Popa's averaging property for automorphisms on C^* -algebras

Mikael Rørdam University of Copenhagen

Probabilistic Operator Algebra Seminar Berkeley, March 13, 2023

Mikael Rørdam

Averaging automorphisms

Berkeley 1 / 20

2 An averaging technique of Popa

Inclusions of C*-algebras arising from inclusions of groups

Mikael Rørdam

∃ ▶ ∢

Given a unital inclusion $B \subseteq A$ of (unital, simple) C^* -algebras, what can you say about its intermediate C^* -algebras?

Definition: $B \subseteq A$ is C^* -*irreducible* if all intermediate C^* -algebras $B \subseteq D \subseteq A$ are simple.

von Neumann analogy: For an inclusion $\mathcal{N} \subseteq \mathcal{M}$ of vNalg TFAE:

- **2** all intermediate von Neumann algs $\mathcal{N} \subseteq \mathcal{P} \subseteq \mathcal{M}$ are factors,
- $\bigvee_{u \in U(N)} upu^* = 1$, for all non-zero projections $p \in M$.

Theorem: A unital inclusion $B \subseteq A$ of C^* -algebras is C^* -irreducible (all intermediate C^* -algs are simple) iff each non-zero $a \in A^+$ is full rel. to B.

Def: a is full relatively to B if $\exists u_1, \ldots, u_m \in \mathcal{U}(B)$ st $\sum_{i=1}^m u_i^* a u_i \ge 1_A$.

Fact: $B \subseteq A$ is C^* -irreducible $\Rightarrow B \subseteq A$ is irreducible (i.e., $B' \cap A = \mathbb{C}$).

▶ $B' \cap A = \mathbb{C}$ and A, B simple unital $\Rightarrow B \subseteq A$ is C^* -irreducible.

Definition: Given inclusion $B \subseteq A$ of C^* -algs and cond. expect. $E: A \rightarrow B$, set

$$\operatorname{Ind}(E) = \lambda^{-1}, \qquad \lambda = \sup\{t \ge 0 \mid \forall a \in A^+ : E(a) \ge ta\}.$$

Theorem [Izumi, 2002]: Given $B \subseteq A$ and cond. expect. $E: A \rightarrow B$ with $Ind(E) < \infty$.

▶ If A (or B) is simple, then B (or A) is a finite direct sum of simple C^* -algebras.

▶ In particular, if $A \cap B' = \mathbb{C}$, then A is simple iff B is simple.

Corollary: Given $B \subseteq A$ simple with cond. expect. $E : A \rightarrow B$ st $Ind(E) < \infty$. Then:

 $B \subseteq A$ is C^* -irreducible $\iff A \cap B' = \mathbb{C}$.

Definition: Given unital inclusion $B \subseteq A$ of C^* -algs, and $a \in A$. Set

$$C_B(a) = \overline{\operatorname{conv}\{u^*au : u \in \mathcal{U}(B)\}}.$$

- ▶ A has Dixmier property if $C_A(a) \cap \mathbb{C}1_A \neq \emptyset \ \forall a \in A$
- ▶ $B \subseteq A$ has the relative Dixmier property if $C_B(a) \cap \mathbb{C}1_A \neq \emptyset \ \forall a \in A$

Theorem [Popa]: $B \subseteq A$ has relative Dixmier property if

- B has Dixmier property,
- $B \subseteq A$ has finite Jones index wrt some cond. expect. $E: A \rightarrow B$,
- $\pi_{\varphi}(B)' \cap \pi_{\varphi}(A)'' = \mathbb{C}$, for some state φ on A.

▶ For $a \in A^+$: $C_B(a) \cap \mathbb{C}^{\times} \cdot 1_A \neq \emptyset \implies a$ is full rel. to B.

 $B \subseteq A$ has rel. Dixmier property and A has a faithful tracial state, then $B \subseteq A$ is C*-irreducible. (In particular, A and B must be simple.)

Theorem [Popa]: Let $\mathcal{N} \subseteq \mathcal{M}$ be an inclusion of separable II₁-factors. TFAE:

- (i) $\mathcal{N} \subseteq \mathcal{M}$ is C^* -irreducible,
- (ii) $\mathcal{N} \subseteq \mathcal{M}$ has the relative Dixmier property,

(iii) $\mathcal{N}' \cap \mathcal{M} = \mathbb{C}$ and $[\mathcal{M} : \mathcal{N}] < \infty$.

