Hermite trace polynomials

Michael Anshelevich and David Buzinski

Texas A&M University

September 18, 2023

Gaussian Hilbert space I.

- $\mathcal{H}_{\mathbb{R}}$ = real Hilbert space, \mathcal{H} its complexification.
- Linear embedding $X:\mathcal{H}_{\mathbb{R}}\to (\mathcal{A},\mathbb{E})$ into an algebra of random variables s.t. each X(f) is Gaussian, induced map $\mathcal{H}\to L^2(\mathcal{A},\mathbb{E})$ isometric.
- \mathcal{P}_n = polynomials in $\{X(h): h \in \mathcal{H}_{\mathbb{R}}\}$ of degree $\leq n$
- lacksquare $\mathcal{P}(\mathcal{H}_{\mathbb{R}})=\mathcal{P}=$ all such polynomials, $\simeq\bigoplus_{n=0}^{\infty}\mathcal{H}_{\mathbb{R}}^{\odot_{s}n}.$
- WLOG $\mathcal{P} = \mathcal{A}$, $L^2(\mathcal{P}, \mathbb{E}) = \mathcal{F}_s(\mathcal{H})$, the symmetric Fock space, X(h) = field operators on it.

Gaussian Hilbert space II.

- Denote $T(h_1 \otimes ... \otimes h_n) = X(h_1)...X(h_n)$, defined on $\bigoplus_{n=0}^{\infty} \mathcal{H}_{\mathbb{R}}^{\odot_s n}$.
- The projection $W: \overline{\mathcal{P}}_n \to \overline{\mathcal{P}}_n \cap \mathcal{P}_{n-1}^{\perp}$ is the Wick product. Defined on $\bigoplus_{n=0}^{\infty} \mathcal{H}_{\mathbb{R}}^{\otimes_s n}$.
- $W(h_1 \otimes ... \otimes h_n)$ = polynomial in $\{X(h_i) : 1 \leq i \leq n\}$, the Hermite polynomial.
- Explicitly,

$$W(h_1 \otimes \ldots \otimes h_n) = X(h_1)W(h_2, \ldots, h_n)$$
$$-\sum_{i=2}^n \mathbb{E}\left[X(h_1)X(h_i)\right] W(h_1, \ldots, \hat{h}_i, \ldots, h_n).$$

■ Properties later.

Guţă and Maassen (2002) construction.

- $\{V_n : n \in \mathbb{N}\}$ additional Hilbert spaces, unitary action of S(n) on V_n .
- $V_n \otimes_s \mathcal{H}^{\otimes n}$ = fixed point subspace of the action

$$v \otimes F \mapsto (\sigma \cdot v) \otimes U_{\sigma}F$$
,

where

$$U_{\sigma}(h_1 \otimes \ldots \otimes h_n) = h_{\sigma^{-1}(1)} \otimes \ldots \otimes h_{\sigma^{-1}(n)}.$$

- Symmetrized Fock space $\mathcal{F}_s = \bigoplus_{n=0}^{\infty} V_n \otimes_s \mathcal{H}^{\otimes n}$.
- No canonical creation operator $a^+(h)$, need a sequence of maps $j_n: V_n \to V_{n+1}$ which intertwine the actions.

Symmetric group.

Notation.

- $S_0(n) = S(\{0, 1, \dots, n\}).$
- S(n) acts on $\mathbb{C}[S_0(n)]$ by conjugation.
- For $\alpha \in S_0(n)$, $|\alpha| = (n+1) \operatorname{cyc}(\alpha) = n \operatorname{cyc}_0(\alpha)$.

Notation.

- Par(n) = (number) partitions of n elements = Young diagrams with n boxes.
- $Par(n \le N)$ = partitions with at most N parts = Young diagrams with at most N rows.

Character χ_q .

