $(h_1, \ldots, h_n \in H)$

$$f_n(t) := \langle \Omega, \phi_{L,T}(h_1) \cdots \phi_{L,T}(h_{n-1}) \Delta^{it}_{L,T}(h_n) \Omega \rangle_T = \langle 1 2 \cdots (n - 1) n_t \rangle.$$
Separating vacuum

Basic assumption: \(T \) and \(H \) are compatible in the sense \([T, \Delta^i_H \otimes \Delta^i_H] = 0 \).

Lemma: If \(\Omega \) is separating for \(\mathcal{L}_T(H) \) and \(H, T \) are compatible, then the modular data \(\Delta, J \) of \((\mathcal{L}_T(H), \Omega) \) restrict to \(\Delta_H, J_H \) on \(\mathcal{H} \).

In order to have \(\Omega \) separating for \(\mathcal{L}_T(H) \), need **KMS-property**. Consider \(n \)-point functions \((h_1, \ldots, h_n \in H) \)

\[
f_n(t) := \langle \Omega, \phi_{L,T}(h_1) \cdots \phi_{L,T}(h_{n-1}) \Delta^i \phi_{L,T}(h_n)\Omega \rangle_T = \langle 1 \, 2 \, \ldots \, (n - 1) \, n_t \rangle.
\]

Need

\[
f_n(-i) = \langle \Omega, \phi_{L,T}(h_n) \phi_{L,T}(h_1) \cdots \phi_{L,T}(h_{n-1})\Omega \rangle_T = \langle n \, 1 \, 2 \, \ldots \, (n - 1) \rangle
\]
Separating vacuum

Basic assumption: T and H are **compatible** in the sense $[T, \Delta_H^{it} \otimes \Delta_H^{it}] = 0$.

Lemma: If Ω is separating for $\mathcal{L}_T(H)$ and H, T are compatible, then the modular data Δ, J of $(\mathcal{L}_T(H), \Omega)$ restrict to Δ_H, J_H on \mathcal{H}.

- In order to have Ω separating for $\mathcal{L}_T(H)$, need **KMS-property**. Consider n-point functions $(h_1, \ldots, h_n \in H)$

 $f_n(t) := \langle \Omega, \phi_{L,T}(h_1) \cdots \phi_{L,T}(h_{n-1}) \Delta_H^{it} \phi_{L,T}(h_n) \Omega \rangle_T = \langle 1 \ 2 \ \cdots \ (n-1) \ n_t \rangle$.

 Need

 $f_n(-i) = \langle \Omega, \phi_{L,T}(h_n) \phi_{L,T}(h_1) \cdots \phi_{L,T}(h_{n-1}) \Omega \rangle_T = \langle n \ 1 \ 2 \ \cdots \ (n-1) \rangle$

- **Graphical notation** (\sim[Bożejko/Speicher])

\[
\begin{align*}
2_t & \quad 1 \\
4 & \quad 1 \\
3 & \quad 2
\end{align*}
\]

\[
\begin{align*}
6 & \quad 1 \\
5 & \quad 2 \\
4 & \quad 3
\end{align*}
\]

\[
\langle J_H h_1, \Delta_H^{it} h_2 \rangle, \quad \langle 1, 2 \rangle \cdot \langle 3, \Delta_H^{it} 4 \rangle, \quad \langle 3 \otimes T(2 \otimes 1), T(4 \otimes 5) \otimes 6_t \rangle
\]
Six-point function $\langle 1 \ 2 \ldots \ 6_t \rangle$
By imposing the KMS condition, one can extract two properties of T:

1. **Crossing symmetry** (analytic)
2. **Yang-Baxter equation** (algebraic)
By imposing the KMS condition, one can extract two properties of T:

1. **Crossing symmetry** (analytic)
2. **Yang-Baxter equation** (algebraic)
3. Analytic continuation of diagrams:

![Crossing symmetry diagrams]

This is a condition on T. The two possible triple crossing terms in the 6-point function differ by a Reidemeister move of type III.
By imposing the KMS condition, one can extract two properties of T:

1. **Crossing symmetry** (analytic)

2. **Yang-Baxter equation** (algebraic)

3. Analytic continuation of diagrams:

 $\langle 2_t \otimes 1, T(3 \otimes 4_t) \rangle = T \quad (t \sim t - i)$

 $\langle 1 \otimes 4_t, T(2_t \otimes 3) \rangle = T \quad (t \sim t + \frac{i}{2})$

This is a condition on T.
By imposing the KMS condition, one can extract two properties of \(T \):

1. **Crossing symmetry** (analytic)
2. **Yang-Baxter equation** (algebraic)
3. Analytic continuation of diagrams:

\[
\langle 2t \otimes 1, T(3 \otimes 4t) \rangle = T \left(\begin{array}{ccc} 2t & 1 \\ 3 & 4t \end{array} \right) = \langle 1 \otimes 4t, T(2t \otimes 3) \rangle
\]

This is a condition on \(T \).

2. The two possible triple crossing terms in the 6-point function differ by a Reidemeister move of type III.
By exploiting KMS condition, one can show that one must have \(\text{RHS} = \text{LHS} \) (Yang-Baxter equation.)
By exploiting KMS condition, one can show that one must have $\text{RHS} = \text{LHS}$ (→ Yang-Baxter equation.)
T is called **crossing-symmetric** (w.r.t. H) if for all $\psi_1, \ldots, \psi_4 \in \mathcal{H}$, the function

$$T_{\psi_3, \psi_4}^{\psi_2, \psi_1}(t) := \langle \psi_2 \otimes \psi_1, (\Delta_H^{it} \otimes 1)T(1 \otimes \Delta_H^{-it})(\psi_3 \otimes \psi_4) \rangle$$

has an analytic continuation to the strip $\mathbb{S}_{1/2}$ (\ldots) and

$$T_{\psi_3, \psi_4}^{\psi_2, \psi_1}(t + \frac{i}{2}) = \langle \psi_1 \otimes J_H \psi_4, (1 \otimes \Delta_H^{it})T(\Delta_H^{-it} \otimes 1)(J_H \psi_2 \otimes \psi_3) \rangle$$

$$= T_{J_H \psi_2, \psi_3}^{\psi_1, J_H \psi_4}(-t).$$
Definition

T is called **crossing-symmetric** (w.r.t. H) if for all \(\psi_1, \ldots, \psi_4 \in \mathcal{H} \), the function

\[
T_{\psi_2,\psi_1}^{\psi_3,\psi_4}(t) := \langle \psi_2 \otimes \psi_1, (\Delta_H^{it} \otimes 1)T(1 \otimes \Delta_H^{-it})(\psi_3 \otimes \psi_4) \rangle
\]

has an analytic continuation to the strip \(S_{1/2} \) (\(\ldots \)) and

\[
T_{\psi_2,\psi_1}^{\psi_3,\psi_4}(t + \frac{i}{2}) = \langle \psi_1 \otimes J_H \psi_4, (1 \otimes \Delta_H^{it})T(\Delta_H^{-it} \otimes 1)(J_H \psi_2 \otimes \psi_3) \rangle
= T_{J_H \psi_2,\psi_3}^{\psi_1,\psi_4}(-t).
\]

- Trivially satisfied for \(T = qF \), trivially violated for \(T = q1 \)
- For \(S \)-matrix model crossing holds if \(s \) has the right analytic properties (many examples exist)
Definition

