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Plan of the talk

We will recall the construction of q-Araki-Woods von Neumann algebras, due to
Hiai, combining earlier deformations of free group factors due to Bożejko,
Kümmerer and Speicher on one hand, and to Shlyakhtenko on the other, and
explain how we can use conjugate variables to establish their factoriality.

Adam Skalski (IMPAN) q-factorialiy Berkeley 2 / 29



Fock spaces and free Gaussians

HR – a separable real Hilbert space (often finite-dimensional)

H – complexification of HR

F(H) :=
⊕∞

n=0 H
⊗n – free Fock space

F(H)alg – ‘finite’ vectors in F(H), Ω ∈ H⊗0 ≈ C ⊂ F(H)alg – the vacuum vector.

Definition

Given ξ ∈ HR define the (left) creation operator a∗(ξ) : F(H)alg → F(H)alg

a∗(ξ)Ω = ξ, a∗(ξ)(ζ) = ξ ⊗ ζ, ζ ∈ H⊗n.

It is easy to check it is bounded. Further the free Gaussian operator associated to
ξ is

s(ξ) = a∗(ξ) + (a∗(ξ))∗

and the free Gaussian von Neumann algebra is

Γ(HR) := {s(ξ) : ξ ∈ HR}′′ ⊂ B(F(H)).
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Free group factors – Fock space picture

Γ(HR) := {s(ξ) : ξ ∈ HR}′′ ⊂ B(F(H)).

The following facts go back to Voiculescu, Dykema and Nica (1992):

the vacuum vector defines a faithful tracial state φ := ωΩ on Γ(HR);

if (ei )
d
i=1 is an ONB inside HR, then (s(e1), . . . , s(ed)) are free inside

(Γ(HR), φ);

Γ(HR) ≈ L(Fd), where d = dim(HR). Thus if d ≥ 2, Γ(HR) is a
non-injective, full II1 factor with the Haagerup approximation property.

Write a∗i = a∗(ei ). Then aia
∗
j = δij I , so

aia
∗
j − 0a∗j ai = δij I .
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Free group factors – Fock space picture

Γ(HR) := {s(ξ) : ξ ∈ HR}′′ ⊂ B(F(H)).

The following facts go back to Voiculescu, Dykema and Nica (1992):

the vacuum vector defines a faithful tracial state φ := ωΩ on Γ(HR);

if (ei )
d
i=1 is an ONB inside HR, then (s(e1), . . . , s(ed)) are free inside

(Γ(HR), φ);

Γ(HR) ≈ L(Fd), where d = dim(HR). Thus if d ≥ 2, Γ(HR) is a
non-injective, full factor with the Haagerup approximation property.

Write a∗i = a∗(ei ). Then aia
∗
j = δij I . What about

aia
∗
j − qa∗j ai = δij I ?
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q-Fock space
Fix q ∈ (−1, 1).

Bożejko and Speicher defined in [BS94] a new scalar product on H⊗n:

⟨ζ1 ⊗ · · · ⊗ ζn, η1 ⊗ · · · ⊗ ηn⟩q :=
∑
π∈Sn

qinv(π)⟨ζ1, ηπ(1)⟩ · · · ⟨ζn, ηπ(n)⟩

and showed it is strictly positive.

Set Fq(H) :=
∑∞

n=0 H
⊗n
q and for ξ ∈ HR define the (left) q-creation operator

a∗q(ξ) : Fq(H)alg → Fq(H)alg

a∗q(ξ)Ω = ξ, a∗q(ξ)(ζ) = ξ ⊗ ζ, ζ ∈ H⊗n
q .

[BS 94] showed each a∗q(ξ) is bounded, defined the q-Gaussian operators

sq(ξ) = a∗q(ξ) + (a∗q(ξ))
∗

and the q-Gaussian von Neumann algebra

Γq(HR) := {sq(ξ) : ξ ∈ HR}′′ ⊂ B(Fq(H)).

Note that we have
aia

∗
j − qa∗j ai = δijPΩ.
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q-Gaussians and factoriality
What do we know about Γq(HR)?

