Rectangular finite free probability theory

Aurelien Gribinski

April 24, 2023

- Motivation and context
 - From free probability to finite free probability
 - Motivation:generalization of free probability to rectangular random matrices
- New results for rectangular matrices
 - Polynomial definition and real-rootedness
 - Investigating the quadratic inequality
 - New monotonicity properties of special polynomials
 - Towards a rectangular finite free probability framework
- 3 Conclusion and current work
 - Conclusion
 - Extending the convolution to continuous parameters
 - Bivariate perspective and orthogonal polynomials
 - Information theoretic approach

- Motivation and context
 - From free probability to finite free probability

- Motivation and context
 - From free probability to finite free probability
 - Motivation:generalization of free probability to rectangular random matrices
- New results for rectangular matrices
 - Polynomial definition and real-rootedness
 - Investigating the quadratic inequality
 - New monotonicity properties of special polynomials
 - Towards a rectangular finite free probability framework
- 3 Conclusion and current work
 - Conclusion
 - Extending the convolution to continuous parameters
 - Bivariate perspective and orthogonal polynomials
 - Information theoretic approach

Motivation and context

From free probability to finite free probability

Free probability summary

Theorem (Voiculescu)

For A_d and B_d d \times d symmetric matrices whose eigenvalue distributions converge to μ_a and μ_b , and Q_d a random orthogonal matrix, then the eigenvalue distribution of $A_d + Q_d^T B_d Q_d$ is converging to $\mu_a \boxplus \mu_b$, the free sum measure.

Theorem (Voiculescu)

Define the Cauchy and R-transform of a Borel measure μ on $\mathbb R$ as

$$egin{align} \mathcal{G}_{\mu}(x) &= \int_{t \in \mathbb{R}} rac{d\mu(t)}{x-t}, \quad ext{for Im}(x) > 0 \ \\ \mathcal{R}_{\mu}(x) &= \mathcal{G}_{\mu}^{-1}(x) - rac{1}{x} = \mathcal{G}_{\mu}^{-1}(x) - \mathcal{G}_{\mu_0}^{-1}(x) \ \\ \mathcal{R}_{\mu_o oxdot \mu_b}(x) &= \mathcal{R}_{\mu_\sigma}(x) + \mathcal{R}_{\mu_b}(x) \ \end{aligned}$$

Finite free sum

Definition (following Marcus, Spielman, Srivastava)

For A and B $d \times d$ hermitian matrices, we define the additive convolution as

$$\chi_A \boxplus_d \chi_B := \mathbb{E}_{Q \in \mathcal{O}_d} [\chi_{A+Q^T B Q}]$$

Theorem (MSS)

The additive convolution of two hermitian matrices is real-rooted.If $p(x) = \sum_{i=0}^{d} a_i x^{d-i}$ and $q(x) = \sum_{i=0}^{d} b_i x^{d-i}$:

$$p \boxplus_{d} q = \frac{1}{d!} \sum_{k=0}^{d} D^{k} p(x) D^{d-k} p(0)$$

$$= \sum_{k=0}^{d} x^{d-k} \sum_{i+j=k} \frac{(d-i)! (d-j)!}{d! (d-k)!} a_{i} b_{j}$$

Motivation and context

From free probability to finite free probability

Finite free linearization

To p of degree d, we associate $\mu_p := \frac{1}{d} \sum_{i=1}^d \delta_{\lambda_i(p)}$, and $\mathcal{R}_p := \mathcal{R}_{\mu_p}$

Theorem (from MSS)

For all w > 0 and real-rooted polynomials p and q of degree at most d,

$$\mathcal{R}_{p \boxplus_{q} q}(w) \leq \mathcal{R}_{p}(w) + \mathcal{R}_{q}(w)$$

with equality only when p or q has only one root up to multiplicity.