- (ii) \iff (iii) is the main result of a paper of Popa.
- (ii) \implies (i) already noted.
- (i) $\implies \mathcal{N}' \cap \mathcal{M} = \mathbb{C}$ also already noted.
- (i) \implies $[\mathcal{M}:\mathcal{N}]<\infty$ follows from results of Popa, resp., F. Pop.

$$\begin{split} \mathcal{N} \subseteq \mathcal{M} \ \mathcal{C}^* \text{-} \text{irr} & \iff \quad \forall 0 \neq p \in \mathcal{M} \ \exists u_1, \dots, u_n \in \mathcal{U}(\mathcal{N}) : \sum_{j=1}^n u_j p u_j^* \geq 1 \\ & \implies \quad \forall 0 \neq p \in \mathcal{M} \ \exists u_1, \dots, u_n \in \mathcal{U}(\mathcal{N}) : \lor_j u_j p u_j^* = 1 \\ & \implies \quad \forall 0 \neq p \in \mathcal{M} : \lor_{u \in \mathcal{U}(\mathcal{N})} up u^* = 1 \\ & \iff \quad \mathcal{N}' \cap \mathcal{M} = \mathbb{C} \end{split}$$

2 An averaging technique of Popa

Inclusions of C*-algebras arising from inclusions of groups

Mikael Rørdam

Averaging automorphisms

∃ >

Definition: An automorphism α on a unital C^* -alg A has the averaging property (AveP) if

 $0\in\overline{\mathrm{conv}\{\nu\alpha(\nu)^*:\nu\in\mathcal{U}(A)\}},$

and the strong averaging property (SAveP) if

 $\forall a \in A: \quad 0 \in \overline{\operatorname{conv}\{va\alpha(v)^* : v \in \mathcal{U}(A)\}}.$

► If $\alpha_1, \ldots, \alpha_n \in \operatorname{Aut}(A)$ have (SAvP) and $a_1, \ldots, a_n \in A$, then $\forall \varepsilon > 0$ $\exists v_1, \ldots, v_m \in \mathcal{U}(A)$ st $\left\| \frac{1}{m} \sum_{j=1}^m v_j a_j \alpha_j (v_j)^* \right\| < \varepsilon, \quad i = 1, \ldots, n.$

 $\alpha \in \operatorname{Aut}(A) \rightsquigarrow \bar{\alpha} \in \operatorname{Aut}(A^{**}), \ A^{**} = A^{**}_{\operatorname{fin}} \oplus A^{**}_{\operatorname{inf}}, \ \bar{\alpha} = \bar{\alpha}_{\operatorname{fin}} \oplus \bar{\alpha}_{\operatorname{inf}}.$ $\bar{\alpha} \text{ inner} \Rightarrow \alpha \text{ inner, when } A \text{ simple unital (Kishimoto)}$ $\alpha \text{ outer } \Rightarrow \bar{\alpha} \text{ properly outer, not even when } A \text{ simple.}$ **Definition:** An automorphism α on a unital C^* -alg A has the averaging property (AveP) if

 $0\in\overline{\mathrm{conv}\{\boldsymbol{\nu}\boldsymbol{\alpha}(\boldsymbol{\nu})^*:\boldsymbol{\nu}\in\mathcal{U}(A)\}},$

and the strong averaging property (SAveP) if

 $\forall a \in A: \quad 0 \in \overline{\operatorname{conv}\{va\alpha(v)^* : v \in \mathcal{U}(A)\}}.$

The following result appeared in a proof of Popa showing when an inclusion $A \subseteq A \rtimes_r \Gamma$ has the relative Dixmier property:

Theorem (Popa): Let A be unital simple C*-alg w/ Dixmier property, let $a_1, \ldots, a_n \in A, \ \alpha_1, \ldots, \alpha_n \in \operatorname{Aut}(A)$, and assume all $\overline{\alpha}_i$ properly outer. Then $\forall \varepsilon > 0 \ \exists v_1, \ldots, v_m \in \mathcal{U}(A)$ st $\left\| \frac{1}{m} \sum_{j=1}^m v_j a_i \alpha_i (v_j)^* \right\| < \varepsilon, \quad i = 1, \ldots, n.$

Popa's thm—rephrased: If A simple w/ Dixmier property and $\alpha \in Aut(A)$, then $\bar{\alpha}$ properly outer $\implies \alpha$ has (SAveP).

