Central Limit Theorems for Star-Generators of the Infinite Symmetric Group

Claus Köstler

UCC - NUI

Probabilistic Operator Algebra Seminar University California, Berkeley 1. May 2023

(Joint work with Jacob Campbell and Alexandru Nica)

- Revised Version of Slides -

Introduction & Motivation

Infinite symmetric group, star-generators, characters

General Notation

- $\mathbb{N} = \{1, 2, 3, \dots, n, \dots\}, \qquad [n] = \{1, 2, \dots, n\}$
- S_{∞} is the group of all finite permutations on \mathbb{N} :

$$S_{\infty} = \left\{ \sigma \colon \mathbb{N} \to \mathbb{N} \,\middle|\, \begin{array}{l} \sigma \text{ is bijective with } \sigma(n) \neq n \\ \text{for only finitely many } n \in \mathbb{N} \end{array} \right\}$$

The transpositions

$$\gamma_1 = (1, 2), \quad \gamma_2 = (1, 3), \quad \dots \quad \gamma_n = (1, n+1), \quad \dots$$

are called **star-generators** of S_{∞} ; and $\gamma_0=e$ denotes the identity.

• A character $\chi \colon S_{\infty} \to \mathbb{C}$ is a positive definite function which is constant on conjugacy classes and normalized, i.e. $\chi(e) = 1$.

A simple observation . . .

Proposition ('exchangeability' of star-generators [Gohm & K '10])

Let χ be a character on S_{∞} . Then one has

$$\chi(\gamma_{k_1}\gamma_{k_2}\cdots\gamma_{k_n})=\chi(\gamma_{\sigma(k_1)}\gamma_{\sigma(k_2)}\cdots\gamma_{\sigma(k_n)})$$

for any $n \in \mathbb{N}$, $k_1, k_2, \ldots, k_n \in \mathbb{N}$, and all $\sigma \in S_{\infty}$.

Proof.

$$\begin{split} \gamma_{\sigma(k)} &= (1, \sigma(k) + 1) = (\widetilde{\sigma}(1), \widetilde{\sigma}(k+1)) = \widetilde{\sigma}\left(1, k+1\right) \widetilde{\sigma}^{-1} \\ \text{for } \widetilde{\sigma} &\in S_{\infty} \text{ with } \widetilde{\sigma}(1) = 1 \text{ and } \widetilde{\sigma}(k+1) = \sigma(k) + 1. \end{split}$$

- $(\mathbb{C}[S_{\infty}], \operatorname{tr}_{Y})$ is a tracial *-algebraic probability space.
- The noncommutative random variables $(\gamma_n)_{n=1}^{\infty}$ are exchangeable.
- $(\gamma_n)_{n=1}^{\infty}$ should be identically distributed and 'conditional independent' (in a certain sense in noncommutative probability).

A simple observation . . .

Proposition ('exchangeability' of star-generators [Gohm & K '10])

Let χ be a character on S_{∞} . Then one has

$$\chi(\gamma_{k_1}\gamma_{k_2}\cdots\gamma_{k_n})=\chi(\gamma_{\sigma(k_1)}\gamma_{\sigma(k_2)}\cdots\gamma_{\sigma(k_n)})$$

for any $n \in \mathbb{N}$, $k_1, k_2, \ldots, k_n \in \mathbb{N}$, and all $\sigma \in S_{\infty}$.

Proof.

$$\begin{split} \gamma_{\sigma(k)} &= (1,\sigma(k)+1) = (\widetilde{\sigma}(1),\widetilde{\sigma}(k+1)) = \widetilde{\sigma}\left(1,k+1\right)\widetilde{\sigma}^{-1} \\ \text{for } \widetilde{\sigma} &\in S_{\infty} \text{ with } \widetilde{\sigma}(1) = 1 \text{ and } \widetilde{\sigma}(k+1) = \sigma(k) + 1. \end{split}$$

- $(\mathbb{C}[S_{\infty}], \operatorname{tr}_{Y})$ is a tracial *-algebraic probability space.
- The noncommutative random variables $(\gamma_n)_{n=1}^{\infty}$ are exchangeable.
- $(\gamma_n)_{n=1}^{\infty}$ is identically distributed and 'conditionally CS independent' (see Gohm & K '10 for example).

Classical De Finetti Theorem

An infinite sequence of random variables $X \equiv (X_1, X_2, ...)$ is

• exchangeable if

$$\mathbb{E}(X_{i_1}\cdots X_{i_n}) = \mathbb{E}(X_{\sigma(i_1)}\cdots X_{\sigma(i_n)})$$

for all $n \in \mathbb{N}$, $i_1, \ldots, i_n \in \mathbb{N}$ and finite permutations σ on \mathbb{N} .