Theorem (from Marcus)

There is a polynomial of degree d-1 \mathcal{R}_p^d whose coefficients, finite free cumulants, are functions of the coefficients of p such that (with μ_p fix)

$$egin{align} \mathcal{R}_{
ho}^{d}(s) &
ightarrow_{d
ightarrow \infty} \mathcal{R}_{
ho}(s) \ & \mathcal{R}_{
ho
ightarrow \sigma \sigma}^{d}(s) &= \mathcal{R}_{
ho}^{d}(s) + \mathcal{R}_{
ho}^{d}(s) \ \end{aligned}$$

Polynomials as independent random variables

- $\blacksquare \mathbb{E}[p \boxplus_{d} q] = \mathbb{E}[p] + \mathbb{E}[q]$
- $\qquad Var[p \boxplus_d q] = Var[p] + Var[q]$
- $lackbox{\bf p}=(x-\mu)^d$ constant polynomial in dimension d
- $p(x) = H_d((x \mu)\sqrt{d 1}/\sigma) \iff \mathcal{R}_p^d(s) = \mu + s\sigma^2$ where H_d are the Hermite family = finite free Gaussians.

Motivation and context

From free probability to finite free probability

Asymptotic distributions

Proposition

(Law of large numbers) (Marcus) Let $p_1, p_2, ...$ be a sequence of degree d real-rooted polynomials whose roots have fixed mean μ , and uniformly bounded variance. Write $R_{1/N}(p)(x) := N^{-d}p(Nx)$. Then,

$$\lim_{N\to\infty} R_{1/N}([p_1 \boxplus_d p_2 \boxplus_d p_N])(x) = (x-\mu)^d$$

Proposition

(Central limit theorem)(Marcus) Consider as above $p_i(x) = \prod_j (x - r_{i,j})$ such that $\sum_i r_{i,j} = 0$, $\frac{1}{d} \sum_i r_{i,j}^2 = \sigma^2$. Then

$$\lim_{N\to\infty} R_{1/\sqrt{N}}([p_1 \boxplus_d p_2 \boxplus_d p_N])(x) \approx H_d\Big((x-\mu)\sqrt{\frac{d-1}{\sigma^2}}\Big)$$

- Motivation and context
 - Motivation:generalization of free probability to rectangular random matrices

- Motivation and context
 - From free probability to finite free probability
 - Motivation:generalization of free probability to rectangular random matrices
- New results for rectangular matrices
 - Polynomial definition and real-rootedness
 - Investigating the quadratic inequality
 - New monotonicity properties of special polynomials
 - Towards a rectangular finite free probability framework
- 3 Conclusion and current work
 - Conclusion
 - Extending the convolution to continuous parameters
 - Bivariate perspective and orthogonal polynomials
 - Information theoretic approach

Rectangular free probability

Theorem (Voiculescu and Benaych Georges)

Let, for all $d \geq 1$, Q_d and R_d be orthogonal Haar random $(q_1(d) \times q_1(d) \text{ and } q_2(d) \times q_2(d))$, A_d and B_d be independent rectangular $q_1(d) \times q_2(d)$ random matrices with $q_1(d) \geq q_2(d)$, and such that the symmetrizations of the singular law of A_d and B_d converge in probability to μ_a and μ_b respectively. Then the symmetrization of the singular law of $A_d + Q_d^T B_d R_d$ converges in probability to a symmetric probability measure on the real line, denoted by $\mu_a \boxplus^\lambda \mu_b$, which depends only on μ_a, μ_b , and $\lambda := \lim_{n \to \infty} q_2(d)/q_1(d)$. Notice that $\lambda \in [0,1]$.

It gives a universal behavior for singular values of sums of large random rectangular matrices.