Def: $\alpha \in Aut(A)$ is residually (properly) outer if $\dot{\alpha} \in Aut(A/I)$ is (properly) outer $\forall I \lhd_{\alpha} A$.

Theorem: Let A be a unital separable C^* -alg and $\alpha \in \operatorname{Aut}(A)$. (i) α has (SAveP), (ii) $\forall u \in \mathcal{U}(A) : \operatorname{Ad}_u \circ \alpha$ has (AveP), (iii) α is residually outer and $\overline{\alpha}_{\operatorname{fin}}$ is properly outer. (iv) α is residually properly outer and $\overline{\alpha}_{\operatorname{fin}}$ is properly outer. Then (iv) \Rightarrow (i) \Rightarrow (ii) \Leftrightarrow (iii). If $\operatorname{sr}(A) = 1$, then (i) \Leftrightarrow (ii) \Leftrightarrow (iii).

Corollary: For an automorphism α on a unital *commutative* C*-alg A, α has (AveP) $\iff \alpha$ has (SAveP) $\iff \alpha$ is free.

Corollary: For an automorphism α on a unital, sep. *simple* C^* -alg A:

- If A has a trace, then α has (SAveP) $\iff \bar{\alpha}_{fin}$ is properly outer,
- if A has no trace, then α has (SAveP) $\iff \alpha$ is outer.

On (i) \iff (ii): For $u, v \in \mathcal{U}(A)$: $v(\operatorname{Ad}_{u} \circ \alpha)(v)^{*} = vu\alpha(v)^{*}u^{*}$. Hence $0 \in \overline{\operatorname{conv}\{vu\alpha(v)^{*} : v \in \mathcal{U}(A)\}} \Leftrightarrow 0 \in \overline{\operatorname{conv}\{v(\operatorname{Ad}_{u} \circ \alpha)(v)^{*} : v \in \mathcal{U}(A)\}}$ This shows (i) \Rightarrow (ii).

Conversely, suppose $Ad_u \circ \alpha$ has (AveP) $\forall u \in U(A)$, and sr(A) = 1. Let $a \in A$. Since

$$\operatorname{conv}\{\mathsf{vb}\alpha(\mathsf{v})^*:\mathsf{v}\in\mathcal{U}(A)\}\subseteq\operatorname{conv}\{\mathsf{va}\alpha(\mathsf{v})^*:\mathsf{v}\in\mathcal{U}(A)\}:=\mathsf{C},$$

for every $b \in C$, it suffices to show that $\exists b \in C$ st $||b|| \leq \frac{3}{4} ||a||$. Since $\operatorname{sr}(A) = 1$, $\exists u_1, u_2, u_3 \in \mathcal{U}(A)$ st

$$a = \frac{1}{3} \|a\|(u_1 + u_2 + u_3) = \frac{1}{3} \|a\|u_1 + a_0, \qquad \|a_0\| = \frac{2}{3} \|a\|.$$

By the argument above, we get $0 \in \overline{\operatorname{conv}\{vu_1\alpha(v)^* : v \in U(A)\}}$, which implies that

$$\inf\{\|b\|: b \in C\} \le \|a_0\| = \frac{2}{3}\|a\| < \frac{3}{4}\|a\|,$$

as wanted.

Mikael Rørdam

Example: of an outer automorphism on a UHF algebra without (SAveP).

Set $A = \bigotimes_{n=1}^{\infty} M_{k_n}(\mathbb{C})$ with unique tracial state τ , where $k_n \ge 2$. Set $u_n = \text{diag}(1, 1, \dots, 1, -1) \in \mathcal{U}(M_{k_n}(\mathbb{C}))$, and set

$$\alpha = \bigotimes_{n=1}^{\infty} \operatorname{Ad}_{u_n} \in \operatorname{Aut}(A).$$

Then α is outer on A, while α extends to an inner automorphism $\bar{\alpha}$ on $M := \pi_{\tau}(A)''$ if $\sum_{n=1}^{\infty} ||\mathbf{1}_{k_n} - u_n||_2 < \infty$. Assume this is the case. Let $v \in \mathcal{U}(M)$ implement $\bar{\alpha}$. Choose $w \in \mathcal{U}(A)$ st $\bar{\tau}(wv) \neq 0$. Since $uw\alpha(u)^* = uwvu^*v^*$, $\forall u \in \mathcal{U}(A)$, we get

$$C := \operatorname{conv} \{ uw\alpha(u)^* : u \in \mathcal{U}(A) \} = \operatorname{conv} \{ uwvu^* : u \in \mathcal{U}(A) \} v^*$$

Now, $\bar{\tau}(x) = \bar{\tau}(wv) \neq 0$, $\forall x \in \operatorname{conv}\{uwvu^* : u \in \mathcal{U}(A)\}$, which shows that $0 \notin \bar{C}$. Hence α fails (SAveP).