- Define $\chi_q: S_0(n) \to \mathbb{C}$, $\chi_q(\alpha) = q^{|\alpha|}$, extend to the group algebra $\mathbb{C}[S_0(n)]$.
- \blacksquare χ_q are positive semi-definite for all n if

$$q \in \mathcal{Z} = \{0\} \cup \left\{ \pm \frac{1}{N} : N \in \mathbb{N} \right\}.$$

(Gnedin, Gorin, Kerov 2013, Köstler, Nica 2021).

 $lacktriangleq \chi_{1/N}$ is the normalized character of the standard representation

$$\pi_{n,q}: \mathbb{C}[S_0(n)] \to \operatorname{End}\left((\mathbb{C}^N)^{\otimes (n+1)}\right).$$

Kernel of χ_q .

Wedderburn isomorphism

$$W: \sum_{\lambda \in Par(n+1)} M_{d_{\lambda}}(\mathbb{C}) \to \mathbb{C}[S_0(n)]$$

- $\blacksquare \ \, \mathsf{Denote} \ \mathbb{C}[S_0(n)]_{\leq N} = \mathcal{W} \left(\sum_{\lambda \in \mathsf{Par}(n+1; \leq N)} M_{d_\lambda}(\mathbb{C}) \right) \\ \text{and similarly for } \mathbb{C}[S_0(n)]_{>N}.$
- The kernel

$$\mathcal{N}_{q,n} = \{ \eta \in \mathbb{C}[S_0(n)] : \chi_q[\eta \eta^*] = 0 \}$$

is $\mathcal{N}_{1/N,n}=\mathbb{C}[S_0(n)]_{>N}$, so that χ_q is faithful on $\mathbb{C}[S_0(n)]_{< N}$.

Fock space I.

■ Guţă-Maassen Fock space

$$\overline{\mathcal{TP}}(\mathcal{H}) = \mathbb{C}(0) \oplus \bigoplus_{n=1}^{\infty} \left(\mathbb{C}[S_0(n)] \otimes_s \mathcal{H}^{\otimes n} \right),$$

where S(n) acts on $\mathbb{C}[S_0(n)]$ by conjugation.

■ For $q \in \mathcal{Z}$, inner product

$$\langle \alpha \otimes F, \beta \otimes G \rangle_q = \delta_{n=k} \sum_{\sigma \in S(n)} \chi_q(\alpha \sigma \beta^{-1} \sigma^{-1}) \langle F, U_\sigma G \rangle_{\mathcal{H}^{\otimes n}}.$$

Invariant under the S(n) action.

Fock space II.

■ The quotient by the kernel is $\overline{TP}_q(\mathcal{H})$.

$$\overline{\mathcal{TP}}_{1/N}(\mathcal{H}) = \bigoplus_{n=0}^{N-1} \left(\mathbb{C}[S_0(n)] \otimes_s \mathcal{H}^{\otimes n} \right)$$

$$\oplus \bigoplus_{n=N}^{\infty} \left(\mathbb{C}[S_0(n)]_{\leq N} \otimes_s \mathcal{H}^{\otimes n} \right).$$

■ The completion is the Hilbert space $\mathcal{F}_q(\mathcal{H})$.

Star-algebra structure on the trace polynomials.

Definition. On $\mathcal{TP}(\mathcal{H}_{\mathbb{R}}) = \mathbb{C}(0) \oplus \bigoplus_{n=1}^{\infty} \left(\mathbb{C}[S_0(n)] \otimes_s \mathcal{H}_{\mathbb{R}}^{\odot n} \right)$, define the product

$$T(\alpha \otimes_s F) T(\beta \otimes_s G) = T((\alpha \cup \beta) \otimes_s (F \otimes G))$$

and the star

$$T(\eta \otimes_s F)^* = T(\eta^* \otimes_s F).$$

Example.

$$(024)(13) \cup (021)(354) = (065)(798)(024)(13) = (02465)(13)(798)$$

Proposition.

- Multiplication is well defined.
- $\blacksquare (T (\alpha \otimes_s F) T (\beta \otimes_s G))^* = T (\beta \otimes_s F)^* T (\alpha \otimes_s G)^*.$

Contractions I.

Fix
$$q \neq 0$$
.