Watermark

Motivation and context

Motivation:generalization of free probability to rectangular random matrices

Adapted rectangular tools

Definition (from BG)

The λ -rectangular Cauchy transform for a symmetric compact measure μ (and x in a positive neighborhood of 0) is given by

$$H^{\lambda}_{\mu}(x) = \lambda \left[\mathcal{G}_{\mu}(\frac{1}{\sqrt{x}}) \right]^2 + (1 - \lambda) \sqrt{x} \mathcal{G}_{\mu}(\frac{1}{\sqrt{x}})$$

Definition (from BG)

For x small enough, let

$$U^{\lambda}(x) := \frac{-\lambda - 1 + \left[(\lambda + 1)^2 + 4\lambda x\right]^{1/2}}{2\lambda}$$
. The rectangular *R*-transform is given by

$$\mathcal{R}^{\lambda}_{\mu}(x) := U^{\lambda} \Big(\frac{x}{[H^{\lambda}_{\mu}]^{-1}(x)} - 1 \Big)$$

Linearization property

Theorem (from BG)

The rectangular R-transform linearizes the rectangular additive convolution for symmetric measures μ_1 and μ_2 :

$$\mathcal{R}^{\lambda}_{\mu_1 \boxplus^{\lambda} \mu_2}(x) = \mathcal{R}^{\lambda}_{\mu_1}(x) + \mathcal{R}^{\lambda}_{\mu_2}(x)$$

Can we define polynomial tools dealing with singular values of rectangular matrices by analogy?

Polynomial definition and real-rootedness

- Motivation and context
 - From free probability to finite free probability
 - Motivation:generalization of free probability to rectangular random matrices
- 2 New results for rectangular matrices
 - Polynomial definition and real-rootedness
 - Investigating the quadratic inequality
 - New monotonicity properties of special polynomials
 - Towards a rectangular finite free probability framework
- 3 Conclusion and current work
 - Conclusion
 - Extending the convolution to continuous parameters
 - Bivariate perspective and orthogonal polynomials
 - Information theoretic approach

Polynomial definition and real-rootedness

From eigenvalues to singular values

Definition (rectangular singular free sum)

For $m \times d$ rectangular matrices A and B, $\lambda = d/m$, define

$$\begin{split} \chi_{A^TA} \boxplus_{d,\lambda} \chi_{B^TB} &:= \mathbb{E}_{R \in \mathcal{O}_m, Q \in \mathcal{O}_d} \left\{ \chi_{(A + QBR^T)(A + QBR^T)^T} \right\} \\ &= \iint_{\mathcal{O}_m \times \mathcal{O}_d} \det \left[xI - (A + QBR^T)^T (A + QBR^T) \right] dRdQ \end{split}$$

where the measures are Haar on the respective orthogonal groups.

Remark

Free probability: the symmetrization of the singular distribution of $A+QBR^T$ (roots of $\chi_{(A+QBR^T)(A+QBR^T)^T}$) is close to the Benaych-Georges' rectangular free sum $\mu_A \boxplus^{\frac{d}{m}} \mu_B$ when d, m are large

Polynomial definition and real-rootedness

Polynomial expansion

Theorem (Algebraic form)

Consider two polynomials p and q with only real nonnegative roots (they can be written as χ_{A^TA} and χ_{B^TB} for some $m \times d$ matrices A and B). If we write $p(x) = \sum_{i=0}^d a_i x^{d-i}$ and $q(x) = \sum_{i=0}^d b_i x^{d-i}$ the following holds

$$p \boxplus_{d,\lambda} q = \sum_{k=0}^{d} x^{d-k} \sum_{i+j=k} \frac{(d-i)!(d-j)!}{d!(d-k)!} \frac{(m-i)!(m-j)!}{m!(m-k)!} a_i b_j$$

Remark

This shows the bilinearity of the operation $\coprod_{d,\lambda}$. We can extend the definition to polynomials of degree at most d through this formula.

Derivative form

Consider again polynomials p and a with nonnegative real roots.

