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Today’s talk

1 Non-commutative rational functions

Evaluation of non-commutative rational functions.
Theorem by Mai, Speicher, and Yin.

2 Main results

Main result 1: Well-definedness of r(XN) with N × N random
matrices XN .
Main result 2: Convergence in distribution.

3 Strategy of the proof

Linearization.
Characterization of cumulative distribution functions by
projections.



Non-commutative rational function



Non-commutative rational expressions

Non-commutative (nc) rational expressions are defined by all
possible combinations of x1, . . . , xd ,C with +,×,·−1,().
e.g. x1x

−1
2 , (x1 + x2)

−1, x1 + 2x−1
2 x1

For unital C-algebra A and a nc rational expression r , we
define

domA(r) = {X = (X1, . . . ,Xd) ∈ Ad : r(X ) ∈ A}.

For example, domA((x1x2 − x2x1)
−1) = ∅ when A is

commutative.



Non-commutative rational functions

For a nc rational expression r , dom(r) is a subset of all
square matrices over C where evaluation of r is well-defined.

Equivalence relation

r1 ∼ r2 ⇔ r1(a) = r2(a),
∀a ∈ dom(r1) ∩ dom(r2) ̸= ∅.

An equivalence class of nc rational expressions is called a
non-commutative rational function.

A set C<(x1, . . . , xd)> of nc rational functions is called the free
(skew) field which contains non-commutative polynomials
C⟨x1, . . . , xd⟩ (Amitur’66, Cohn’94, Kaliuzhnyi-Verbovetskyi
and Vinnikov’10).
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Example: NC rational expressions and the equivalence
relation

r1 = (x1(x1 + x2)
−1)x2, r2 = x1((x1 + x2)

−1x2),
r3 = (x−1

1 + x−1
2 )−1 are formally different rational expressions.

dom(r1) = dom(r2) = {(X1,X2);det(X1 + X2) ̸= 0}
dom(r3) = {(X1,X2);det(X1),det(X2),det(X

−1
1 + X−1

2 ) ̸= 0}.

We can see dom(r3) ⊊ dom(r2) = dom(r1) and ri ’s are equivalent
since we have the formal calculation,

{x1(x1 + x2)
−1x2}−1 = x−1

2 (x1 + x2)x
−1
1 = x−1

1 + x−1
2 .

Remark

For any rational expression r with dom(r) ̸= ∅, there exists
N0 = N0(r) such that dom(r) ∩MN(C)d ̸= ∅ for N ≥ N0.



Evaluation of non-commutative rational functions

We need to take matrices with large sizes for the evaluation of
a nc rational expression.

(Hall) For any Xi ∈ M2(C),

[[X1,X2]
2,X3] = 0.

(Amitsur-Levitzki) For any Xi ∈ MN(C),∑
π∈S2N

sgn(π)Xπ(1) . . .Xπ(2N) = 0.

For a nc rational function r , we would like to define

domA(r) =
⋃

r ′;[r ′]=r

domA(r
′), r(X ) = r ′(X ), X ∈ domA(r)∩domA(r

′).



Evaluation in operators

Evaluation of non-commutative rational functions in elements
in a unital algebra A is not well-defined in general. For
example, we have x1(x2x1)

−1x2 = 1, but for the unilateral
shift S

S(S∗S)−1S∗ = SS∗ ̸= 1.

Evaluation of non-commutative rational functions is
well-defined if A is stably finite. i.e. we have for each m ∈ N

A,B ∈ Mm(A), AB = Im ⇔ BA = Im.

Every finite von Neumann algebras M are stably finite.

The ∗-algebra M̃ of affiliated operators with M is also stably
finite.



Evaluation of all non-commutative rational functions

Theorem (T.Mai, R.Speicher and S.Yin ‘19)

Let X = (X1, . . . ,Xd) be a tuple of freely independent self-adjoint
operators in a W ∗-probability space such that each Xi has no
atom. Then ∃!Evs : C<(x1, . . . , xd)>→ M̃, a homomorphism which
extends C⟨x1, . . . , xd⟩ ∋ P → P(X ) ∈ M.

The condition (free + absence of atom) is generalized to
maximality of ∆(X1, . . . ,Xd)(= d) defined in
Connes-Shlyakhtenko’05

dimM⊗Mop

{
(T1, . . . ,Td) ∈ F(L2(M)) :

d∑
i=1

[Ti , JXiJ] = 0

}HS

.

Free Haar unitaries u1, . . . , ud satisfy ∆(u1, . . . , ud) = d .



Remarks

Atoms of a nc rational function evaluated in free random
variables can be computed algebraically (Mai-Speicher-Yin’19,
Arizmendi-Cébron-Speicher-Yin’21).