T is called \textbf{crossing-symmetric} (w.r.t. H) if for all $\psi_1, \ldots, \psi_4 \in \mathcal{H}$, the function

$$T_{\psi_2, \psi_1}^{\psi_3, \psi_4}(t) := \langle \psi_2 \otimes \psi_1, (\Delta_H^i t \otimes 1) T(1 \otimes \Delta_H^- i t)(\psi_3 \otimes \psi_4) \rangle$$

has an analytic continuation to the strip $S_{1/2}$ (\ldots) and

$$T_{\psi_2, \psi_1}^{\psi_3, \psi_4}(t + \frac{i}{2}) = \langle \psi_1 \otimes J_H \psi_4, (1 \otimes \Delta_H^i t) T(\Delta_H^- i t \otimes 1)(J_H \psi_2 \otimes \psi_3) \rangle$$

$$= T_{J_H \psi_2, \psi_3}^{\psi_1, J_H \psi_4}(-t).$$

- Trivially satisfied for $T = qF$, trivially violated for $T = q1$
- For S-matrix model crossing holds if s has the right analytic properties (many examples exist)

Theorem

Let $H \subset \mathcal{H}$ be a standard subspace and T a compatible twist. The following are equivalent:

a) Ω is separating for $\mathcal{L}_T(H)$.

b) T is braided and crossing symmetric w.r.t. H.

Braided twists and left-right duality

How does the argument “YBE+crossing $\Rightarrow \Omega$ separating” work?
Braided twists and left-right duality

How does the argument “YBE+crossing \implies Ω separating” work?

For **braided** twists (YBE $T_1 T_2 T_1 = T_2 T_1 T_2$ holds), also **right** creation/annihilation operators exist:

$$a_{R,T}^*(\xi)[\Psi_n] = [\Psi_n \otimes \xi],$$

$$a_{R,T}(\xi)[\Psi_n] = [a_{R,0}(\xi)(1 + T_n + \ldots + T_{n-1}\cdots T_1)\Psi_n]$$

$$\phi_{R,T}(\xi) := a_{R,T}^*(\xi) + a_{R,T}(\xi)$$

... generating “right” twisted Araki-Woods algebras $\mathcal{R}_T(H)$.
Braided twists and left-right duality

How does the argument “YBE+crossing \implies Ω separating” work?

For **braided** twists (YBE $T_1T_2T_1 = T_2T_1T_2$ holds), also **right** creation/annihilation operators exist:

$$a^*_R,T(\xi)[\Psi_n] = [\Psi_n \otimes \xi],$$
$$a_{R,T}(\xi)[\Psi_n] = [a_{R,0}(\xi)(1 + T_n + \ldots + T_{n-1}\ldots T_1)\Psi_n]$$

$$\phi_{R,T}(\xi) := a^*_R,T(\xi) + a_{R,T}(\xi)$$

... generating “right” twisted Araki-Woods algebras $\mathcal{R}_T(H)$.

- With crossing symmetry and YBE one can show that $\mathcal{L}_T(H)$ and $\mathcal{R}_T(H')$ commute.
Braided twists and left-right duality

How does the argument “YBE+crossing $\implies \Omega$ separating” work?

For **braided** twists (YBE $T_1T_2T_1 = T_2T_1T_2$ holds), also **right** creation/annihilation operators exist:

$$
\begin{align*}
 a^*_{R,T}(\xi)[\Psi_n] &= [\Psi_n \otimes \xi], \\
 a_{R,T}(\xi)[\Psi_n] &= [a_{R,0}(\xi)(1 + T_n + \ldots + T_{n-1} \ldots T_1)\Psi_n] \\
 \phi_{R,T}(\xi) &:= a^*_{R,T}(\xi) + a_{R,T}(\xi)
\end{align*}
$$

... generating “right” twisted Araki-Woods algebras $\mathcal{R}_T(H)$.

\blacktriangleright With crossing symmetry and YBE one can show that $\mathcal{L}_T(H)$ and $\mathcal{R}_T(H')$ commute.