Lemma (Derivative sum)

If we write
$$p(x,y)=y^{m-d}p(xy)$$
 and $q(x,y)=y^{m-d}q(xy)$, $\Delta_{\lambda}(p):=x\delta_{x}^{2}+(m-d+1)\delta_{x}$, then

$$[p \boxplus_{d,\lambda} q](x) = \frac{(m-d)!}{d!m!} \sum_{k=0}^{d} [(\partial_x \partial_y)^{d-k} p](x,1) [(\partial_x \partial_y)^k q](0,1)$$

$$[\rho \boxplus_{d,\lambda} q](x) = \frac{(m-d)!}{d!m!} \sum_{k=0}^{d} \Delta_{\lambda}^{k} \rho(x) [\Delta_{\lambda}^{d-k} q(x)]|_{x=0}$$

Investigating the quadratic inequality

- Motivation and context
 - From free probability to finite free probability
 - Motivation:generalization of free probability to rectangular random matrices
- 2 New results for rectangular matrices
 - Polynomial definition and real-rootedness
 - Investigating the quadratic inequality
 - New monotonicity properties of special polynomials
 - Towards a rectangular finite free probability framework
- 3 Conclusion and current work
 - Conclusion
 - Extending the convolution to continuous parameters
 - Bivariate perspective and orthogonal polynomials
 - Information theoretic approach

New results for rectangular matrices

Investigating the augdratic inequality

R-transform inequality

Consider p and q polynomials of degree at most d with nonnegative roots, and $\mathbb{S}p(x) := p(x^2)$

Theorem (Marcus,G)

For s > 0,

$$\mathcal{R}^{\lambda}_{\mathbb{S}[p\boxplus_{d,\lambda}q]}(s) \leq \mathcal{R}^{\lambda}_{\mathbb{S}p}(s) + \mathcal{R}^{\lambda}_{\mathbb{S}q}(s)$$

with equality only when $p = x^d$ or $q = x^d$.

Remark

$$\mathcal{R}_{\mu_{\mathbb{S}_{\mathcal{P}}}\boxplus_{\lambda}\mu_{\mathbb{S}_{\mathcal{Q}}}}^{\lambda}(s) = \mathcal{R}_{\mathbb{S}_{\mathcal{P}}}^{\lambda}(s) + \mathcal{R}_{\mathbb{S}_{\mathcal{Q}}}^{\lambda}(s)$$

New results for rectangular matrices

Investigating the augdratic inequality

Polynomial version

Consider $V^n p(x) = x^n p(x)$.

Lemma

The following differential operator is real rooted:

$$W_{\alpha}^{m-d}p = [\mathbb{S}p][\mathbb{S}V^{m-d}p] - \alpha^2[\mathbb{S}p]'[\mathbb{S}V^{m-d}p]'$$
 (1)

Theorem (Polynomial form of the inequality)

$$\Theta_{\alpha}^{m-d}(p \boxplus_{d,\lambda} q) \leq \Theta_{\alpha}^{m-d}(p) + \Theta_{\alpha}^{m-d}(q) - (m+d)\alpha$$

for all real numbers $\alpha > 0$, where

$$\Theta_{\alpha}^{m-d}(p) := \sqrt{(m-d)^2 \alpha^2 + [\text{maxroot}\{W_{\alpha}^{m-d}p\}]^2}.$$

New monotonicity properties of special polynomials

- Motivation and context
 - From free probability to finite free probability
 - Motivation:generalization of free probability to rectangular random matrices
- 2 New results for rectangular matrices
 - Polynomial definition and real-rootedness
 - Investigating the quadratic inequality
 - New monotonicity properties of special polynomials
 - Towards a rectangular finite free probability framework
- 3 Conclusion and current work
 - Conclusion
 - Extending the convolution to continuous parameters
 - Bivariate perspective and orthogonal polynomials
 - Information theoretic approach

Gegenbauer polynomials and convolution

Consider the Gegenbauer polynomials, $C_d^{(\alpha)}(x)$, the collection of polynomials orthogonal with respect to $w(x)=(1-x^2)^{\alpha-1/2}$ on the interval [-1,1]. For all $\lambda,\mu>0, m\geq d, d\geq 1$:

$$\binom{m}{d} [(x-\lambda)^d \boxplus_{d,\lambda} (x-\mu)^d] = (\lambda \mu)^{d/2} C_d^{m-d+1} \left(\frac{x-(\lambda+\mu)}{2\sqrt{\lambda \mu}} \right).$$

New monotonicity properties of special polynomials

Monotonicity of Cauchy transforms

Theorem (Monotonicity with moving parameter)