The vacuum vector defines a faithful tracial state φ := ωΩ on Γq(HR)
(Bożejko+Speicher, 1994),

if dim(HR) = ∞, Γq(HR) is a factor (Bożejko+Kümmerer+Speicher, 1997),

if dim(HR) is large enough (in terms of q), Γq(HR) is a factor (Śniady, 2004),

Γq(HR) is a factor whenever dim(HR) ⩾ 2 (Ricard, 2005),

when dim(HR) ⩾ 2, Γq(HR) is a non-injective (Nou, 2004), has the
Haagerup property (Wasilewski, 2017).

In many ways Γq(HR) behaves as a free group factor Γ0(HR).

when dim(HR) = d < ∞ and q is ‘small enough’ (depending on d) then
Γq(HR) ≈ Γ0(HR) (Guionnet+Shlyakhtenko, 2014)...

but in 2022 Caspers proved that Γq(ℓ
2) ̸≈ Γ0(ℓ

2) if q ̸= 0.

Recently Kuzmin showed that when dim(HR) < ∞ the C∗-algebra generated
by a∗q(ξ), ξ ∈ HR inside B(Fq(H) does not depend on q.
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Quasi-free deformation of Shlyakhtenko

HR – a separable real Hilbert space (often finite-dimensional)

(Ut)t∈R – a one-parameter strongly continuous group of orthogonal
transformations of HR

Extend Ut to H to obtain a one-parameter unitary group (Ũt)t∈R and let A
denote its positive (in general unbounded) generator (Ũt = Ait , t ∈ R). Then set
a new inner product on H by

⟨ζ, η⟩U := ⟨ζ, 2

1 + A−1
η⟩.

Let HU denote the completion of H with respect to the new scalar product.

the new product restricts to the original one on HR, so we can think of a
new ‘generating’ embedding of HR ⊂ HU ;

Ũt extend also to unitaries on HU .
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Quasi-free von Neumann algebras

Given ξ ∈ HR we can still consider the creation operator a∗(ξ) ∈ B(F(HU)).

Definition
The quasi-free Gaussian operator associated to ξ ∈ HR is

s(ξ) = a∗(ξ) + (a∗(ξ))∗ ∈ B(F(HU))

and the quasi-free Gaussian von Neumann algebra is

Γ(HR,Ut) := {s(ξ) : ξ ∈ HR}′′ ⊂ B(F(HU)).

Theorem (Shlyakhtenko, 1995)

The vacuum vector defines a faithful (in general non-tracial) state φ on
Γ(HR,Ut). Moreover Γ(HR,Ut) is factor, of type III whenever (Ut)t∈R is
non-trivial. The precise type can be computed from spectral data of A.
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Weakly mixing/almost periodic parts

The idea behind the results above is based on the following key observations:

when HR decomposes into Ut-invariant subspaces, the resulting Γ(HR,Ut)
decompose as free products;

spectral decomposition of A first allows us to decompose H into almost
periodic part (spanned by eigenvectors of A) and the weakly mixing part
(the rest)

the almost periodic part corresponds further to splitting HR into the part
where Ut is trivial and two-dimensional subspaces where Ut acts as[

cos log λt − sin log λt
sin log λt cos log λt

]
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q-Araki-Woods algebras of Hiai

Around 2002 Fumio Hiai combined the two constructions:

HR – a separable real Hilbert space (often finite-dimensional)

(Ut)t∈R – a one-parameter strongly continuous group of orthogonal
transformations of HR

q ∈ (−1, 1)

Definition
The q-quasi-free Gaussian operator associated to ξ ∈ HR is

sq(ξ) = a∗q(ξ) + (a∗q(ξ))
∗ ∈ B(Fq(HU))

and the q-Araki-Woods von Neumann algebra is

Γq(HR,Ut) := {sq(ξ) : ξ ∈ HR}′′ ⊂ B(Fq(HU)).
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Modular structure

Proposition (Hiai, 2002)

The vacuum vector defines a faithful (in general non-tracial) state φ on
Γq(HR,Ut); the GNS space of φ is canonically isomorphic to Fq(HU), and we
have for all n ∈ N, ξ1, . . . , ξn ∈ HR

∆φ(ξ1 ⊗ · · · ⊗ ξn) = A−1ξ1 ⊗ · · · ⊗ A−1ξn.

