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Based on the following work:

Asymptotic expansion of smooth functions in deterministic and iid Haar unitary matrices, and application to
tensor products of matrices
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Original motivation

Problem

Given a family XN = (X}, .. .,Xc’)’) of self-adjoint random matrices, P a noncommutative poly-

nomial, how does the operator norm of P(XN) behaves asymptotically? l.e. can we compute
limy— o0 HP(XN)H ?
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Original motivation

Problem

Given a family XN = (X}, .. .,Xé\’) of self-adjoint random matrices, P a noncommutative poly-

nomial, how does the operator norm of P(XN) behaves asymptotically? l.e. can we compute
limy— o0 HP(XN)H ?

A necessary assumption

There exists a family x = (xi,...,xq) of self-adjoint elements of a C*-algebra A endowed with a
faithful trace T such that almost surely, the family XN converges in distribution towards x. That
is for any noncommutative polynomial Q,

Jim % Tr (Q(XM)) = 7(Q(x)).
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Original motivation

Problem

Given a family XN = (X}, .. .,Xé\’) of self-adjoint random matrices, P a noncommutative poly-

nomial, how does the operator norm of P(XN) behaves asymptotically? l.e. can we compute
limy— oo [|P(XN)]|?

A necessary assumption

There exists a family x = (xi,...,xq) of self-adjoint elements of a C*-algebra A endowed with a
faithful trace T such that almost surely, the family XN converges in distribution towards x. That
is for any noncommutative polynomial Q,

im T (QUXM)) = 7(Q().

Problem

=
2
\.

Given a family XN = (XN, ... ,X‘g\’) of random matrices, P a noncommutative polynomial, can we
prove that almost surely:

lPex)|| = PGl

lim
N— oo

Félix Parraud (1) Asymptotic expansions in Random Matrix Theory and April 10, 2023



A lower bound on the limit

We know that for any k € N,

o e[ (37 (0 ) e (x))))

Consequently, thanks to the convergence in distribution,

1/2k

iminf || PO | > 7 (PG PO)) ™

1/2k

And since it is known that limy_, o 7 ((P(x)* P(x))¥) =[|P(X)]|

liminf || POXY)|| = PGl
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An upper bound on the limit

One has for any k € N that:
HP(XN)HQk = H (P(XN)*P(XN))kH <Tr ((P(X’V)*P(X"’))k) :
Thus heuristically,
[Poc)|| < n2 (= (oo Pey) )
< NP

Thus one would like to take k > In(N). However doing so make it way more complicated to
control the error term.
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A few notions of Free probability

Definition
Let A= (a1,...,ak) be a k-tuple of elements of a C*-algebra. The joint *-distribution of the

family A is the linear form
pa: P 7[P(A AY)]

on the set of polynomials in 2k noncommutative variables.

.

Definition
By convergence in distribution, for a sequence of families of variables (Ay)y>1 = (G 32’)N21
in C*-algebras (.AN,* TN |-l ), we mean the pointwise convergence of the map

HAy - P — ™ [P(AN, 7(,)]

.
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ndom matrix models

Definition

We say that UN is a Haar unitary random matrix of size N if its law is the Haar measure on the
group of unitary matrices of size N.
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Random matrix models

Definition
We say that UN is a Haar unitary random matrix of size N if its law is the Haar measure on the
group of unitary matrices of size N.

v

Theorem (D. Voiculescu, 1991)

Let UN = (UL, ..., U(’,V) be independent Haar unitary matrices, u = (u1, ..., uy) a d-tuple of free

Haar unitaries. Then almost surely UN converges in distribution towards u. That is almost surely
for any noncommutative polynomial P,

lim %Tr (P(U"’,(U"’)*)) :T(P(u, u*)) ‘

N— oo
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Markov Processes in classical stochastic calculus

Let (Xt)¢>0 be a Markov process associated with infinitesimal generator £, then it is known that:

o For f in the domain of L, %E[f(Xt)] = E[Lf(X:)].

o If Z is the invariant law of this Markov process, then X; converges in law towards Z.

Félix Parraud (1) Asymptotic expansions in Random Matrix Theory and April 10, 2023



Markov Processes in classical stochastic calculus

Let (Xt)¢>0 be a Markov process associated with infinitesimal generator £, then it is known that:
. . d
o For f in the domain of £, S.E[f(X¢)] = E[Lf(X:)].
o If Z is the invariant law of this Markov process, then X; converges in law towards Z.