Define for all $\theta > 0$:

$$\gamma_{\theta}^{d} := \max \left\{ C_{d}^{(1+\theta d)}(x) \right\}.$$

Then for $x>\max\left\{\gamma_{\theta}^{\mathrm{d}},\gamma_{\theta}^{(\mathrm{d+1})}\right\}$

$$\mathcal{G}_{C_{d}^{(1+\theta d)}}\left(x\right) \leq \mathcal{G}_{C_{d+1}^{(1+\theta [d+1])}}\left(x\right).$$

Corollary

The sequence $(\gamma_{ heta}^{ extsf{d}})_{ extsf{d}}$ is monotone increasing, and for $\gamma_{ heta}=rac{\sqrt{2 heta+1}}{ heta+1}$,

$$\lim_{d\to\infty}\gamma_{\theta}^{d}=\gamma_{\theta}$$

- New results for rectangular matrices
 - La Towards a rectangular finite free probability framework

- Motivation and context
 - From free probability to finite free probability
 - Motivation:generalization of free probability to rectangular random matrices
- 2 New results for rectangular matrices
 - Polynomial definition and real-rootedness
 - Investigating the quadratic inequality
 - New monotonicity properties of special polynomials
 - Towards a rectangular finite free probability framework
- 3 Conclusion and current work
 - Conclusion
 - Extending the convolution to continuous parameters
 - Bivariate perspective and orthogonal polynomials
 - Information theoretic approach

Towards a rectangular finite free probability framework

Rectangular finite R-transform

Fix a symmetric discrete measure $\mu_{\mathbb{S}p}$. We can build a polynomial of degree d $\mathcal{R}_{\mathbb{S}p}^{d,\lambda}(s)$ such that:

Theorem (Convergence)

$$\mathcal{R}_{\mathbb{S}_{\mathcal{D}}}^{ extsf{d},\lambda}(s)
ightarrow_{ extsf{d}
ightarrow\infty}\mathcal{R}_{\mu_{\mathbb{S}_{\mathcal{D}}}}^{\lambda}(s)$$

Explictly, consider for a fix p and d, the limit of $\mathcal{R}_{\mathbb{Sp}^n}^{\mathsf{cln},\lambda}(\mathsf{s})$ in n.

Theorem (Linearization)

$$\mathcal{R}^{d,\lambda}_{\mathbb{S}[p\boxplus_{d,\lambda}q]}(s) = \mathcal{R}^{d,\lambda}_{\mathbb{S}p}(s) + \mathcal{R}^{d,\lambda}_{\mathbb{S}q}(s)$$

It is the direct analogue of the free probability additivity property that defines the free R-rectangular transform. Rectangular finite free cumulants.

Towards a rectangular finite free probability framework

- $\blacksquare \ \mathbb{E}\big[\mathbb{S}[p \boxplus_{d,\lambda} q]\big] = 0, \quad \textit{Var}\big[\mathbb{S}[p \boxplus_{d,\lambda} q]\big] = \textit{Var}[\mathbb{S}p] + \textit{Var}[\mathbb{S}q]$
- $\mathbb{S}p = x^{2d}$ constant polynomial in dimension d
- $p(x) = L_d^{(m-d)}(\frac{xm}{\sigma^2}) \iff \mathcal{R}_{\mathbb{S}p}^{d,\lambda}(s) = m\sigma^2 s$ where L_d are the Laguerre family = rectangular finite free Gaussians.

Proposition (Central limit theorem)

Let $p_1, p_2,...$ be a sequence of degree d with real nonnegative roots and same mean σ^2 , with

$$p_i = \prod_{j} (x - r_{i,j}^2) \qquad \qquad \frac{1}{d} \sum_{j} r_{i,j}^2 = \sigma^2$$

Then

$$\lim_{N\to\infty} R_{1/\sqrt{N}}(\mathbb{S}[p_1 \boxplus_{d,\lambda} \dots \boxplus_{d,\lambda} p_N])(x) \approx L_d^{(m-d)}(\frac{x^2m}{\sigma})$$

For
$$R_{\alpha}(p) = \prod_{i} (x - \alpha r_{i,i}^2)$$
.