▶ If $\Gamma \curvearrowright A$ (SAveP) action and $x = \sum_{t \in \Gamma} a_t u_t \in A \rtimes_r \Gamma$, then $\forall t \in \Gamma$, $t \neq e$, $\exists v_1, \ldots, v_m \in U(A)$ st

$$\frac{1}{m}\sum_{j=1}^m v_j a_t u_t v_j^* = \left(\frac{1}{m}\sum_{j=1}^m v_j a_t \alpha_t (v_j)^*\right) u_t,$$

can be made arbitrarily small. Using this observation, one can prove

Lemma: Let $\Gamma \curvearrowright A$ be a (SAveP), let $x \in A \rtimes_r \Gamma$, and let $t \in \Gamma$. (i) $E(x) = 1_A \implies 1_A \in C_A(x)$, (ii) $E_t(x) = 1_A \implies u_t \in C_A^{\alpha_{t-1}}(x) \subseteq C^*(A, x)$, (iii) $\operatorname{dist}(C_A(x), A) = 0$.

• $E: A \rtimes_r \Gamma \to A$ is the standard cond. exp.

E_t(x) = E(xu^{*}_t) ∈ A is the "t-th Fourier coefficient" of x ∈ A ⋊_r Γ.
C_A(x) = conv{uxu^{*} : u ∈ U(A)}.
C^α_A(x) = conv{uxα(u)^{*} : u ∈ U(A)}.

Given $\Gamma \curvearrowright A$ with A unital. Then \exists trace on $A \rtimes_r \Gamma$ iff \exists invariant trace τ on A (given by $\tau \circ E$). When is the extension of τ to $A \rtimes_r \Gamma$ unique?

Theorem (cf. Bedos, Thomsen, Ursu): Let $\Gamma \curvearrowright A$ be a (SAveP) action. Then each Γ -invariant trace τ on A extends *uniquely* to a trace on $A \rtimes_r \Gamma$. In fact, \exists ! state ρ on $A \rtimes_r \Gamma$ that extends τ and satisfies $\rho(uxu^*) = \rho(x)$ for all $A \rtimes_r \Gamma$ and all $u \in U(A)$.

Proof: $\forall x \in A \rtimes_r \Gamma$: dist $(A, \overline{\operatorname{conv}\{uxu^* : u \in U(A)\}}) = 0$.

Theorem (cf. Popa): Let $\Gamma \curvearrowright A$ be an action on a unital C^* -alg A. Then $A \subseteq A \rtimes_r \Gamma$ has the relative Dixmier property if and only if A has the Dixmier property and the action is (SAveP).

Proof: "If:" As in the proof above! "Only if:" For $t \neq e$ and $a \in A$, set

 $M := \operatorname{conv}\{v \operatorname{au}_t v^* : v \in \mathcal{U}(A)\} = \operatorname{conv}\{v \operatorname{a}\alpha_t(v)^* : v \in \mathcal{U}(A)\}u_t$

Then $\overline{M} \subseteq \mathbb{C}u_t$, $\overline{M} \cap \mathbb{C} \neq \emptyset$, and $\mathbb{C}u_t \cap \mathbb{C} = \{0\}$. Hence $0 \in \overline{M}$.

イロト イヨト イヨト イヨト

Theorem (cf. Izumi, Cameron-Smith, Bedos–Omland): Let $\Gamma \curvearrowright A$ be a (SAveP) action, let $\Lambda \leq \Gamma$, and suppose $\Lambda \curvearrowright A$ is minimal. Then (i) $A \rtimes_r \Lambda \subseteq A \rtimes_r \Gamma$ is C^* -irreducible, (ii) If $\Lambda \triangleleft \Gamma$, then

 $\{A\rtimes_r\Lambda\subseteq \textbf{\textit{D}}\subseteq A\rtimes_r\Gamma\}\longleftrightarrow\{\Lambda\leq \Upsilon\leq \Gamma\},\quad \Upsilon\mapsto A\rtimes_r\Upsilon.$

Proof: Let $A \rtimes_r \Lambda \subseteq D \subseteq A \rtimes_r \Gamma$, let $J \triangleleft D$, let $t \in \Gamma$, and set

 $E_t(J) = \{E_t(x) : x \in J\} \subseteq A,$ [Recall: $E_t(x) = E(xu_t^*)$]

► $E_t(J) \triangleleft A$. ► $E_t(J)$ is Λ invariant if $[t, \Lambda] \subseteq \Lambda$, eg., if t = e or if $\Lambda \triangleleft \Gamma$.

