Convergence for non-commutative rational functions evaluated in random matrices

Akihiro Miyagawa

Kyoto University
March 20th

Joint work with Tobias Mai, Benoît Collins, Felix Parraud and Sheng Yin

Today's talk

(1) Non-commutative rational functions

- Evaluation of non-commutative rational functions.
- Theorem by Mai, Speicher, and Yin.
(2) Main results
- Main result 1: Well-definedness of $r\left(X^{N}\right)$ with $N \times N$ random matrices X^{N}.
- Main result 2: Convergence in distribution.
(3) Strategy of the proof
- Linearization.
- Characterization of cumulative distribution functions by projections.

Non-commutative rational function

Non-commutative rational expressions

- Non-commutative (nc) rational expressions are defined by all possible combinations of $x_{1}, \ldots, x_{d}, \mathbb{C}$ with $+, \times, .^{-1},()$. e.g. $x_{1} x_{2}^{-1},\left(x_{1}+x_{2}\right)^{-1}, x_{1}+2 x_{2}^{-1} x_{1}$
- For unital \mathbb{C}-algebra \mathcal{A} and a nc rational expression r, we define

$$
\operatorname{dom}_{\mathcal{A}}(r)=\left\{X=\left(X_{1}, \ldots, X_{d}\right) \in \mathcal{A}^{d}: r(X) \in \mathcal{A}\right\}
$$

For example, $\operatorname{dom}_{\mathcal{A}}\left(\left(x_{1} x_{2}-x_{2} x_{1}\right)^{-1}\right)=\emptyset$ when \mathcal{A} is commutative.

Non-commutative rational functions

- For a nc rational expression $r, \operatorname{dom}(r)$ is a subset of all square matrices over \mathbb{C} where evaluation of r is well-defined.
- Equivalence relation

$$
r_{1} \sim r_{2} \Leftrightarrow r_{1}(a)=r_{2}(a),{ }^{\forall} a \in \operatorname{dom}\left(r_{1}\right) \cap \operatorname{dom}\left(r_{2}\right) \neq \emptyset .
$$

Non-commutative rational functions

- For a nc rational expression $r, \operatorname{dom}(r)$ is a subset of all square matrices over \mathbb{C} where evaluation of r is well-defined.
- Equivalence relation

$$
r_{1} \sim r_{2} \Leftrightarrow r_{1}(a)=r_{2}(a),{ }^{\forall} a \in \operatorname{dom}\left(r_{1}\right) \cap \operatorname{dom}\left(r_{2}\right) \neq \emptyset .
$$

- An equivalence class of nc rational expressions is called a non-commutative rational function.
- A set $\mathbb{C}\left(x_{1}, \ldots, x_{d}\right)$ of nc rational functions is called the free (skew) field which contains non-commutative polynomials $\mathbb{C}\left\langle x_{1}, \ldots, x_{d}\right\rangle$ (Amitur'66, Cohn'94, Kaliuzhnyi-Verbovetskyi and Vinnikov'10).

Example: NC rational expressions and the equivalence relation

$r_{1}=\left(x_{1}\left(x_{1}+x_{2}\right)^{-1}\right) x_{2}, r_{2}=x_{1}\left(\left(x_{1}+x_{2}\right)^{-1} x_{2}\right)$,
$r_{3}=\left(x_{1}^{-1}+x_{2}^{-1}\right)^{-1}$ are formally different rational expressions.

$$
\begin{aligned}
& \operatorname{dom}\left(r_{1}\right)=\operatorname{dom}\left(r_{2}\right)=\left\{\left(X_{1}, X_{2}\right) ; \operatorname{det}\left(X_{1}+X_{2}\right) \neq 0\right\} \\
& \operatorname{dom}\left(r_{3}\right)=\left\{\left(X_{1}, X_{2}\right) ; \operatorname{det}\left(X_{1}\right), \operatorname{det}\left(X_{2}\right), \operatorname{det}\left(X_{1}^{-1}+X_{2}^{-1}\right) \neq 0\right\}
\end{aligned}
$$

We can see $\operatorname{dom}\left(r_{3}\right) \subsetneq \operatorname{dom}\left(r_{2}\right)=\operatorname{dom}\left(r_{1}\right)$ and r_{i} 's are equivalent since we have the formal calculation,

$$
\left\{x_{1}\left(x_{1}+x_{2}\right)^{-1} x_{2}\right\}^{-1}=x_{2}^{-1}\left(x_{1}+x_{2}\right) x_{1}^{-1}=x_{1}^{-1}+x_{2}^{-1} .
$$

Remark

For any rational expression r with $\operatorname{dom}(r) \neq \emptyset$, there exists $N_{0}=N_{0}(r)$ such that $\operatorname{dom}(r) \cap M_{N}(\mathbb{C})^{d} \neq \emptyset$ for $N \geq N_{0}$.