Conclusion and current work

- Motivation and context
 - From free probability to finite free probability
 - Motivation:generalization of free probability to rectangular random matrices
- 2 New results for rectangular matrices
 - Polynomial definition and real-rootedness
 - Investigating the quadratic inequality
 - New monotonicity properties of special polynomials
 - Towards a rectangular finite free probability framework
- 3 Conclusion and current work
 - Conclusion
 - Extending the convolution to continuous parameters
 - Bivariate perspective and orthogonal polynomials
 - Information theoretic approach

Conclusion

We found a new bridge between algebra and analysis, roots of polynomials and probability distributions. It is just the beginning...

Conclusion and current work

Extending the convolution to continuous parameters

- Motivation and context
 - From free probability to finite free probability
 - Motivation:generalization of free probability to rectangular random matrices
- New results for rectangular matrices
 - Polynomial definition and real-rootedness
 - Investigating the quadratic inequality
 - New monotonicity properties of special polynomials
 - Towards a rectangular finite free probability framework
- 3 Conclusion and current work
 - Conclusion
 - Extending the convolution to continuous parameters
 - Bivariate perspective and orthogonal polynomials
 - Information theoretic approach

Conclusion and current work

Extending the convolution to continuous parameters

Defiintion of the extension

Definition

Consider $z \ge -1$, write $p(x) = \sum_{i=0}^d a_i x^{d-i}$ and $q(x) = \sum_{i=0}^d b_i x^{d-i}$,

$$\begin{split} p \boxplus_{d}^{z} q &:= \sum_{k=0}^{d} x^{d-k} \sum_{i+j=k} c_{i,j}(z) \\ c_{i,j}(z) &:= \frac{(d-i)!(d-j)!}{d!(d-k)!} \frac{\Gamma[d+z+1-i]\Gamma[d+z+1-j]}{\Gamma[d+z+1]\Gamma[d+z+1-k]} a_{i}b_{j} \end{split}$$

Conjecture

 $p \coprod_{d}^{z} q$ is real rooted in x with nonnegative roots if p and q are.

Remark

$$\mathbb{S}[p \boxplus_d^{-1/2} q] = \mathbb{S}p \boxplus_{2d} \mathbb{S}q$$
 and $\lim_{z \to \infty} p \boxplus_d^z q = p \boxplus_d q$

Comparing convolutions

Conjecture

There is continuous majorization (two polynomials majorizing mean that the vector of their ordered roots do), for $-1/2 < z_1 < z_2$:

$$p \boxplus_d^{z_1} q \succeq p \boxplus_d^{z_2} q$$

Corollary

For all p, q in $\mathbb{P}^+_{\leq d}$, and z_1, z_2 such that $z_1 < z_2$ we have:

$$\operatorname{maxroot} \left\{ U_{\alpha} \mathbb{S}[p \boxplus_{d}^{z_{1}} q] \right\} \leq \operatorname{maxroot} \left\{ U_{\alpha} \mathbb{S}[p \boxplus_{d}^{z_{2}} q] \right\}$$

where
$$U_{\alpha}(p) := p - \alpha p'$$

Natermark

Conclusion and current work

Bivariate perspective and orthogonal polynomials

- 1 Motivation and context
 - From free probability to finite free probability
 - Motivation:generalization of free probability to rectangular random matrices
- New results for rectangular matrices
 - Polynomial definition and real-rootedness
 - Investigating the quadratic inequality
 - New monotonicity properties of special polynomials
 - Towards a rectangular finite free probability framework
- 3 Conclusion and current work
 - Conclusion
 - Extending the convolution to continuous parameters
 - Bivariate perspective and orthogonal polynomials
 - Information theoretic approach

Bivariate convolution

$$p \boxplus_{d} q[x,z] := {d+z \choose d} p \boxplus_{d}^{z} q(x) \in \mathbb{R}[x,z]$$

Conjecture

For all I, $\partial_z^l(p \boxplus_d q[x,z])$ is real-rooted in x. Also, $\partial_z(p \boxplus_d q[x,z])$ and $\partial_x(p \boxplus_d q[x,z])$ interlace. $p \boxplus_d^z q$ is real-rooted in z for x in some interval between the roots of p and q.