In other words, the modular group is governed by the behaviour of (Ut)t∈R, and
in the almost periodic case one can use the matrix form of A to produce
eigenvectors for ∆φ.

When dim(HR) = d < ∞ and q is ‘small enough’ (depending on d) then
Γq(HR,Ut) ≈ Γ0(HR,Ut) (Nelson, 2015).
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Expected subalgebras

If KR ⊂ HR is a subspace left invariant by (Ut)t∈R, then

Γq(KR,Ut |KR) ⊂ Γq(HR,Ut)

as a φ-expected subalgebra.

The relevant conditional expectation is a second quantisation of P : HR → KR; in
general ‘second-quantising’ good maps on HR is a useful and important tool!
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Known factoriality results

Assume dim(HR) ⩾ 2.

Hiai (2003) showed that if (Ut)t∈R is weakly mixing, then Γq(HR,Ut) is a
non-injective factor

in fact Γq(HR,Ut)
φ ⊂ Γq(HR,Ut)ap (AS+Wang, 2018)

if (Ut)t∈R is almost periodic, and dim(HR) = ∞, then Γq(HR,Ut) is a factor
(Hiai, 2003, Bikram+Mukherjee, 2017)

if (Ut)t∈R is almost periodic and admits a fixed non-zero vector, then
Γq(HR,Ut) is a factor (Bikram+Mukherjee, 2017, AS+Wang, 2018);

if dim(HR) ⩾ 3, or if dim(HR) = 2 and the ‘deformation’ is large enough,
then Γq(HR,Ut) is a factor (Bikram+Mukherjee+Ricard+Wang, 2022).

Adam Skalski (IMPAN) q-factorialiy Berkeley 14 / 29



Why do the earlier proofs do not give a complete result?

Factoriality remained unknown in dimension 2. All the known proofs used either

freeness – when q = 0;

some sort of mixing property which allowed one to show for example that if
ξ ∈ HR is a fixed vector for (Ut)t ∈ R then sq(ξ)

′′ is a masa in Γq(HR,Ut).

In general if ξ ∈ HR is not fixed, then sq(ξ)
′′ is not a MASA!

(Bikram+Mukherjee, 2022)

Later Bikram, Mukherjee, Ricard and Wang worked hard to bypass this providing
estimates guaranteeing the existence of a ‘mixing subspace’ inside the L2-space of
Γq(HR,Ut), but such analysis seems to be unable to cover all cases.

But...

Declaration
Whatever happens, we have got
The Maxim gun, and they had not!
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Conjugate variables: abstract setup

(M, φ) – a von Neumann algebra with a faithful normal state φ
A1, . . . ,Ad – a self-adjoint set of elements of M, which we assume to be
algebraically free.

Definition

Quasi-free difference quotients ∂i are unique derivations from C[Ai , . . . ,Ad ] into
M⊗Mop such that ∂i (Aj) := φ(AjAi )1⊗ 1 for all i , j ∈ {1, . . . , d}. The
conjugate variable for ∂i will be a vector ξi ∈ L2(M, φ) such that

⟨ξi , x1⟩ = ⟨1⊗ 1, ∂i (x)(1⊗ 1)⟩

for all x ∈ C[Ai , . . . ,Ad ]. If such a vector exists, we say that Ai has the finite free
Fisher information.

We say that a non-zero A ∈ M ⊂ L2(M, φ) is an eigenoperator of the modular
group of φ if there exists a λ > 0 such that ∆φ(A) = λA.
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Joys of modern technology, part I

Theorem (Nelson (2017), Theorems A and B)

Let M be a von Neumann algebra with a faithful normal state φ. Suppose M is
generated by a finite set G = G∗, |G | ⩾ 2 of eigenoperators of the modular group
σφ with finite free Fisher information. Then (Mφ)′ ∩M = C. In particular, Mφ is
a II1 factor and if H < R×

∗ is the closed subgroup generated by the eigenvalues of
G then M is a factor of type III1 if H = R×

∗
IIIλ if H = λZ, 0 < λ < 1
II1 if H = {1}.