Evaluation of non-commutative rational functions

- We need to take matrices with large sizes for the evaluation of a nc rational expression.
- (Hall) For any $X_{i} \in M_{2}(\mathbb{C})$,

$$
\left[\left[X_{1}, X_{2}\right]^{2}, X_{3}\right]=0
$$

- (Amitsur-Levitzki) For any $X_{i} \in M_{N}(\mathbb{C})$,

$$
\sum_{\pi \in S_{2 N}} \operatorname{sgn}(\pi) X_{\pi(1)} \ldots X_{\pi(2 N)}=0
$$

- For a nc rational function r, we would like to define

$$
\operatorname{dom}_{\mathcal{A}}(r)=\bigcup_{r^{\prime} ;\left[r^{\prime}\right]=r} \operatorname{dom}_{\mathcal{A}}\left(r^{\prime}\right), r(X)=r^{\prime}(X), X \in \operatorname{dom}_{\mathcal{A}}(r) \cap \operatorname{dom}_{\mathcal{A}}\left(r^{\prime}\right) .
$$

Evaluation in operators

- Evaluation of non-commutative rational functions in elements in a unital algebra \mathcal{A} is not well-defined in general. For example, we have $x_{1}\left(x_{2} x_{1}\right)^{-1} x_{2}=1$, but for the unilateral shift S

$$
S\left(S^{*} S\right)^{-1} S^{*}=S S^{*} \neq 1
$$

- Evaluation of non-commutative rational functions is well-defined if \mathcal{A} is stably finite. i.e. we have for each $m \in \mathbb{N}$

$$
A, B \in M_{m}(\mathcal{A}), A B=I_{m} \Leftrightarrow B A=I_{m}
$$

- Every finite von Neumann algebras \mathcal{M} are stably finite.
- The $*$-algebra $\widetilde{\mathcal{M}}$ of affiliated operators with \mathcal{M} is also stably finite.

Evaluation of all non-commutative rational functions

Theorem (T.Mai, R.Speicher and S.Yin '19)

Let $X=\left(X_{1}, \ldots, X_{d}\right)$ be a tuple of freely independent self-adjoint operators in a W^{*}-probability space such that each X_{i} has no atom. Then ${ }^{\exists!} \operatorname{Ev}_{s}: \mathbb{C}\left(x_{1}, \ldots, x_{d}\right) \rightarrow \widetilde{\mathcal{M}}$, a homomorphism which extends $\mathbb{C}\left\langle x_{1}, \ldots, x_{d}\right\rangle \ni P \rightarrow P(X) \in \mathcal{M}$.

- The condition (free + absence of atom) is generalized to maximality of $\Delta\left(X_{1}, \ldots, X_{d}\right)(=d)$ defined in
Connes-Shlyakhtenko'05

$$
\operatorname{dim}_{\mathcal{M} \otimes \mathcal{M}^{\mathrm{op}}}{\overline{\left\{\left(T_{1}, \ldots, T_{d}\right) \in \mathcal{F}\left(L^{2}(\mathcal{M})\right): \sum_{i=1}^{d}\left[T_{i}, J X_{i} J\right]=0\right\}^{\mathrm{HS}}} ~}_{\mathrm{H}}
$$

- Free Haar unitaries u_{1}, \ldots, u_{d} satisfy $\Delta\left(u_{1}, \ldots, u_{d}\right)=d$.

Remarks

- Atoms of a nc rational function evaluated in free random variables can be computed algebraically (Mai-Speicher-Yin'19, Arizmendi-Cébron-Speicher-Yin'21).
- The weight of atoms of a nc rational function evaluated in free random variables is minimal when each distribution is given (Arizmendi-Cébron-Speicher-Yin'21).
- nc rational functions are characterized by finite rank commutators, which is an analogue of Kronecker's theorem (Duchamp-Reutenauer'97, Linnell'00, M'22).