(i). Let $J \triangleleft D$ be as above. Then, with t = e and $E_t = E$,

 $J \neq 0 \Rightarrow E(J) = A \Rightarrow 1_A \in E(J) \stackrel{(*)}{\Rightarrow} 1_A \in C_A(J) \subseteq J \Rightarrow J = D$

(*) by previous lemma (using the action is (SAveP)).

Theorem (cf. Izumi, Cameron-Smith, Bedos–Omland): Let $\Gamma \curvearrowright A$ be a (SAveP) action, let $\Lambda \leq \Gamma$, and suppose $\Lambda \curvearrowright A$ is minimal. Then (i) $A \rtimes_r \Lambda \subseteq A \rtimes_r \Gamma$ is C^* -irreducible, (ii) If $\Lambda \lhd \Gamma$, then

 $\{A \rtimes_r \Lambda \subseteq D \subseteq A \rtimes_r \Gamma\} \longleftrightarrow \{\Lambda \leq \Upsilon \leq \Gamma\}, \quad \Upsilon \mapsto A \rtimes_r \Upsilon.$

Proof: (ii). Let $A \rtimes_r \Lambda \subseteq D \subseteq A \rtimes_r \Gamma$, let $t \in \Gamma$, and set

$$E_t(D) = \{E_t(x) : x \in D\} \subseteq A.$$

► $E_t(D) \triangleleft A$ and $E_t(D)$ is Λ invariant, since $\Lambda \triangleleft \Gamma$. Hence

 $E_t(D) \neq 0 \Rightarrow E_t(D) = A \Rightarrow 1_A \in E_t(D) \stackrel{(*)}{\Rightarrow} u_t \in C_A^{\alpha_{t-1}}(D) \subseteq D$

Set $\Upsilon = \{t \in \Gamma : u_t \in D\} = \{t \in \Gamma : E_t(D) \neq 0\}$. Then $\Lambda \leq \Upsilon \leq \Gamma$.

Clearly, $A \rtimes_r \Upsilon \subseteq D$. If $x \in D$, then $\operatorname{supp}(x) = \{t \in \Gamma : E_t(x) \neq 0\} \subseteq \Upsilon$, whence $x \in A \rtimes_r \Upsilon$. This shows $D \subseteq A \rtimes_r \Upsilon$.

2 An averaging technique of Popa

3 Inclusions of C^* -algebras arising from inclusions of groups

We now consider inclusions of C^* -algs (and von Neumann algs) arising from inclusions $\Lambda \subseteq \Gamma$ of groups.

Definition: Γ is icc rel. to Λ iff $\{tst^{-1} : t \in \Lambda\}$ is infinite $\forall s \in \Gamma \setminus \{e\}$.

Proposition: Given groups $\Lambda \subseteq \Gamma$. Then $\mathcal{L}(\Lambda) \subseteq \mathcal{L}(\Gamma)$ is *C**-irreducibe $\iff \Gamma$ is icc rel. to Λ and $[\Gamma : \Lambda] < \infty$.

Proof:

•
$$\mathcal{L}(\Lambda)' \cap \mathcal{L}(\Gamma) = \mathbb{C} \iff \Gamma$$
 is icc relatively to Λ .

$$\blacktriangleright \ [\mathcal{L}(\Gamma) : \mathcal{L}(\Lambda)] = [\Gamma : \Lambda] < \infty.$$

We proceed to consider when $C^*_{\lambda}(\Lambda) \subseteq C^*_{\lambda}(\Gamma)$ is C^* -irreducible. A few quick facts (the second follows from Popa's theorem):

►
$$C^*_{\lambda}(\Lambda)' \cap C^*_{\lambda}(\Gamma) = \mathbb{C} \iff \Gamma$$
 is icc rel. to Λ .