The weight of atoms of a nc rational function evaluated in
free random variables is minimal when each distribution is
given (Arizmendi-Cébron-Speicher-Yin’21).

nc rational functions are characterized by finite rank
commutators, which is an analogue of Kronecker’s theorem
(Duchamp-Reutenauer’97, Linnell’00, M’22).



Main results



Asymptotic freeness of independent GUE’s

Theorem (D.Voiculescu, 1991)

For independent GUE random matrices XN
1 , . . . ,XN

d , we have
almost surely,

lim
N→∞

tr(XN
i1 · · ·XN

in ) = τ(si1 · · · sin),

where s1, . . . , sd are free semicircles with respect to τ .

Let P ∈ C⟨x1, . . . , xd⟩ be a self-adjoint polynomial. Then We
have almost surely for f ∈ Cc(R),

lim
N→∞

∫
R
f dµP(XN) = τ [f (P(s))] =

∫
R
f dµP(s).

We replace nc polynomials by nc rational functions.



Main result 1: Evaluation in random matrices

We work on rational functions evaluated in self-adjoint
matrices and unitary matrices.

Theorem (Collins-Mai-M-Parraud-Yin’22)

Let r be a nc rational function with d = d1 + d2 formal variables.
Let (XN ,UN) be a tuple of random matrices in
MN(C)d1sa × UN(C)d2 whose law is absolutely continuous with
respect to the product measure of Lebesgue measure on MN(Cd)sa
and Haar measure on UN(C). Then ∃N0 ∈ N s.t. we have almost
surely

(XN ,UN) ∈ dom(r), N ≥ N0



Main result 2: Convergence in distribution

T ∈ M̃: self-adjoint.

PT (B): spectral projection on B for a Borel set B.

µT : spectral measure µT (B) := τ [PT (B)]

cumulative distribution function FT (t) = µT (−∞, t], t ∈ R.

Theorem (Collins-Mai-M-Parraud-Yin’22)

Let r be a nc rational function. For each N ∈ N, let
XN = (XN

1 , . . . ,XN
d ) be a tuple of (possibly unbounded) operators

affiliated with a W ∗-probability space (MN , τN). We suppose that
XN converges in ∗-distribution towards bounded operators
X = (X1, . . . ,Xd) in a W ∗-probability space (M, τ). We also
assume XN ,X ∈ dom(r) and r(XN), r(X ) are self-adjoint. Then
we have for any continuous point t ∈ R of Fr(X ),

lim
N→∞

Fr(XN)(t) = Fr(X )(t).



Corollary of main results

By combining our results and the result in Mai-Speicher-Yin, we
have the following.

Corollary

Let (XN ,UN) ∈ MN(C)d1sa × UN(C)d2 be a tuple of independent
GUE and Haar unitary matrices and (X ,U) ∈ Md1

sa ×U(M)d2 be a
tuple of free semicircles and Haar unitaries. Then for any nc
rational function r with d1 + d2 indeterminates such that r(X ,U)
self-adjoint, the empirical eigenvalue distribution of r(XN ,UN)
almost surely converges in distribution towards the spectral
measure of r(X ,U).



Strategy of the proof



Strategy of the proof: Linearization

Proposition (Linearization)

For a nc rational expression r we can find A, u, v s.t.

r(X ) = tuA(X )−1v , X ∈ dom(r) (linearization),

where

A ∈ Mk(C⟨x1, . . . , xd⟩): linear, i.e.

A = A0 + A1x1 + · · ·+ Adxd , Ai ∈ Mk(C).

u, v ∈ Ck .

dom(r) ⊂ {X ∈ M̃d ; ∃A(X )−1}.

dom(r) ̸= ∅ ⇒ A is full, i.e. there is no l < k s.t.
A = BC ,B ∈ Mk×l(C⟨x1, . . . , xd⟩),C ∈ Ml×k(C⟨x1, . . . , xd⟩).



Algorithm for linearization

For r1 =
tu1A

−1
1 v1, r2 =

tu2A
−1
2 v2,

r1 + r2 =
(

tu1
tu2

)( A1 0

0 A2

)−1(
v1
v2

)
r1r2 =

(
tu1 0

)( A1 −v1
tu2

0 A2

)−1(
0
v2

)
r−1
1 =

(
1 0

)( 0 tu1
v1 A1

)−1( −1
0

)
.