Main results

Asymptotic freeness of independent GUE's

Theorem (D.Voiculescu, 1991)

For independent GUE random matrices $X_{1}^{N}, \ldots, X_{d}^{N}$, we have almost surely,

$$
\lim _{N \rightarrow \infty} \operatorname{tr}\left(X_{i_{1}}^{N} \cdots X_{i_{n}}^{N}\right)=\tau\left(s_{i_{1}} \cdots s_{i_{n}}\right)
$$

where s_{1}, \ldots, s_{d} are free semicircles with respect to τ.

- Let $P \in \mathbb{C}\left\langle x_{1}, \ldots, x_{d}\right\rangle$ be a self-adjoint polynomial. Then We have almost surely for $f \in C_{c}(\mathbb{R})$,

$$
\lim _{N \rightarrow \infty} \int_{\mathbb{R}} f d \mu_{P\left(X^{N}\right)}=\tau[f(P(s))]=\int_{\mathbb{R}} f d \mu_{P(s)} .
$$

- We replace nc polynomials by nc rational functions.

Main result 1: Evaluation in random matrices

- We work on rational functions evaluated in self-adjoint matrices and unitary matrices.

Theorem (Collins-Mai-M-Parraud-Yin'22)

Let r be a nc rational function with $d=d_{1}+d_{2}$ formal variables. Let $\left(X^{N}, U^{N}\right)$ be a tuple of random matrices in $M_{N}(\mathbb{C})_{\mathrm{sa}}^{d_{1}} \times U_{N}(\mathbb{C})^{d_{2}}$ whose law is absolutely continuous with respect to the product measure of Lebesgue measure on $M_{N}\left(\mathbb{C}^{d}\right)_{\text {sa }}$ and Haar measure on $U_{N}(\mathbb{C})$. Then ${ }^{\exists} N_{0} \in \mathbb{N}$ s.t. we have almost surely

$$
\left(X^{N}, U^{N}\right) \in \operatorname{dom}(r), \quad N \geq N_{0}
$$

Main result 2: Convergence in distribution

- $T \in \widetilde{\mathcal{M}}$: self-adjoint.
- $P_{T}(B)$: spectral projection on B for a Borel set B.
- μ_{T} : spectral measure $\mu_{T}(B):=\tau\left[P_{T}(B)\right]$
- cumulative distribution function $\mathcal{F}_{T}(t)=\mu_{T}(-\infty, t], t \in \mathbb{R}$.

Theorem (Collins-Mai-M-Parraud-Yin'22)

Let r be a nc rational function. For each $N \in \mathbb{N}$, let $X^{N}=\left(X_{1}^{N}, \ldots, X_{d}^{N}\right)$ be a tuple of (possibly unbounded) operators affiliated with a W^{*}-probability space $\left(\mathcal{M}_{N}, \tau_{N}\right)$. We suppose that X^{N} converges in *-distribution towards bounded operators $X=\left(X_{1}, \ldots, X_{d}\right)$ in a W^{*}-probability space (\mathcal{M}, τ). We also assume $X^{N}, X \in \operatorname{dom}(r)$ and $r\left(X^{N}\right), r(X)$ are self-adjoint. Then we have for any continuous point $t \in \mathbb{R}$ of $\mathcal{F}_{r(X)}$,

$$
\lim _{N \rightarrow \infty} \mathcal{F}_{r\left(X^{N}\right)}(t)=\mathcal{F}_{r(X)}(t)
$$

Corollary of main results

By combining our results and the result in Mai-Speicher-Yin, we have the following.

Corollary

Let $\left(X^{N}, U^{N}\right) \in M_{N}(\mathbb{C})_{\mathrm{sa}}^{d_{1}} \times U_{N}(\mathbb{C})^{d_{2}}$ be a tuple of independent GUE and Haar unitary matrices and $(X, U) \in \mathcal{M}_{\mathrm{sa}}^{d_{1}} \times \mathcal{U}(\mathcal{M})^{d_{2}}$ be a tuple of free semicircles and Haar unitaries. Then for any nc rational function r with $d_{1}+d_{2}$ indeterminates such that $r(X, U)$ self-adjoint, the empirical eigenvalue distribution of $r\left(X^{N}, U^{N}\right)$ almost surely converges in distribution towards the spectral measure of $r(X, U)$.