Moreover Mφ does not have property Γ, and if M is a type IIIλ factor, 0 < λ < 1,
then M is full.
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Back to q-Araki-Woods

Fix d ∈ N, q ∈ (−1, 1) and a d-dimensional real Hilbert space HR with (Ut)t∈R a
one-parameter strongly continuous group of orthogonal transformations.

Γq(HR,Ut) := {sq(ξ) : ξ ∈ HR}′′ ⊂ B(Fq(HU)).

Given ζ ∈ H we can consider the (unique) operator W (ζ) ∈ Γq(HR,Ut) such that
W (ζ)Ω = ζ. If (ei )

d
i=1 is a linearly independent set in H = Cd and Ai = W (ei ),

i ∈ {1, . . . , d}, then
Γq(HR,Ut) = {A1, . . . ,Ad}′′.

Form of the modular operator implies that we can choose (e1, . . . , ed) so that
each Ai is an eigenoperator of the modular group, and the set {A1, . . . ,Ad} is
self-adjoint.

In 2022 Miyagawa and Speicher constructed conjugate variables for Γq(HR) (in
the tracial case), using the dual variable approach.
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From dual variables to conjugate variables

Definition

A tuple (D1, . . . ,Dd) of unbounded operators on Fq(HU) with Fq(H)alg
contained in their domains and 1 contained in the domains of their adjoints is a
(normalized) dual system for (A1, . . . ,Ad) if for all i , j ∈ {1, . . . , d}

[Di ,Aj ] = ⟨ēj , ei ⟩UPCΩ = φ(AjAi )PCΩ and DiΩ = 0.

Here ξ̄ denotes the usual conjugate of a vector ξ in Cd .

Lemma

Let {ei} and {fi} be two linearly independent sets in H, set Ai = W (ei ),
Ci = W (fi ). A dual system for (Ai )

d
i=1 exists if and only if one for (Ci )

d
i=1 does.

Proposition

Suppose that (D1, . . . ,Dd) is a normalized dual system for (A1, . . . ,Ad). Then
(D∗

11, . . . ,D
∗
d1) are conjugate variables for (A1, . . . ,Ad).

In the tracial case this is due to Miyagawa and Speicher; here the proof is
essentially the same.
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Joys of modern technology, part II: algebra...
Fix now (e1, . . . , ed) – an orthonormal set of elements in H (with respect to
undeformed scalar product), and set Bij = ⟨ēi , ej⟩, so that φ(AiAj) = Bij .

Lemma

The algebraic formula for the dual variables of (A1, . . . ,Ad) is given as follows
(i ∈ {1, . . . , d}, n ∈ N, j1, . . . , jn ∈ {1, . . . , d}):

Di (ejn . . . ej1) =
∑

π∈P(n+1)

(−1)π(0)−1qcross(π)δBp(π)es(π),

where δBp(π) :=
∏

(l,m)
l>m

∈π B jl ,jm .

Recall that we know that

[Di ,Aj ] = ⟨ēj , ei ⟩UPCΩ = φ(AjAi )PCΩ DiΩ = 0.

P(n + 1) above denotes a class of partitions of the set indexed by (j1, . . . , jn, i)
into pairs and singletons, following specific rules, introduced by Miyagawa and
Speicher. The proof is inductive, and follows closely the tracial case.
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... and estimates

Proposition

For each i ∈ {1, . . . , d} we have 1 ∈ Dom D∗
i . Thus (D

∗
11, . . . ,D

∗
d1) forms a set

of conjugate variables for (A1, . . . ,Ad).

Here again the proof follows Miyagawa and Speicher, but needs some tweaks.

we analyse expressions of the form〈
Ω,Di (

∑
w

αwew )
〉
Fq(HU )

=
∞∑

m=1

∑
π∈P(2m),π(0)=m

∑
|w |=2m−1

αw (−1)m−1qcross(π)δBp(π),w ;

partitions in P(2m) with π(0) = m correspond to partitions in Sm−1; one
then rewrites the sum above a few times and expresses it in terms of a
(modified!) free left annihilators acting on H⊗n

q

finally one uses estimates due to Bożejko on the uniform norms of the latter.
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q-Araki-Woods – conclusions

Collecting the pieces above allows us to conclude what we need to land in the
setup studied by Nelson.