Proposition

Let T be braided and crossing symmetric.

a) **The Tomita operator S of** $(\mathcal{L}_T(H), \Omega)$ **is given by**

$$
S[\psi_1 \otimes \ldots \otimes \psi_n] = [S_H\psi_n \otimes \ldots \otimes S_H\psi_1]
$$

b) **Left-right duality holds:**

$$
\mathcal{L}_T(H)' = \mathcal{R}_T(H').
$$
Remarks on standardness question

- From our perspective, the braided and crossing-symmetric twists are the most interesting ones (Classification unknown).
- Both the Yang-Baxter equation and crossing symmetry have their origins in physics, but can here be derived from modular theory.
- Definition of crossing is inspired by QFT crossing symmetry (scattering of particles vs. scattering of antiparticles, $J_H = \text{TCP operator}$)
- Result on modular data generalizes many known results [Eckmann/Osterwalder '73, Leyland/Roberts/Testard '78, Shlyakhtenko '97, Baumgärtel/Jurke/Lledo '02, Buchholz/L/Summers '11, L '12]
Inclusions

Have two maps

\[H \hookrightarrow \mathcal{L}_T(H), \quad H \hookrightarrow \mathcal{R}_T(H) \]

from \(T \)-comp. standard subspaces \(H \subset \mathcal{H} \) to v. Neumann algebras on \(\mathcal{F}_T(\mathcal{H}) \).
Inclusions

Have two maps

$$H \mapsto \mathcal{L}_T(H), \quad H \mapsto \mathcal{R}_T(H)$$

from \(T \)-comp. standard subspaces \(H \subset \mathcal{H} \) to von Neumann algebras on \(\mathcal{F}_T(\mathcal{H}) \).

- By definition: \(K \subset H \implies \mathcal{L}_T(K) \subset \mathcal{L}_T(H), \mathcal{R}_T(K) \subset \mathcal{R}_T(H) \).
Inclusions

Have two maps

\[H \leftrightarrow \mathcal{L}_T(H), \quad H \leftrightarrow \mathcal{R}_T(H) \]

from T-comp. standard subspaces $H \subset \mathcal{H}$ to v. Neumann algebras on $\mathcal{F}_T(\mathcal{H})$.

- By definition: $K \subset H \implies \mathcal{L}_T(K) \subset \mathcal{L}_T(H), \mathcal{R}_T(K) \subset \mathcal{R}_T(H)$.
- Inspired by QFT models: Investigate von Neumann algebra inclusions

\[\mathcal{L}_T(K) \subset \mathcal{L}_T(H). \]

$\mathcal{L}_T(H)$ will be a factor (\rightarrow subfactors).
Inclusions

Have two maps

\[H \hookrightarrow \mathcal{L}_T(H), \quad H \hookrightarrow \mathcal{R}_T(H) \]

from \(T \)-comp. standard subspaces \(H \subset \mathcal{H} \) to v. Neumann algebras on \(\mathcal{F}_T(\mathcal{H}) \).

- By definition: \(K \subset H \implies \mathcal{L}_T(K) \subset \mathcal{L}_T(H), \mathcal{R}_T(K) \subset \mathcal{R}_T(H) \).
- Inspired by QFT models: Investigate von Neumann algebra inclusions

\[\mathcal{L}_T(K) \subset \mathcal{L}_T(H). \]

\(\mathcal{L}_T(H) \) will be a factor (\(\rightarrow \) subfactors).

Lemma: Proper inclusions \(K \subset H \) only exist if \(\Delta_H, \Delta_K \) are unbounded. In particular \(\text{dim} \, \mathcal{H} = \infty \) is needed.
Twisted subfactors

For $T = qF$, $-1 < q < 1$, it is known that $L_{qF}(H)$ is a non-injective factor of type III if Δ_H is unbounded [Kumar, Skalski, Wasilewski ’23].
Twisted subfactors

- For $T = qF$, $-1 < q < 1$, it is known that $L_{qF}(H)$ is a non-injective factor of type III if Δ_H is unbounded [Kumar, Skalski, Wasilewski ’23].

- This is no longer true for $q = 1$, where $L_F(H) \cap L_F(H)' = L_F(H \cap H')$ (and $L_F(H) = R_F(H)$) holds [Leyland/Roberts/Testard ’78].
Twisted subfactors

- For $T = qF$, $-1 < q < 1$, it is known that $\mathcal{L}_{qF}(H)$ is a non-injective factor of type III if Δ_H is unbounded [Kumar, Skalski, Wasilewski '23].