Strategy of the proof

Strategy of the proof: Linearization

Proposition (Linearization)

For a nc rational expression r we can find A, u, v s.t.

$$
r(X)={ }^{t} u A(X)^{-1} v, X \in \operatorname{dom}(r) \text { (linearization) }
$$

where

- $A \in M_{k}\left(\mathbb{C}\left\langle x_{1}, \ldots, x_{d}\right\rangle\right)$: linear, i.e.

$$
A=A_{0}+A_{1} x_{1}+\cdots+A_{d} x_{d}, A_{i} \in M_{k}(\mathbb{C})
$$

- $u, v \in \mathbb{C}^{k}$.
- $\operatorname{dom}(r) \subset\left\{X \in \widetilde{\mathcal{M}}^{d} ;{ }^{\exists} A(X)^{-1}\right\}$.
- $\operatorname{dom}(r) \neq \emptyset \Rightarrow A$ is full, i.e. there is no $I<k$ s.t.

$$
A=B C, B \in M_{k \times l}\left(\mathbb{C}\left\langle x_{1}, \ldots, x_{d}\right\rangle\right), C \in M_{l \times k}\left(\mathbb{C}\left\langle x_{1}, \ldots, x_{d}\right\rangle\right) .
$$

Algorithm for linearization

For $r_{1}={ }^{t} u_{1} A_{1}^{-1} v_{1}, r_{2}={ }^{t} u_{2} A_{2}^{-1} v_{2}$,

$$
\begin{aligned}
r_{1}+r_{2} & =\left(\begin{array}{ll}
{ }^{t} u_{1} & { }^{t} u_{2}
\end{array}\right)\left(\begin{array}{c|c}
A_{1} & 0 \\
\hline 0 & A_{2}
\end{array}\right)^{-1}\binom{v_{1}}{v_{2}} \\
r_{1} r_{2} & =\left(\begin{array}{ll}
t^{t} u_{1} & 0
\end{array}\right)\left(\begin{array}{c|c}
A_{1} & -v_{1}^{t} u_{2} \\
\hline 0 & A_{2}
\end{array}\right)^{-1}\binom{0}{v_{2}} \\
r_{1}^{-1} & =\left(\begin{array}{ll}
1 & 0
\end{array}\right)\left(\begin{array}{c|c}
0 & { }^{t} u_{1} \\
\hline v_{1} & A_{1}
\end{array}\right)^{-1}\binom{-1}{0} .
\end{aligned}
$$

Algorithm for linearization

For $r_{1}={ }^{t} u_{1} A_{1}^{-1} v_{1}, r_{2}={ }^{t} u_{2} A_{2}^{-1} v_{2}$,

$$
\begin{aligned}
r_{1}+r_{2} & =\left(\begin{array}{ll}
{ }^{t} u_{1} & { }^{t} u_{2}
\end{array}\right)\left(\begin{array}{c|c}
A_{1} & 0 \\
\hline 0 & A_{2}
\end{array}\right)^{-1}\binom{v_{1}}{v_{2}} \\
r_{1} r_{2} & =\left(\begin{array}{ll}
{ }^{t} u_{1} & 0
\end{array}\right)\left(\begin{array}{c|c}
A_{1} & -v_{1}^{t} u_{2} \\
\hline 0 & A_{2}
\end{array}\right)^{-1}\binom{0}{v_{2}} \\
r_{1}^{-1} & =\left(\begin{array}{ll}
1 & 0
\end{array}\right)\left(\begin{array}{c|c}
0 & u_{1} \\
\hline v_{1} & A_{1}
\end{array}\right)^{-1}\binom{-1}{0} .
\end{aligned}
$$

In the third equality, one can see from the formal calculation,

$$
\left(\begin{array}{c|c}
0 & { }^{t} u \\
\hline v & A
\end{array}\right)^{-1}=\left(\begin{array}{c|c}
-r^{-1} & r^{-1 t} u A^{-1} \\
\hline A^{-1} v r^{-1} & A^{-1}-A^{-1} v r^{-1 t} u A^{-1}
\end{array}\right) .
$$