Corollary

Let dim(HR) < ∞. Then Γq(HR,Ut) equipped with the canonical state φ is
generated by a finite set G = G∗ of eigenoperators of the modular group of φ
with finite free Fisher information.
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Main result

Theorem

Let (HR,Ut) be given, with dim(HR) ⩾ 2. Then Γq(HR,Ut) is a factor of type III1 if G = R×
∗ ,

IIIλ if G = λZ, 0 < λ < 1,
II1 if G = {1},

where G < R×
∗ is the closed subgroup generated by the spectrum of A. Moreover

the centralizer Γq(HR,Ut)
φ with respect to the canonical state is irreducible (i.e.

the respective relative commutant is trivial).

Proof.

the case of infinite-dimensional HR can be deduced from earlier results;

for dim(HR) < ∞ we may use the conjugate variables!
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Fullness and solidity

Definition

A factor M is called full if the inner automorphism group Inn(M) is closed in
Out(M).

It is called solid if whenever N ⊂ M is an expected subalgebra with with the
relative commutant N′ ∩M diffuse, N must be amenable.

Given a non-principal ultrafilter ω we say that M is ω-solid if whenever N ⊂ M is
an expected subalgebra with with the relative commutant inside the ultraproduct
(i.e. N′ ∩Mω) diffuse, N must be amenable.

An important tool for deducing solidity is the Akemann-Ostrand property: i.e. the
existence of nice (say exact) weak∗-dense C∗-subalgebras A ⊂ M, B ⊂ M′ such
that the product/quotient map A⊙ B 7→ B(H)/K (H) is min-continuous.

Adam Skalski (IMPAN) q-factorialiy Berkeley 24 / 29



Non-injectivity of q-Araki-Woods

Theorem

The factor Γq(HR,Ut) is not injective as soon as dim(HR) ⩾ 2.

Sketch of the proof:

it suffices to find a non-injective expected subalgebra, so if there is a weakly
mixing part, already Hiai’s results suffice;

otherwise we work with a two-dimensional Ut-invariant subspace of HR:
either Ut is there trivial, and non-injectivity follows from the work of Nou...

or by what we said before based on work of Nelson we obtain a IIIλ full
factor, and fullness implies non-injectivity.

So we use fullness to deduce non-injectivity.
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Fullness and solidity for q-Araki-Woods

Theorem

Let (HR,Ut) be given with 2 ⩽ dimHR < ∞. Then Γq(HR,Ut) is solid and full.

Sketch of the proof:

in the tracial case fullness follows from the work of Miyagawa and Speicher,
and for the type IIIλ, 0 < λ < 1, from the work of Nelson;

in general we can use the Akemann-Ostrand property with respect to the
C∗-algebra contained in the Cuntz-Toeplitz algebra Tq(H) ⊂ B(Fq(H)) (the
latter is nuclear by the recent result of Kuzmin);

then results of Houdayer and Raum imply first that Γq(HR,Ut) is ω-solid,
and then, as by what we have already said the centralizer of Γq(HR,Ut) is a
non-injective II1 factor, we can deduce fullness.

So we use non-injectivity to deduce fullness.
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What else is known about q-Araki-Woods von Neumann
algebras?

They have the Haagerup approximation property (Wasilewski, 2017)...

and the weak∗-CCAP (Avsec+Brannan+Wasilewski, 2017)
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And what we would like to know

Is Γq(HR,Ut) always full, even when dimHR = ∞?

Can it ever happen that Γq(HR,Ut) ≈ Γq′(KR,Vt) if dimHR < ∞,
dimKR = ∞, q′ ̸= 0?

Both are known in the tracial case: the first is due to Śniady (Γq(HR) is full
whenever dim(HR) ⩾ 2), and the second is stated below.

Proposition

If dimHR < ∞, dimKR = ∞, q′ ̸= 0 then

Γq(HR) ̸≈ Γq′(KR).

This can be deduced, using the Akemann-Ostrand property, from the results of
Caspers and Ozawa.
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