Theorem (De Finetti)

The following are equivalent:

- (a) X is exchangeable
- (b) X is conditionally i.i.d.

A Noncommutative De Finetti Theorem

Theorem (Gohm & K '09, K '10)

Let the pair (\mathcal{M}, φ) denote a von Neumann algebra \mathcal{M} equipped with a faithful normal (tracial) state φ . Then an exchangeable sequence $(x_n)_{n\geq 1}\subset \mathcal{M}$ is identically distributed and CS-independent over its tail algebra

$$\mathcal{T} := \bigcap_{n \ge 1} \text{vN}\{x_n, x_{n+1}, \ldots\}$$

i.e.

$$E(xy) = E(x)E(y)$$

for any $x \in vN\{x_i \mid i \in I\}$ and $y \in vN\{x_i \mid j \in J\}$, where $I, J \subset \mathbb{N}$ are disjoint. Here E denotes the φ -preserving normal conditional expectation from \mathcal{M} onto \mathcal{T} .

Thoma's Theorem as a Quantum de Finetti Theorem

Theorem (Thoma '64, Kerov & Vershik '81, Okounkov '97)

An extreme character of S_{∞} has the form:

$$\chi(\sigma) = \prod_{k=2}^{\infty} \left(\sum_{i=1}^{\infty} a_i^k + (-1)^{k-1} \sum_{j=1}^{\infty} b_j^k \right)^{m_k(\sigma)}$$

Here $m_k(\sigma)$ denotes the number of k-cycles in the permutation σ and the double sequence $(a_1,a_2,\ldots;b_1,b_2,\ldots)$ satisfy

$$a_1 \ge a_2 \ge \dots \ge 0,$$
 $b_1 \ge b_2 \ge \dots \ge 0,$ $\sum_{i=1}^{\infty} a_i + \sum_{j=1}^{\infty} b_j \le 1.$

- Gohm & K '10: first operator algebraic proof!
- **Key idea:** exchangeability of the sequence of star-generators

Algebraic CLTs

Theorem (von Waldenfels, Speicher, ...)

Let (\mathcal{A}, φ) be a *-algebraic probability space and suppose that the sequence $(x_n = x_n^*)_{n=1}^{\infty} \subset \mathcal{A}$ satisfies:

- exchangeability
- 2 singleton vanishing property, i.e. for all $n \in \mathbb{N}$,

$$\varphi(x_{\ell(1)}x_{\ell(2)}\cdots x_{\ell(n)})=0$$

for any $\ell \colon \{1,2,\ldots,n\} \to \mathbb{N}$ with $\#\ell^{-1}(\{m\}) = 1$ for some $m \in \mathbb{N}$.

Let
$$S_n = \frac{1}{\sqrt{n}}(x_1 + x_2 + \ldots + x_n)$$
. Then one has

$$\lim_{n\to\infty}\varphi(S_n^k)=\sum_{\pi\in\mathcal{P}_2([k])}\varphi_\pi$$

where
$$\varphi_{\pi} = \varphi(x_{\ell(1)} \cdots x_{\ell(k)})$$
 with $\pi = \ker(\ell)$.

Central Limit Theorems for Star-Generators

- left regular character (Biane '95)
- block characters (K-Nica '21)
- beyond block characters (Campbell-K-Nica '22)

CLT for the character φ_{reg} of S_{∞}

$$(0,0,\ldots;0,0\ldots) \quad \longleftrightarrow \quad \varphi_{\mathsf{reg}}(\sigma) := \begin{cases} 1 & \text{if } \sigma = e \\ 0 & \text{otherwise} \end{cases} \qquad (\sigma \in S_{\infty})$$

Theorem (Biane'95)

Let

$$s_n = \frac{1}{\sqrt{n}} (\gamma_1 + \gamma_2 + \dots + \gamma_n).$$

Then there exists $\mu_{\text{reg}} \in M_1(\mathbb{R})$ such that

$$\lim_{n \to \infty} \varphi_{\text{reg}}(s_n^k) = \int_{\mathbb{R}} t^k \mu_{\text{reg}}(dt) \qquad (k \in \mathbb{N}).$$

Moreover, μ_{reg} equals Wigner's semicircle law.