Definition. For a transposition $\pi = (ij) \in S(n)$, define the π -contraction by the linear extension of

$$T\left(C_{\pi}(\alpha \otimes_{s} (h_{1} \otimes \ldots \otimes h_{n}))\right) = q^{\operatorname{cyc}_{0}((\pi\alpha)|_{\{i,j\}^{c}}) - \operatorname{cyc}_{0}(\pi\alpha) + 1} \langle h_{i}, h_{j} \rangle$$

$$T\left(P_{[0,n-2]}^{[0,n]\setminus\{i,j\}}(\pi\alpha)|_{\{i,j\}^{c}} \otimes_{s} (h_{1} \otimes \ldots \otimes \widehat{h}_{i} \otimes \ldots \otimes \widehat{h}_{j} \otimes \ldots \otimes h_{n})\right).$$

Remark. Recall:

- If i, j are in the same cycle of α , $(ij)\alpha$ splits this cycle into two.
- If i, j are in the different cycles of α , $(ij)\alpha$ merges these cycles.

Contractions II.

Example.

$$T\left(C_{(23)}((012)(345)\otimes(h_1\otimes\ldots\otimes h_5))\right)$$

$$\to \langle h_2, h_3\rangle T\left((013452)\otimes(h_1\otimes h_4\otimes h_5)\right)$$

$$\to q\langle h_2, h_3\rangle T\left((0145)\otimes(h_1\otimes h_4\otimes h_5)\right)$$

$$\to q\langle h_2, h_3\rangle T\left((0123)\otimes(h_1\otimes h_4\otimes h_5)\right).$$

Definition.

- Extend to C_{π} for $\pi \in \mathcal{P}_{1,2}(n)$ an (incomplete) matching / involution.
- Define the Laplacian $\mathcal{L} = \sum_{\tau} C_{\tau}$.

Wick products.

Definition. On $\mathcal{TP}(\mathcal{H}_{\mathbb{R}})$,

$$W(\eta \otimes_s F) = T(e^{-\mathcal{L}}(\eta \otimes_s F)) = \sum_{\pi \in \mathcal{P}_{1,2}} (-1)^{n-|\pi|} T(C_{\pi}(\eta \otimes_s F)).$$

Remark. For q = 1, get ordinary Wick products.

Corollary.

$$T(\eta \otimes_s F) = W(e^{\mathcal{L}}(\eta \otimes_s F)) = \sum_{\pi \in \mathcal{P}_{1,2}} W(C_{\pi}(\eta \otimes_s F)).$$

State.

Definition. Define a functional on $\mathcal{TP}(\mathcal{H}_{\mathbb{R}})$ by

$$\varphi_q[W(\eta \otimes_s F)] = 0; \quad \varphi_q[1] = 1.$$

Theorem.

■ φ_q is positive semi-definite exactly for $q \in \mathcal{Z} = \{0\} \cup \{\pm \frac{1}{N}, N \in \mathbb{N}\}.$

$$\varphi_q [W (\beta \otimes G)^* W (\alpha \otimes F)] = \langle (\alpha \otimes F), (\beta \otimes G) \rangle_q.$$

Thus
$$\mathcal{F}_q(\mathcal{H}) = L^2(\mathcal{TP}(\mathcal{H}_{\mathbb{R}}), \varphi_q)$$
 for $q \in \mathcal{Z}$.

Product formula and extension.

Proposition. Let $F \in \mathcal{H}_{\mathbb{R}}^{\odot n}$, $G \in \mathcal{H}_{\mathbb{R}}^{\odot k}$.