Thus,
BIAZ)] ~ EF(X0)] = lim ELFO)] — ELFOG)] = | BLEFOX) o

In particular if Xo ~ Z, then E[f(X¢)] is constant and thus for any t, E[Lf(X:)] = 0.
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Markov Processes and Free probability

Let (xt)¢>0 be a free Markov process associated with infinitesimal generator £, then it is known
that:

o For any polynomial P, %T[P(Xt)] = 7[LP(x¢)].

o If z is the invariant distribution of this free Markov process, then x; converges in distribution
towards z.
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Markov Processes and Free probability

Let (xt)¢>0 be a free Markov process associated with infinitesimal generator £, then it is known

that:
o For any polynomial P, %T[P(Xt)] = 7[LP(x¢)].
o If z is the invariant distribution of this free Markov process, then x; converges in distribution
towards z.

Thus,
P(] = rlP(s0)] = Jim r[P(x)] = r{PGo)] = [ rlLP(x)] e

In particular if xgp ~ z, then T[P(x;)] is constant and thus for any t, 7[LP(x;)] = 0.
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Interpolating between random matrices and free operators

@ Let us assume that there exists a free Markov process whose invariant distribution is the one
of u. We set

° (U{V)tzg such a Markov process started in uv,
o (ut)r>o such a Markov process started in w.

Then after showing that this is well-defined, for any polynomial Q,

Q)] - E [% Tr [Q(UN)H - /OOOIE [rw [£@(]] o
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Interpolating between random matrices and free operators

@ Let us assume that there exists a free Markov process whose invariant distribution is the one
of u. We set
° (U{V)tzo such a Markov process started in uv,
o (ut)r>o such a Markov process started in w.

Then after showing that this is well-defined, for any polynomial Q,
1 mll = [~ N
Q)] — E [ﬁ ™ [eu )H - /0 E [ [cQ(ul)]] a.
o Heuristically since we know that UM converges in distribution towards u, then

Jim E [T,\, [Lo(up’)]] = 7[£Q(u)] = 0.
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An asymptotic expansion around the dimension

Theorem (P., 2023)

Let the following objects be given,
o UN = (UN,...,UYN) independent Haar unitary matrices in My(C),
o P a self-adjoint polynomial,
o f € C*+T(R).

Then there exist determinitic constants (o (f));en such that,

E [% Ty (f(P(UN)))] - Oggk %af’(f) + (2K,

Besides, if the support of f and the spectrum of P(u) are disjoint, then for any i, af (f) = 0.
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Idea of the proof

We want to show the following formula:

5| (W) | = S e om0y

N 0<i<k
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Idea of the proof

We want to show the following formula:

5| (W) | = S e om0y

N 0<i<k

o We set vs a family of free unitary Browian motions started in 1,

E ['r,\/(Q(UN7 vs))] = 7'(6)(u7 vs)) - /OOOIE [TN (CQ(U?’, vs)>] dt.
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Idea of the proof

We want to show the following formula:

5| (W) | = S e om0y

N 0<i<k

o We set vs a family of free unitary Browian motions started in 1,

E ['r,\/(Q(UN7 vs))] = 7'(6)(u7 vs)) - /OOOIE [TN (CQ(U?’, vs)>] dt.

@ Then we show that there is a deterministic operator T; s on the space of polynomials such

that
1

E [TN (LQ(U{V, Vs))] = WE [TN(Tt,s(Q)(U{Vv VS))] :

o We can view the polynomial T s(Q) as a polynomial in (UV, ut, vs) and reiterate the process.
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Strong convergence of polynomial with matricial coefficients

We define,
o UN = (U{V, ey U(’)’) independent Haar unitary matrices of size N,
o u=(ui,...,uy) free Haar unitaries,

o P=3,Qi(U,U*)® YM with Q; a non-commutative polynomial with YM € M (C).

If we assume that the family YM are uniformly bounded over M for the operator norm, then for

any § > 0,
P( HP (UN)H >[[P(u)l[+6+0O <(A/\//’)1/2 |n(NM)5/4> ) < e 0N,

Thus, if M < N/In®/2(N) and that a family ZM converges strongly in distribution towards a
family of non-commutative variable z, then the family (UN, @I, Iy ® ZM) also converges strongly
towards (u® 1,1® z).

v
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Idea of the proof: the moment method

o Given n € N, Q = P*P a self-adjoint polynomial, one has proved that for some operator A,

2 (@ (0%))] = o + e 1 (18 ()
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Idea of the proof: the moment method

o Given n € N, Q = P*P a self-adjoint polynomial, one has proved that for some operator A,
E [Tr <Q" (U’V) )] = NM 7(P(u)) + %]E [Tr ((AQ") (U’V) )] .