Natermark

Conclusion and current work

Bivariate perspective and orthogonal polynomials

Orthogonal polynomials

$$(x-\lambda)^d \boxplus_d (x-\mu)^d [.,z] \approx C_d^{z+1} \left(\frac{x-(\lambda+\mu)}{\sqrt{\lambda\mu}}\right)$$

Theorem

For $x \in [-1,1]$, $C_d^z(x)$ is real-rooted in z. For $x \in [0,+\infty]$, $L_d^z(x)$ is real-rooted in z. Also, $\partial_z^l C_d^z(x)$ and $\partial_z^l L_d^z(x)$ are real-rooted polynomials in x and there is interlacing between derivatives in z and x.

Remark (Orthogonality support)

For an orthogonal family of polynomials $P_d^z(x)$, polynomial in the parameter z, orthogonal with respect to μ , then it seems that for $x \in Supp(\mu)$, $P_d^z(x)$ is real-rooted in z.

Conclusion and current work

- Motivation and context
 - From free probability to finite free probability
 - Motivation:generalization of free probability to rectangular random matrices
- 2 New results for rectangular matrices
 - Polynomial definition and real-rootedness
 - Investigating the quadratic inequality
 - New monotonicity properties of special polynomials
 - Towards a rectangular finite free probability framework
- 3 Conclusion and current work
 - Conclusion
 - Extending the convolution to continuous parameters
 - Bivariate perspective and orthogonal polynomials
 - Information theoretic approach

Finite free entropy and information

Definition (Voiculescu)

For a measure μ with no atoms,

$$h(\mu) := \int \int \log |x - y| d\mu(x) d\mu(y)$$

Definition

For $p = \prod_{i=1}^{d} (x - \lambda_i)$ polynomial with distinct roots:

$$h(p) := \frac{1}{\binom{d}{2}} \sum_{i < j} log |\lambda_i - \lambda_j|$$

$$J_k(p) := \frac{1}{\binom{d}{2}} \sum_{i \in I} \frac{1}{(\lambda_i - \lambda_j)^{2k}}$$

Dilation monotonicity

For
$$p = \prod_{i=1}^d (x - \lambda_i)$$
, define $p_t := \prod_{i=1}^d (x - t\lambda_i)$.

Theorem

For t > s > 0

$$h(p \boxplus_{d} q_{t}) \geq h(p \boxplus_{d} q_{s}) \geq h(p)$$

Conjecture

$$h(p \boxplus_d^z q_t) \ge h(p \boxplus_d^z q_s) \ge h(p)$$

Conjecture

 $h(p_{1/t} \boxplus_d q_{\sqrt{1-t}})$ is concave in t and $J_k(p_{1/t} \boxplus_d q_{\sqrt{1-t}})$ are convex. Equivalent of $f(\sqrt{t}X + \sqrt{1-t}Y)$ for independent/free random variables X,Y. Rectangular version?

Conclusion and current work

Inequalities

Conjecture (Power entropy inequalities)

For p, q real rooted polynomials, we have

$$e^{2h(p\boxplus_d q)} \geq e^{2h(p)} + e^{2h(q)}$$

with equality only for p,q Hermite polynomials.

Rectangular version?

Similarly, we could derive Stam's inequalities.

Conjecture

For $p:=\prod (x-\lambda_i)$ with d distinct real numbers λ_i , denote by $S_i^k(p):=\sum_{j\neq i}\frac{1}{(\lambda_i-\lambda_i)^k}$ we have

$$Var(p)\sum_{i}S_{i}^{1}(p)S_{i}^{3}(p)\geq K(d)\sum_{i}S_{i}^{2}(p)$$

Watermark