Then

$$W(\alpha \otimes_s F) W(\beta \otimes_s G)$$

$$= \sum_{\pi \in \mathcal{P}_{1,2}(n,k)} W(C_{\pi}((\alpha \cup \beta) \otimes_s (F \otimes G)))$$

- \blacksquare and $\|W(\alpha \otimes F)W(\beta \otimes G)\|_{\varphi} \leq (n+k)!(2n)^k \|F\| \|G\|$.
- So can extend the star-algebra structure to

$$\overline{\mathcal{TP}}(\mathcal{H}_{\mathbb{R}}) = \left\{ W\left(\eta \otimes_{s} F\right) : n \geq 0, \eta \in \mathbb{C}[S_{0}(n)], F \in \mathcal{H}_{\mathbb{R}}^{\otimes n} \right\}.$$

Note: $T(\eta \otimes_s F)$ may not be defined for $F \in \mathcal{H}_{\mathbb{R}}^{\otimes n}$.

Conditional expectations.

Proposition. $\mathcal{H}'_{\mathbb{R}} \subset \mathcal{H}_{\mathbb{R}}$ a closed subspace, $P_{\mathcal{H}'}: \mathcal{H} \to \mathcal{H}'$ the orthogonal projection.

■ The map $\overline{\mathcal{TP}}_q(\mathcal{H}_{\mathbb{R}}) \to \overline{\mathcal{TP}}_q(\mathcal{H}'_{\mathbb{R}})$ obtained by the linear extension of

$$\varphi\left[W\left(\alpha\otimes F\right)\mid\mathcal{H}'\right]=W\left(\alpha\otimes(P_{\mathcal{H}'}^{\otimes n}F)\right)$$

is an algebraic conditional expectation.

■ In the single-variable case, for $\alpha \in S_0(n)$, we have

$$\varphi \left[\mathbf{T} \left(\alpha \otimes h^{\otimes n} \right) \mid \mathcal{H}' \right]$$

$$= \sum_{\pi \in \mathcal{P}_{1,2}(n)} \left\| P_{(\mathcal{H}')^{\perp}} h \right\|^{2|\operatorname{Pair}(\pi)|} \mathbf{T} \left(C_{\pi}(\alpha) \otimes (P_{\mathcal{H}'} h)^{\otimes |\operatorname{Sing} \pi|} \right).$$

Fock representation.

- In the GNS representation of $(\mathcal{TP}(\mathcal{H}_{\mathbb{R}}), \varphi_q)$ on $\mathcal{F}_q(\mathcal{H})$, several choices for the creation operator: how to embed S(n) into $S_0(n)$?
- The most interesting one: the field operator $X(h) = T((01) \otimes h)$, corresponds to the creation operator

$$a_{(01)}^+(h)(\alpha \otimes F) = (0 \ n+1)\alpha \otimes (h \otimes F).$$

Theorem. The distribution of $T((01) \otimes h)$ is the unnormalized average empirical distribution of a GUE matrix with mean 0 and variance ||h||.

Lack of cyclicity.

Proposition.

- Elements $T((01) \otimes_s h)$ do not generate $\mathcal{TP}(\mathcal{H}_{\mathbb{R}})$ as an algebra (vacuum not cyclic).
- Do generate if also allow conditional expectations $\varphi[\cdot|\mathcal{H}']$.
- Or: if allow conditional expectations onto the center $\operatorname{Span}\left(\{\eta \otimes_s F : \eta \in S(n), n \in \mathbb{N}\}\right)$.

Bożejko and Guţă 2002.

• for $q = \pm \frac{1}{N}$, Fock space with the inner product

$$\langle f_1 \otimes \ldots \otimes f_n, g_1 \otimes \ldots \otimes g_k \rangle_q = \delta_{n=k} \sum_{\sigma \in S(n)} \chi_q[\sigma] \prod_{i=1}^n \langle f_i, g_{\sigma(i)} \rangle.$$

■ For
$$\omega(h) = a^+(h) + a^-(h)$$
,
$$\langle \Omega, \omega(h_1) \dots \omega(h_{2n}) \Omega \rangle = \sum_{\pi \in \mathcal{P}_2(2n)} q^{n-c(\pi)} C_\pi(h_1 \otimes \dots \otimes h_{2n}).$$

■ Compare with

$$\varphi_q\left[\mathrm{T}\left(\alpha\otimes(h_1\otimes\ldots\otimes h_{2n})\right)\right]=\sum_{\pi\in\mathcal{P}_2(2n)}q^{|\pi\alpha|-n}C_\pi(h_1\otimes\ldots\otimes h_{2n}).$$

Commutation relation.