CLT for a block character φ_d

$$(\frac{1}{d}, \frac{1}{d}, \dots, \frac{1}{d}, 0, 0, \dots; 0, 0 \dots) \longleftrightarrow \varphi_d(\sigma) := (1/d)^{\|\sigma\|} \qquad (\sigma \in S_\infty)$$

d occurrences

Here $\|\sigma\| = \min\{m \mid \sigma = \tau_1 \tau_2 \cdots \tau_m \text{ for transpositions } \tau_1, \tau_2, \dots, \tau_m\}$

Theorem (K-Nica '21, Campbell-K-Nica '22)

Let

$$s_n = \frac{1}{\sqrt{n}} \left(\gamma_1 + \gamma_2 + \dots + \gamma_n - \frac{n}{d} \right).$$

Then there exists a central limit law $\mu_d \in M_1(\mathbb{R})$ such that

$$\lim_{n \to \infty} \varphi_d(s_n^k) = \int_{\mathbb{R}} t^k \mu_d(dt) \qquad (k \in \mathbb{N}).$$

Moreover, μ_d equals the average empirical distribution ν_d of a traceless random $d \times d$ GUE matrix with variance 1.

Traceless GUE Matrix

Consider a collection of d^2 independent centred Gaussian random variables

$${X_{i,j} \mid 1 \le i \le j \le d} \cup {Y_{i,j} \mid 1 \le i < j < d}$$

with $\operatorname{Var}(X_{ii}) = \frac{1}{d}$ for $1 \le i \le d$ and $\operatorname{Var}(X_{ij}) = \operatorname{Var}(Y_{ij}) = \frac{1}{2d}$ for $1 \le i < j \le d$.

Traceless Random $d \times d$ GUE Matrix of Variance 1

$$M = \begin{bmatrix} X_{11} & X_{12} + i Y_{12} & \cdots & X_{1d} + i Y_{1d} \\ X_{12} - i Y_{12} & X_{22} & \cdots & X_{2d} + i Y_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ X_{1d} - i Y_{1d} & X_{2d} - i Y_{2d} & \cdots & X_{dd} \end{bmatrix} - \frac{X_{11} + \dots + X_{dd}}{d} I_d$$

with average empirical distribution ν_d (uniquely determined by $\nu_d(M^k) = \mathbb{E}(\operatorname{tr}_d(M^k))$ for all $k \in \mathbb{N}$).

The character φ_w

For the Thoma double sequence $\underline{w}:=(\underbrace{w_1,w_2,\ldots,w_d}_{\text{summing up to }1},0,0,\ldots;0,0\ldots)$,

$$\varphi_{\underline{w}}(\sigma) := \prod_{k=2}^{\infty} \left(\sum_{i=1}^{d} w_i^k \right)^{m_k(\sigma)} \qquad (\sigma \in S_{\infty})$$

Postponing some notation

Theorem (Abstract CLT for Thoma character φ_w)

$$s_n = \frac{1}{\sqrt{n}} \left(U(\gamma_1) + U(\gamma_2) + \dots + U(\gamma_n) - nA_0 \right).$$

Then there exists a central limit law $\mu_w \in M_1(\mathbb{R})$ such that

$$\lim_{n \to \infty} \varphi_{\underline{w}}(s_n^k) = \int_{\mathbb{R}} t^k \mu_{\underline{w}}(dt) \qquad (k \in \mathbb{N}).$$

... providing needed notation:

Let $U \colon S_{\infty} \to B(\mathcal{H})$ denote the GNS representation of $\varphi_{\underline{w}}$.

Proposition (Law of Large Numbers)

Let $\underline{w} = (w_1, w_2, \dots, w_d)$ be given. The operator

$$A_0 := \text{SOT} - \lim_{n \to \infty} \frac{1}{n} (U(\gamma_1) + \dots + U(\gamma_n)) \in B(\mathcal{H})$$

is a selfadjoint contraction with $Spectrum(A_0) = \bigcup_{i=1}^d \{w_i\}.$

Remark

- $A_0 = \text{WOT-lim}_{n \to \infty} U(\gamma_n)$ ('limit-2-cycle $(1, \infty)$ ')
- $\mathcal{T} = vN\{A_0\}$ (tail algebra of the sequence $(U(\gamma_n))_{n-1}^{\infty}$)
- \mathcal{T} is trivial \iff Spectrum $(A_0) = \{1/d\}$

CCR-analogue of complex Gaussian random variable

Let (\mathcal{A}, φ) be a *-probability space and $0 < \omega_{(1,*)}, \omega_{(*,1)} < \infty$ be fixed. An element $a \in \mathcal{A}$ is said to be a centred CCR-complex-Gaussian element if

$$a^*a = aa^* + (\omega_{(*,1)} - \omega_{(1,*)})1_{\mathcal{A}}$$

and, for $p, q \in \mathbb{N}_0$,

$$\varphi(a^p(a^*)^q) = \begin{cases} 0 & \text{if } p \neq q; \\ p! \, \omega_{(1,*)}^p & \text{if } p = q. \end{cases}$$

Remark: If $\omega_{(*,1)}=\omega_{(1,*)}$, then one recovers the usual notion of a complex Gaussian random variables.