In the third equality, one can see from the formal calculation,(
0 tu

v A

)−1

=

(
−r−1 r−1tuA−1

A−1vr−1 A−1 − A−1vr−1tuA−1

)
.
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Examples of linearization

x1 =
(
1 0

)( 1 −x1
0 1

)−1(
0
1

)

x1x2 =
(
1 0 0 0

)
1 −x1 0 0
0 1 −1 0

0 0 1 −x2
0 0 0 1


−1

0
0

0
1



(x1x2)
−1 =

(
1 0 0 0 0

)


0 1 0 0 0

0 1 −x1 0 0
0 0 1 −1 0
0 0 0 1 −x2
1 0 0 0 1


−1

−1

0
0
0
0





Self-adjoint linearization

Theorem (J.W.Helton, T.Mai and R.Speicher ‘18)

Let r be a rational expression and A be a ∗-algebra. If r(X ) is
self-adjoint for X ∈ Ad , then there exists A ∈ Mk(C⟨x1, . . . , xd⟩)
and u ∈ Ck s.t.

A =
d∑

i=1

Ai ⊗ xi , A∗
i = Ai .

r(X ) = u∗A−1(X )u.

For r = tuA−1v , consider

(
v∗ tu

)( 0 A(X )
A∗(X ) 0

)−1(
v
u

)
,

which represents 2r(X ) since r(X ) is self-adjoint.



Remark about main result 1

For the proof, we use ∀r , dom(r) ∩MN(C)d ̸= ∅ for N ≥ ∃N0.

Consider a linearization r = tuA−1v , and check by using
complex analysis technique,

dom(A−1) ∩ MN(C)d1sa × UN(C)d2 = ∅
=⇒ dom(A−1) ∩MN(C)d1+d2 = ∅.

If X1,X2 are N × N symmetric matrices, then

det(X1X2 − X2X1) = det(t(X1X2 − X2X1))

= (−1)Ndet(X1X2 − X2X1)

= 0 (N is odd)

This imples SymN(C) ̸⊂ dom((x1x2 − x2x1)
−1) for odd N.



Strategy for the Main result 2: estimation of the
cumulative distribution function

Estimation of the cumulative distribution function

rank(T ) := τ(PT ), PT : orthogonal projection onto ImT

Lemma (Bercovici-Voiculescu’93)

For any t ∈ R, we have

FT (t) = max{τ(p); p ∈ P(M), tp ≥ pTp}.

Lemma

For X ,Y ∈ M̃sa, we have

sup
t∈R

|FX+Y (t)−FX (t)| ≤ rank(Y ).



Strategy for the main result 2: Truncation

Let ϵ > 0. Approximate the function g : x → x−1 by
continuous functions fϵ.

We take fϵ as a continuous function such that fϵ = g on
R \ [−ϵ, ϵ].

Let r = w∗Q−1w be a self-adjoint linearization. We put
QN = Q(XN), Q∞ = Q(X ). Then

|Fw∗Q−1
N w (t)−Fw∗Q−1

∞ w (t)| ≤ |Fw∗Q−1
N w (t)−Fw∗fϵ(QN)w (t)|

+|Fw∗fϵ(QN)w (t)−Fw∗fϵ(Q∞)w (t)|
+|Fw∗fϵ(Q∞)w (t)−Fw∗Q−1

∞ w (t)|.



Strategy for the main result 2: Rank estimation

From previous Lemma, we have for X = QN ,Q∞ (k × k
operator valued matrices),

|Fw∗X−1w (t)−Fw∗fϵ(X )w (t)| ≤ rank(w∗(X−1 − fϵ(X ))w)

≤ k × rank(ww∗(X−1 − fϵ(X ))ww∗)

≤ k × rank(X−1 − fϵ(X ))

≤ Trk ⊗ τ(1[−ϵ,ϵ](X )).

limϵ→0Trk ⊗ τ(1[−ϵ,ϵ](Q∞)) = Trk ⊗ τ(1{0}(Q∞)) = 0 since
Q∞ is invertible.



Strategy for the main result 2: Norm estimation

For |Fw∗fϵ(QN)w (t)−Fw∗fϵ(Q∞)w (t)|, we show the
convergence in moments

lim sup
N→∞

|τN [(w∗fϵ(QN)w)l ]− τ [(w∗fϵ(Q∞)w)l ]| = 0

We use the assumption Q∞ is bounded, and we approximate
fϵ by a polynomial P on [−∥Q∞∥ − 1, ∥Q∞∥+ 1].

For |τN [(w∗P(QN)w)l ]− τ [(w∗P(Q∞)w)l ]|, we can use the
assumption of convergence in ∗-joint moments.

For |τN [(w∗fϵ(QN)w)l ]− τN [(w
∗P(QN)w)l ]|, we need

additional estimate.



Future perspective

Positivity of nc rational functions evaluated in free random
variables (Cf. Helton’02)

Other analytic properties of µr(X ) (e.g. absolute continuity)

The case where some variables are commuting (normal
operators, ϵ-free, bi-free).

Thank you for your attention!
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