@ One can write
A UMy = 3> a(@(UM), @ (uY). @ (V). Q" (V).
i+j+k+I=n—4

where
(A1 ® B1,A2 ® Bz, A3 ® B3, Ag ® Bs) = A2A1A1A3 Q@ B1B2B3Bs.
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Idea of the proof: the moment method

o Given n € N, Q = P*P a self-adjoint polynomial, one has proved that for some operator A,
E [Tr <Q" (U’V) )] = NM 7(P(u)) + %]E [Tr ((AQ”) (UN) )] .

@ One can write
A UMy = 3> a(@(UM), @ (uY). @ (V). Q" (V).
i+j+k+I=n—4

where
(A1 ® B1,A2 ® Bz, A3 ® B3, Ag ® Bs) = A2A1A1A3 Q@ B1B2B3Bs.

o However
Tr(B1B2B3Ba) = M?E [Tr(BoVB1WB4V* BsW™)] .
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Idea of the proof: the moment method

o Given n € N, Q = P*P a self-adjoint polynomial, one has proved that for some operator A,
E [Tr <Q" (U’V) )] = NM 7(P(u)) + %]E [Tr ((AQ”) (UN) )] .

@ One can write

DW= Y (e (o). (v7).0* (1)@ (o)

i+j+k+l=n—4
where
(A1 ® B1,A2 ® Bz, A3 ® B3, Ag ® Bs) = A2A1A1A3 Q@ B1B2B3Bs.
o However
Tr(B1B2B3Ba) = M?E [Tr(BoVB1WB4V* BsW™)] .
@ Thus

E[Tr (@ (u"))] < MmIP@)I" + Cn,j,;wZE [T (@ ()]

C'ntm2 "
1-— e

< NM|P(u)[|” %
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Idea of the proof: the moment method

o Given n € N, Q = P*P a self-adjoint polynomial, one has proved that for some operator A,
E [Tr <Q" (U’V) )] = NM 7(P(u)) + %]E [Tr ((AQ”) (UN) )] .

@ One can write

DW= Y (e (o). (v7).0* (1)@ (o)

itjtktl=n—a
where

(A1 ® B1,A2 ® Bz, A3 ® B3, Ag ® Bs) = A2A1A1A3 Q@ B1B2B3Bs.

@ However
Tr(ByB2B3Bs) = M?E [Tr(B VB WB, V* Bs W*)] .
@ Thus
Cn*M? -
E [Tr (Q" (UN) )] < NM [[P(u)||" + —25—E [Tr (Q" 4 (UN) )]
n
< NMIP(u)|” x PR
N2

o Finally

@ (uM)]] <& [T (@ (v¥) )]1/" < [IP(u)] (1 + 0(1)).

dl
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A link with Weingarten calculus

Problem

How do you compute the following quantity:

X = /IU Ui+ Uig g Ui{,j{ T Ul'[,,J'[',dU’
N

where the integral is with respect to the Haar measure.
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A link with Weingarten calculus

Problem

How do you compute the following quantity:

X = /IU Ui+ Uig g Ui{,j{ T Ul'[,,J'[',dU’
N

where the integral is with respect to the Haar measure.

Given a Haar unitary matrix U of size N, one has

X =E[Try (UE; ,U. . By UE, s U Ey i U'Ey 3 )] -

Thus one wants to compute

NE [% ™ (P(U, U*,ZN)ﬂ,

with ZN = (E; )i jeq,n)-
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A link with Weingarten calculus

However with 7y = N~1 Tr, in the process of proving the asymptotic expansion, we have proved
that there exist an operator A such that

E [TN<P (U"’, ZN> )] = 7(P(u, ZV)) + %]E [TN<(AP) (UN,ZN> )] ,

E [TN ((id—%A) (P) (UN,ZN))] —r <P (u,z"’)) .

that is,

Consequently,

E [T,\, (P (U’V,ZN))] =7 <(id—,32A> B (P) (u, Z’V)> .
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