- This is no longer true for $q = 1$, where $\mathcal{L}_F(H) \cap \mathcal{L}_F(H)' = \mathcal{L}_F(H \cap H')$ (and $\mathcal{L}_F(H) = \mathcal{R}_F(H)$) holds [Leyland/Roberts/Testard '78].

- We expect that for general (braided, crossing-symmetric) twist with $\|T\| < 1$, it is still true that $\mathcal{L}_T(H)$ is a non-injective factor of type III if Δ_H is unbounded.
Twisted subfactors

- For $T = qF$, $-1 < q < 1$, it is known that $\mathcal{L}_{qF}(H)$ is a non-injective factor of type III if Δ_H is unbounded [Kumar, Skalski, Wasilewski '23].

- This is no longer true for $q = 1$, where $\mathcal{L}_F(H) \cap \mathcal{L}_F(H)' = \mathcal{L}_F(H \cap H')$ (and $\mathcal{L}_F(H) = \mathcal{R}_F(H)$) holds [Leyland/Roberts/Testard '78].

- We expect that for general (braided, crossing-symmetric) twist with $\|T\| < 1$, it is still true that $\mathcal{L}_T(H)$ is a non-injective factor of type III if Δ_H is unbounded.

$K \subset H$. Relative commutant

$$\mathcal{C}_T(K, H) := \mathcal{L}_T(K)' \cap \mathcal{L}_T(H) = \mathcal{L}_T(K)' \cap \mathcal{R}_T(H')'.$$

In the following: Two results on $\mathcal{L}_T(K) \subset \mathcal{L}_T(H)$ in different situations,

- one “negative” (singular inclusions, $\mathcal{C}_T(K, H) = \mathbb{C}1$)
- one “positive” (large relative commutant, $\mathcal{C}_T(K, H) \neq \mathbb{C}1$)
Half-sided inclusions

Let us consider a half-sided inclusion $K \subset H$ of standard subspaces:

- have unitary one-parameter group $V(x)$ with positive generator,
- $V(x)H \subset H$, $x \geq 0$. Set $K := V(1)H$.
- $[V(x) \otimes V(x), T] = 0$.

Well-studied scenario in CFT (translations on a lightray). Known:

- $L_T(H)$ is a III$_1$ factor [Wiesbrock '93].
- Modular group acts by dilations, $\Delta^it_H V(x) \Delta^{-it_H} = V(e^{-2\pi t}x)$ [Borchers'92].

Suppose $\|T\| < 1$ and $k \in K$, $h' \in H'$. Then

$$\phi_{T,L}(k) \phi_{T,R}(h') \in L_T(K) \vee R_T(H') = C_{T,K,H} \quad \phi_{T,L}(\Delta^it_H k) \phi_{T,R}(\Delta^it_H h') \in L_T(K) \vee R_T(H') = C_{T,K,H}, \quad t < 0.$$

For $\|T\| < 1$, weak limit $t \to -\infty$ can be controlled. Gives vacuum projection P_Ω.

Half-sided inclusions

Let us consider a half-sided inclusion $K \subset H$ of standard subspaces:

- have unitary one-parameter group $V(x)$ with positive generator,
- $V(x)H \subset H$, $x \geq 0$. Set $K := V(1)H$.
- $[V(x) \otimes V(x), T] = 0$.

Well-studied scenario in CFT (translations on a lightray). Known:

- $\mathcal{L}_T(H)$ is a III_1 factor [Wiesbrock '93].
- Modular group acts by dilations, $\Delta_H^{it} V(x) \Delta_H^{-it} = V(e^{-2\pi t} x)$ [Borchers'92].