 $\blacktriangleright |\Gamma:\Lambda| < \infty: \ C^*_\lambda(\Lambda) \subseteq C^*_\lambda(\Gamma) \ C^*\text{-}\mathsf{irr.} \iff \Gamma \text{ icc rel. to } \Lambda, \ \Gamma \ C^*\text{-}\mathsf{simple.}$

►
$$C^*_{\lambda}(\Lambda) \subseteq C^*_{\lambda}(\Gamma)$$
 *C**-irreducible \Rightarrow [$\Gamma : \Lambda$] < ∞.

Theorem: Let $\Lambda \subseteq \Gamma$ be groups.

(i) $\exists \Gamma \curvearrowright X$ top. free bdry action st $\forall \mu \in \operatorname{Prob}(X) \exists \delta_x \in \overline{\Lambda.\mu}$ for which Γ acts freely on x,

(ii) $\tau_0 \in \overline{\{s.\varphi : s \in \Lambda\}}^{\text{weak}^*}$, for all states φ on $C^*_{\lambda}(\Gamma)$,

(iii) $\tau_0 \in \overline{\operatorname{conv}\{s.\varphi: s \in \Lambda\}}^{\operatorname{weak}^*}$, for all states φ on $C^*_{\lambda}(\Gamma)$,

- (iv) The relative Powers' averaging procedure holds: $\forall s_1, \ldots, s_n \in \Gamma \setminus \{e\}$ $\forall \varepsilon > 0 \ \exists t_1, \ldots, t_m \in \Lambda \text{ st } \|\frac{1}{m} \sum_{k=1}^m \lambda(t_k s_j t_k^{-1})\| \leq \varepsilon$, for $j = 1, \ldots, n$.
- (v) $C^*_{\lambda}(\Lambda) \subseteq C^*_{\lambda}(\Gamma)$ has the relative Dixmier property,

(vi) $C^*_{\lambda}(\Lambda) \subseteq C^*_{\lambda}(\Gamma)$ is C^* -irreducible.

Then (i) \Rightarrow (ii) \Rightarrow (iii) \Leftrightarrow (iv) \Leftrightarrow (v) \Rightarrow (vi), & (vi) \Rightarrow (v) if [$\Gamma : \Lambda$] $< \infty$.

► Condition (iv) is termed $\Lambda \subseteq \Gamma$ is *plump* by Amrutam–Ursu. **Example:** $C_{\lambda}^{*}(\mathbb{F}_{n}) \subseteq C_{\lambda}^{*}(\mathbb{F}_{m})$ is *C**-irreducible when n < m. **Scarparo:** This inclusion also satisfies (i), with $X = \partial \mathbb{F}_{m}$ Gromov boundary, hence (i)–(vi) hold. (i) $\exists \Gamma \frown X$ top. free bdry action st $\forall \mu \in \operatorname{Prob}(X) \exists \delta_x \in \overline{\Lambda.\mu}$ for which Γ acts freely on x,

(ii) $\tau_0 \in \overline{\{s.\varphi : s \in \Lambda\}}^{\text{weak}^*}$, for all states φ on $C^*_{\lambda}(\Gamma)$,

(iii) $\tau_0 \in \overline{\operatorname{conv}\{s.\varphi: s \in \Lambda\}}^{\operatorname{weak}^*}$, for all states φ on $C^*_{\lambda}(\Gamma)$,

(iv) The relative Powers' averaging procedure holds: ∀s₁,..., s_n ∈ Γ \ {e} ∀ε > 0 ∃t₁,..., t_m ∈ Λ st || ¹/_m ∑^m_{k=1} λ(t_ks_jt⁻¹_k)|| ≤ ε, for j = 1,..., n.
(v) C^{*}_λ(Λ) ⊆ C^{*}_λ(Γ) has the relative Dixmier property,
(vi) C^{*}_λ(Λ) ⊆ C^{*}_λ(Γ) is C*-irreducible.

Ursu: For Λ is **normal** in Γ : (iv) $\implies \Gamma \frown \partial_F \Lambda$ is free \implies (i). Hence (i)–(v) are equivalent.

Bedos–Omland/Li–Scarparo: For Λ is **commensurated** in Γ : (i)–(vi) are equivalent, and also equiv. to Γ icc relatively to Λ .

Bedos–Omland: $\exists C^*$ -simple groups $\Lambda \subseteq \Gamma$ with Γ icc rel. to Λ st $C^*_{\lambda}(\Lambda) \subseteq C^*_{\lambda}(\Gamma)$ not C^* -irreducible.