Examples of linearization

$$
\begin{gathered}
x_{1}=\left(\begin{array}{ll}
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & -x_{1} \\
0 & 1
\end{array}\right)^{-1}\binom{0}{1} \\
x_{1} x_{2}=\left(\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{cc|cc}
1 & -x_{1} & 0 & 0 \\
0 & 1 & -1 & 0 \\
\hline 0 & 0 & 1 & -x_{2} \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) \\
\left(x_{1} x_{2}\right)^{-1}=\left(\begin{array}{l|llll}
1 & 0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{c|cccc}
0 & 1 & 0 & 0 & 0 \\
\hline 0 & 1 & -x_{1} & 0 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 1 & -x_{2} \\
1 & 0 & 0 & 0 & 1
\end{array}\right)^{-1}\left(\begin{array}{c}
-1 \\
0 \\
0 \\
0 \\
0
\end{array}\right)
\end{gathered}
$$

Self-adjoint linearization

Theorem (J.W.Helton, T.Mai and R.Speicher '18)

Let r be a rational expression and \mathcal{A} be a $*$-algebra. If $r(X)$ is self-adjoint for $X \in \mathcal{A}^{d}$, then there exists $A \in M_{k}\left(\mathbb{C}\left\langle x_{1}, \ldots, x_{d}\right\rangle\right)$ and $u \in \mathbb{C}^{k}$ s.t.

$$
\begin{gathered}
A=\sum_{i=1}^{d} A_{i} \otimes x_{i}, \quad A_{i}^{*}=A_{i} \\
r(X)=u^{*} A^{-1}(X) u
\end{gathered}
$$

For $r={ }^{t} u A^{-1} v$, consider

$$
\left(\begin{array}{cc}
v^{*} & t^{t} u
\end{array}\right)\left(\begin{array}{cc}
0 & A(X) \\
A^{*}(X) & 0
\end{array}\right)^{-1}\binom{v}{\bar{u}}
$$

which represents $2 r(X)$ since $r(X)$ is self-adjoint.

Remark about main result 1

- For the proof, we use ${ }^{\forall} r$, $\operatorname{dom}(r) \cap M_{N}(\mathbb{C})^{d} \neq \emptyset$ for $N \geq{ }^{\exists} N_{0}$.
- Consider a linearization $r={ }^{t} u A^{-1} v$, and check by using complex analysis technique,

$$
\begin{array}{rll}
\operatorname{dom}\left(A^{-1}\right) & \cap & M_{N}(\mathbb{C})_{\text {sa }}^{d_{1}} \times U_{N}(\mathbb{C})^{d_{2}}=\emptyset \\
& \Longrightarrow & \operatorname{dom}\left(A^{-1}\right) \cap M_{N}(\mathbb{C})^{d_{1}+d_{2}}=\emptyset
\end{array}
$$

- If X_{1}, X_{2} are $N \times N$ symmetric matrices, then

$$
\begin{aligned}
\operatorname{det}\left(X_{1} X_{2}-X_{2} X_{1}\right) & =\operatorname{det}\left({ }^{t}\left(X_{1} X_{2}-X_{2} X_{1}\right)\right) \\
& =(-1)^{N} \operatorname{det}\left(X_{1} X_{2}-X_{2} X_{1}\right) \\
& =0 \quad(N \text { is odd })
\end{aligned}
$$

- This imples $\operatorname{Sym}_{N}(\mathbb{C}) \not \subset \operatorname{dom}\left(\left(x_{1} x_{2}-x_{2} x_{1}\right)^{-1}\right)$ for odd N.

Strategy for the Main result 2: estimation of the cumulative distribution function

Estimation of the cumulative distribution function

- $\operatorname{rank}(T):=\tau\left(P_{T}\right), P_{T}$: orthogonal projection onto $\overline{\operatorname{Im} T}$

Lemma (Bercovici-Voiculescu'93)
For any $t \in \mathbb{R}$, we have

$$
\mathcal{F}_{T}(t)=\max \{\tau(p) ; p \in \mathcal{P}(\mathcal{M}), t p \geq p T p\}
$$

Lemma

For $X, Y \in \widetilde{\mathcal{M}_{\mathrm{sa}}}$, we have

$$
\sup _{t \in \mathbb{R}}\left|\mathcal{F}_{X+Y}(t)-\mathcal{F}_{X}(t)\right| \leq \operatorname{rank}(Y)
$$