Suppose $\|T\| < 1$ and $k \in K$, $h' \in H'$. Then

$$\phi_{T,L}(k) \phi_{T,R}(h') \in \mathcal{L}_T(K) \vee \mathcal{R}_T(H') = \mathcal{C}_T(K, H)'$$

$$\phi_{T,L}(\Delta_H^{it} k) \phi_{T,R}(\Delta_H^{it} h') \in \mathcal{L}_T(K) \vee \mathcal{R}_T(H') = \mathcal{C}_T(K, H)', \quad t < 0.$$

For $\|T\| < 1$, weak limit $t \to -\infty$ can be controlled. Gives vacuum projection P_Ω.
Half-sided inclusions

Let us consider a half-sided inclusion $K \subset H$ of standard subspaces:

- have unitary one-parameter group $V(x)$ with positive generator,
- $V(x)H \subset H, \ x \geq 0$. Set $K := V(1)H$.
- $[V(x) \otimes V(x), T] = 0$.

Well-studied scenario in CFT (translations on a lightray). Known:

- $\mathcal{L}_T(H)$ is a III_1 factor [Wiesbrock '93].
- Modular group acts by dilations, $\Delta_H^{it} V(x) \Delta_H^{-it} = V(e^{-2\pi t}x)$ [Borchers'92].

Suppose $\|T\| < 1$ and $k \in K, \ h' \in H'$. Then

$$\phi_{T,L}(k)\phi_{T,R}(h') \in \mathcal{L}_T(K) \vee \mathcal{R}_T(H') = \mathcal{C}_T(K,H)'$$

$$\phi_{T,L}(\Delta_H^{it}k)\phi_{T,R}(\Delta_H^{it}h') \in \mathcal{L}_T(K) \vee \mathcal{R}_T(H') = \mathcal{C}_T(K,H)', \quad t < 0.$$

For $\|T\| < 1$, weak limit $t \to -\infty$ can be controlled. Gives vacuum projection P_Ω.

Singular inclusions

Theorem

Let $K \subset H$ be a half-sided inclusion of standard subspaces and T a compatible braided crossing-symmetric twist with $\|T\| < 1$. Then $C_T(K, H) = C_1$.

- For $T = 0$, the proof becomes quite easy.
Singular inclusions

Theorem

Let $K \subset H$ be a half-sided inclusion of standard subspaces and T a compatible braided crossing-symmetric twist with $\|T\| < 1$. Then $C_T(K, H) = C_1$.

- For $T = 0$, the proof becomes quite easy.
- \rightarrow easiest/most natural examples of singular half-sided inclusions (after more complicated ones in [Longo/Tanimoto/Ueda ’19, L/Scotford ’22])
Singular inclusions

Theorem

Let $K \subset H$ be a half-sided inclusion of standard subspaces and T a compatible braided crossing-symmetric twist with $\|T\| < 1$. Then $C_T(K, H) = \mathbb{C}1$.

- For $T = 0$, the proof becomes quite easy.
- → easiest/most natural examples of singular half-sided inclusions (after more complicated ones in [Longo/Tanimoto/Ueda '19, L/Scotford '22])

Generalization:

Theorem

Let $K \subset H$ be standard subspaces. Suppose there exist sequences of unit vectors $k_n \in K$, $h'_n \in H'$, such that

$$k_n \to 0, \quad h'_n \to 0 \quad \text{weakly}, \quad \langle k_n, h'_n \rangle \not\to 0.$$

- Then $C_T(K, H) = \mathbb{C}1$ (for $\|T\| < 1$).
- This is in particular the case when $\Delta_H^{1/4} \Delta_K^{-1/4}$ is not compact.
Singular inclusions

Theorem

Let $K \subset H$ be a half-sided inclusion of standard subspaces and T a compatible braided crossing-symmetric twist with $\|T\| < 1$. Then $\mathcal{C}_T(K, H) = \mathbb{C}1$.

- For $T = 0$, the proof becomes quite easy.
- For easiest/most natural examples of singular half-sided inclusions (after more complicated ones in [Longo/Tanimoto/Ueda '19, L/Scotford '22])

Generalization:

Theorem

Let $K \subset H$ be standard subspaces. Suppose there exist sequences of unit vectors $k_n \in K$, $h'_{n} \in H'$, such that

$$ k_n \rightarrow 0, \quad h'_{n} \rightarrow 0 \quad \text{weakly,} \quad \langle k_n, h'_{n} \rangle \not\rightarrow 0. $$

Then $\mathcal{C}_T(K, H) = \mathbb{C}1$ (for $\|T\| < 1$).