Traceless CCR-GUE Matrix

A selfadjoint matrix $M = [a_{i,j}]_{1 \leq i,j \leq d} \in M_d(\mathcal{A})$ is called a traceless CCR-GUE matrix with parameters w_1, w_2, \ldots, w_d if there exist commuting independent unital *-subalgebras $\{\mathcal{A}_o\} \cup \{\mathcal{A}_{i,j} \mid 1 \leq i < j \leq d\} \subset \mathcal{A}$ s.t:

① For $1 \leq i < j \leq d$, the element $a_{i,j} \in \mathcal{A}_{i,j}$ is centred CCR-Gaussian (with parameters w_j and w_i) and $a_{j,i} := a_{i,j}^*$ such that

$$a_{j,i}a_{i,j} = a_{i,j}a_{j,i} + (w_j - w_i)1_{\mathcal{A}}$$

2 A_o is commutative and the selfadjoint elements $a_{1,1}, \ldots, a_{d,d} \in A_o$ form a centred Gaussian family with covariance matrix

$$\begin{bmatrix} w_1 - w_1^2 & -w_1 w_2 & \cdots & -w_1 w_d \\ -w_1 w_2 & w_2 - w_2^2 & \cdots & -w_2 w_d \\ \vdots & \vdots & \ddots & \vdots \\ -w_1 w_d & -w_2 w_d & \cdots & w_d - w_d^2 \end{bmatrix}$$

Main Result

Theorem (Campbell-K-Nica '22)

Let (\mathcal{A}, φ) be a *-probability space and let $M = [a_{i,j}]_{1 \leq i,j \leq d}$ be a traceless CCR-GUE matrix with parameters w_1, w_2, \ldots, w_d . Consider the linear functional $\varphi_w \colon M_d(\mathcal{A}) \to \mathbb{C}$ defined by

$$\varphi_{\underline{w}}(X) = \sum_{i=1}^d w_i \varphi(x_{i,i}) \qquad \text{ for } X = [x_{i,j}]_{i,j=1}^d \in M_d(\mathcal{A}).$$

Then the law of M in the *-probability space $(M_d(\mathcal{A}), \varphi_{\underline{w}})$ is equal to the central limit law μ_w .

Rough Strategy for Proof of Main Result

(1) Determine a moment formula for

$$\varphi_{\underline{w}}\Big(\big(U(\gamma_{\ell(1)})-A_0\big)\cdots\big(U(\gamma_{\ell(k)})-A_0\big)\Big)$$

for $\ell \colon [k] \to \mathbb{N}$ with $\ker(\ell) \in \mathcal{P}_2([k])$.

- (2a) Provide a Wick's lemma for a CCR-complex Gaussian element.
- (2b) Use this to get a formula for the joint moments of the entries of a CCR-GUE matrix.
 - (3) Show that the formula from (1) and that from (2b) coincide.

For details see:

J. Campbell, C. Köstler, A. Nica; A central limit theorem for star-generators of S_{∞} , which relates to traceless CCR-GUE matrices. *International Journal of Mathematics*, Volume 33, Issue 09, August 2022.

Thank you for your attention!

References

P. Biane. Permutation model for semi-circular systems and quantum random walks. *Pacific Journal of Mathematics* 171 (1995), 373-387.

J. Campbell, C. Köstler, A. Nica. A central limit theorem for star-generators of S_{∞} , which relates to traceless CCR-GUE matrices. *Pacific Journal of Mathematics* 171 (1995), Paper No. 2250065.

R. Gohm, C. Köstler. Noncommutative independence from the braid group \mathbb{B}_{∞} . Communications in Mathematical Physics, Volume 289, 435-482 (2009).

R. Gohm, C. Köstler. Noncommutative independence from characters of the infinite symmetric group S_{∞} . Eprint arXiv:1005.5726 (2010).

C. Köstler. A noncommutative extended de Finetti theorem, *Journal of Functional Analysis* 258 (2010), 1073-1120.

C. Köstler, A. Nica. A central limit theorem for star-generators of S_{∞} , which relates to the law of a GUE matrix, *Journal of Theoretical Probability* 34 (2021), 1248-1278.