Strategy for the main result 2: Truncation

- Let $\epsilon>0$. Approximate the function $g: x \rightarrow x^{-1}$ by continuous functions f_{ϵ}.
- We take f_{ϵ} as a continuous function such that $f_{\epsilon}=g$ on $\mathbb{R} \backslash[-\epsilon, \epsilon]$.
- Let $r=w^{*} Q^{-1} w$ be a self-adjoint linearization. We put $Q_{N}=Q\left(X^{N}\right), Q_{\infty}=Q(X)$. Then

$$
\begin{aligned}
\left|\mathcal{F}_{w^{*} Q_{N}^{-1} w}(t)-\mathcal{F}_{w^{*} Q_{\infty}^{-1} w}(t)\right| \leq & \left|\mathcal{F}_{w^{*} Q_{N}^{-1} w}(t)-\mathcal{F}_{w^{*} f_{\epsilon}\left(Q_{N}\right) w}(t)\right| \\
& +\left|\mathcal{F}_{w^{*} f_{\epsilon}\left(Q_{N}\right) w}(t)-\mathcal{F}_{w^{*} f_{\epsilon}\left(Q_{\infty}\right) w}(t)\right| \\
& +\left|\mathcal{F}_{w^{*} f_{\epsilon}\left(Q_{\infty}\right) w}(t)-\mathcal{F}_{w^{*} Q_{\infty}{ }^{-1} w}(t)\right| .
\end{aligned}
$$

Strategy for the main result 2: Rank estimation

- From previous Lemma, we have for $X=Q_{N}, Q_{\infty}(k \times k$ operator valued matrices),

$$
\begin{aligned}
\left|\mathcal{F}_{w^{*} X^{-1} w}(t)-\mathcal{F}_{w^{*} f_{\epsilon}(X) w}(t)\right| & \leq \operatorname{rank}\left(w^{*}\left(X^{-1}-f_{\epsilon}(X)\right) w\right) \\
& \leq k \times \operatorname{rank}\left(w w^{*}\left(X^{-1}-f_{\epsilon}(X)\right) w w^{*}\right) \\
& \leq k \times \operatorname{rank}\left(X^{-1}-f_{\epsilon}(X)\right) \\
& \leq \operatorname{Tr}_{k} \otimes \tau\left(1_{[-\epsilon, \epsilon]}(X)\right) .
\end{aligned}
$$

- $\lim _{\epsilon \rightarrow 0} \operatorname{Tr}_{k} \otimes \tau\left(1_{[-\epsilon, \epsilon]}\left(Q_{\infty}\right)\right)=\operatorname{Tr}_{k} \otimes \tau\left(1_{\{0\}}\left(Q_{\infty}\right)\right)=0$ since Q_{∞} is invertible.

Strategy for the main result 2: Norm estimation

- For $\left|\mathcal{F}_{w^{*} f_{\epsilon}\left(Q_{N}\right) w}(t)-\mathcal{F}_{w^{*} f_{\epsilon}\left(Q_{\infty}\right) w}(t)\right|$, we show the convergence in moments

$$
\limsup _{N \rightarrow \infty}\left|\tau_{N}\left[\left(w^{*} f_{\epsilon}\left(Q_{N}\right) w\right)^{\prime}\right]-\tau\left[\left(w^{*} f_{\epsilon}\left(Q_{\infty}\right) w\right)^{\prime}\right]\right|=0
$$

- We use the assumption Q_{∞} is bounded, and we approximate f_{ϵ} by a polynomial P on $\left[-\left\|Q_{\infty}\right\|-1,\left\|Q_{\infty}\right\|+1\right]$.
- For $\left|\tau_{N}\left[\left(w^{*} P\left(Q_{N}\right) w\right)^{\prime}\right]-\tau\left[\left(w^{*} P\left(Q_{\infty}\right) w\right)^{\prime}\right]\right|$, we can use the assumption of convergence in $*$-joint moments.
- For $\left|\tau_{N}\left[\left(w^{*} f_{\epsilon}\left(Q_{N}\right) w\right)^{\prime}\right]-\tau_{N}\left[\left(w^{*} P\left(Q_{N}\right) w\right)^{\prime}\right]\right|$, we need additional estimate.

Future perspective

- Positivity of nc rational functions evaluated in free random variables (Cf. Helton'02)
- Other analytic properties of $\mu_{r(X)}$ (e.g. absolute continuity)
- The case where some variables are commuting (normal operators, ϵ-free, bi-free).

Future perspective

- Positivity of nc rational functions evaluated in free random variables (Cf. Helton'02)
- Other analytic properties of $\mu_{r(X)}$ (e.g. absolute continuity)
- The case where some variables are commuting (normal operators, ϵ-free, bi-free).

Thank you for your attention!