This is in particular the case when $\Delta_H^{1/4} \Delta_K^{-1/4}$ is not compact.

Corollary: $\mathcal{L}_T(H)$ is a factor for $\|T\| < 1$ and $\dim \mathcal{H} = \infty$.
The fact that many inclusions \(L^2(K) \subset L^2(H) \) are singular for \(\|T\| < 1 \) is in line with proximity to extreme situation at \(T = 0 \). Surprisingly, \(L^2(K) \subset L^2(H) \) can also have very large relative commutant for suitable \(K \subset H \) and \(\|T\| < 1 \).

Theorem

Let \(K \subset H \) be an inclusion such that
\[
\|\Delta_1/4_H - 1/4_K\|_1 < 1 \quad \text{(trace norm)}.
\]
Let \(T \) be a braided crossing symmetric compatible twist with \(\|T\| < 1 \). Then

\(a) \ \ L^2(K) \subset L^2(H) \) is split.

\(b) \ \ C^*_{T}(K,H) \cong L^2(H) \otimes R^*_{T}(K') \).

Proof uses split property \cite{Doplicher/Longo '84} and modular density conditions \cite{D'Antoni/Longo/Radulescu'01,Buchholz/D'Antoni/Longo'07}.
\(L^2 \)-inclusions

- The fact that many inclusions \(\mathcal{L}_T(K) \subset \mathcal{L}_T(H) \) are singular for \(\|T\| < 1 \) is in line with proximity to extreme situation at \(T = 0 \).
The fact that many inclusions $\mathcal{L}_T(K) \subset \mathcal{L}_T(H)$ are singular for $\|T\| < 1$ is in line with proximity to extreme situation at $T = 0$.

Surprisingly, $\mathcal{L}_T(K) \subset \mathcal{L}_T(H)$ can also have very large relative commutant for suitable $K \subset H$ and $\|T\| < 1$.

Theorem

Let $K \subset H$ be an inclusion such that $\|\Delta_1/4_H - 1/4_K\|_1 < 1$ (trace norm). Let T be a braided crossing symmetric compatible twist with $\|T\| < 1$. Then

- $\mathcal{L}_T(K) \subset \mathcal{L}_T(H)$ is split.
- $C_T(K,H) \cong \mathcal{L}_T(H) \otimes R_T(K')$.

Proof uses split property [Doplicher/Longo ’84] and modular density conditions [D’Antoni/Longo/Radulescu’01, Buchholz/D’Antoni/Longo’07].
\(L^2\)-inclusions

- The fact that many inclusions \(\mathcal{L}_T(K) \subset \mathcal{L}_T(H) \) are singular for \(\|T\| < 1 \) is in line with proximity to extreme situation at \(T = 0 \).

- Surprisingly, \(\mathcal{L}_T(K) \subset \mathcal{L}_T(H) \) can also have very large relative commutant for suitable \(K \subset H \) and \(\|T\| < 1 \).

Theorem

Let \(K \subset H \) be an inclusion such that \(\| \Delta_H^{1/4} \Delta_K^{-1/4} \|_1 < 1 \) (trace norm). Let \(T \) be a braided crossing symmetric compatible twist with \(\|T\| < 1 \). Then

a) \(\mathcal{L}_T(K) \subset \mathcal{L}_T(H) \) is split.

b) \(C_T(K, H) \cong \mathcal{L}_T(H) \otimes \mathcal{R}_T(K') \).

a) Proof uses split property [Doplicher/Longo '84] and modular density conditions [D'Antoni/Longo/Radulescu'01, Buchholz/D'Antoni/Longo'07]
L^2-inclusions

- The fact that many inclusions $\mathcal{L}_T(K) \subset \mathcal{L}_T(H)$ are singular for $\|T\| < 1$ is in line with proximity to extreme situation at $T = 0$.

- Surprisingly, $\mathcal{L}_T(K) \subset \mathcal{L}_T(H)$ can also have very large relative commutant for suitable $K \subset H$ and $\|T\| < 1$.

Theorem

Let $K \subset H$ be an inclusion such that $\|\Delta_H^{1/4} \Delta_K^{-1/4}\|_1 < 1$ (trace norm). Let T be a braided crossing symmetric compatible twist with $\|T\| < 1$. Then

a) $\mathcal{L}_T(K) \subset \mathcal{L}_T(H)$ is split.

b) $\mathcal{C}_T(K, H) \cong \mathcal{L}_T(H) \otimes \mathcal{R}_T(K')$.

- Proof uses split property [Doplicher/Longo '84] and modular density conditions [D’Antoni/Longo/Radulescu’01, Buchholz/D’Antoni/Longo’07]
\(L^2\)-inclusions

- The fact that many inclusions \(\mathcal{L}_T(K) \subset \mathcal{L}_T(H)\) are singular for \(\|T\| < 1\) is in line with proximity to extreme situation at \(T = 0\).

- Surprisingly, \(\mathcal{L}_T(K) \subset \mathcal{L}_T(H)\) can also have very large relative commutant for suitable \(K \subset H\) and \(\|T\| < 1\).

Theorem

Let \(K \subset H\) be an inclusion such that \(\|\Delta_H^{1/4} \Delta_K^{-1/4}\|_1 < 1\) (trace norm). Let \(T\) be a braided crossing symmetric compatible twist with \(\|T\| < 1\). Then

a) \(\mathcal{L}_T(K) \subset \mathcal{L}_T(H)\) is split.

b) \(\mathcal{C}_T(K,H) \cong \mathcal{L}_T(H) \otimes \mathcal{R}_T(K')\).

- Proof uses split property [Doplicher/Longo '84] and modular density conditions [D’Antoni/Longo/Radulescu’01, Buchholz/D’Antoni/Longo’07]
For $\|T\| < 1$:

$$\|\Delta_H^{1/4} \Delta_K^{-1/4}\|_1 < 1$$

↓

$\mathcal{L}_T(K) \subset \mathcal{L}_T(H)$ split

↓

$\mathcal{C}_T(K, H) \neq \mathbb{C}$

↓

$\Delta_H^{1/4} \Delta_K^{-1/4}$ compact
For $\|T\| < 1$:

$$\|\Delta_H^{1/4} \Delta_K^{-1/4}\|_1 < 1$$

\implies

$$\mathcal{L}_T(K) \subset \mathcal{L}_T(H) \text{ split}$$

\implies

$$\mathcal{C}_T(K, H) \neq \mathbb{C}$$

\implies

$$\Delta_H^{1/4} \Delta_K^{-1/4} \text{ compact}$$

- Relation between $\Delta_H^{1/4} \Delta_K^{-1/4}$ and $\mathcal{C}_T(K, H)$ is much closer for $\|T\| < 1$ than for $\|T\| = 1$.

\[21/22\]
$\sigma(T F)$

$T = 0$
$\sigma(TF)$

$T = -F \quad T = 0 \quad T = F$
$\sigma(TF)$

$T = -F$ $T = 0$ $T = F$
\(\sigma(TF) \)

\[T = F \quad T = 0 \quad T = -F \]

\(S \)-model
\(\sigma(TF) \)

\[T = -F \quad T = 0 \quad T = F \]

\(S\)-model

\(qS\)-model
Do there exist inclusions $\mathcal{L}_T(K) \subset \mathcal{L}_T(H)$ that have non-trivial relative commutant but are not split?

Interesting regime: $\Delta_H^{1/4} \Delta_K^{-1/4}$ compact, but not $\|\Delta_H^{1/4} \Delta_K^{-1/4}\|_1 < 1$. Can we say something about $C_T(K, H)$ (avoiding split)?