 Creation and annihilation operators satisfy a commutation relation

$$a^{-}(f)a^{+}(g) = \langle f, g \rangle + q \ d\Gamma(|g\rangle\langle f|), \tag{*}$$

where $d\Gamma(A)$ is the standard second quantization operator.

Proposition. Denote

$$d\tilde{\Gamma}(A)(\alpha \otimes (h_1 \otimes \ldots \otimes h_n)) = \sum_{i=1}^n (0i)\alpha \otimes (h_1 \otimes \ldots \otimes Ah_i \otimes \ldots \otimes h_n).$$

- Well defined on $\mathcal{TP}(\mathcal{H})$.
- $lacksquare a^-_{(01)}(f), \, a^+_{(01)}(g), \, d\tilde{\Gamma}(|g\rangle\langle f|)$ satisfy the relation (*).

Hermitian Gaussian matrices.

- Fix $N \in \mathbb{N}$. Let $\mathcal{K}_{\mathbb{R}} = M_N(\mathbb{C})^{sa} \otimes \mathcal{H}_{\mathbb{R}}$ be a real Gaussian Hilbert space, $\mathcal{K} = M_N(\mathbb{C}) \otimes \mathcal{H}_{\mathbb{R}}$ its complexification, with inner product $\frac{1}{N}\operatorname{Tr}[AB^*]\langle f,g\rangle$. Complex Gaussian Hilbert space.
- Denote $x_{ij}(h) = X(E_{ij} \otimes h)$. Note $\overline{x_{ij}(h)} = x_{ji}(h)$.
- $\mathcal{P}(\mathcal{K})$ = polynomials in $\{x_{ij}(h): 1 \leq i, j \leq N, h \in \mathcal{H}_{\mathbb{R}}\}$.
- Define the $N \times N$ Hermitian Gaussian process $\{X(h): h \in \mathcal{H}_{\mathbb{R}}\}$ by $X(h)_{ij} = x_{ij}(h)$.

Matricial Wick products.

Lemma. In $(M_N(\mathbb{C})\otimes \mathcal{P}(\mathcal{K}), \operatorname{Tr}\otimes \mathbb{E})$, let W be the Wick projection

$$M_N(\mathbb{C}) \otimes \overline{\mathcal{P}}_n \to (M_N(\mathbb{C}) \otimes \overline{\mathcal{P}}_n) \cap (M_N(\mathbb{C}) \otimes \mathcal{P}_{n-1})^{\perp}.$$

Then $W(A)_{\ell r} = W(A_{\ell r})$.

Compare with (Biane 1997).

Permutation notation.

Notation. For $\alpha \in S_0(n)$,

$$\operatorname{Tr}_{\alpha}[X(h_1),\ldots,X(h_n)] = (X$$
's in the cycle starting with 0) $\prod_{\text{other cycles}} \operatorname{Tr}[X$'s in the cycle].

Example. For $\alpha = (024)(137)(56)$, define the trace polynomial

$$\operatorname{Tr}_{\alpha}[X(h_1), \dots, X(h_7)]$$

= $X(h_2)X(h_4)\operatorname{Tr}[X(h_1)X(h_3)X(h_7)]\operatorname{Tr}[X(h_5)X(h_6)].$

Trace polynomials.

Procesi, Formanek, Leron etc. \sim 1976+: trace identities.

Kemp, Cébron, Driver, Hall etc. \sim 2013+: random matrices.

Klep, Špenko, Volčič etc. \sim 2014+: free analysis.

Jekel, etc. \sim 2019+: operator algebras.

Huber, etc. \sim 2021+: quantum information.

Evaluation map.

Definition. Let $q = \frac{1}{N}$.

Define the map $\mathcal E$ on $\bigoplus_{n=0}^\infty \mathbb C[S_0(n)] \otimes \mathcal H^{\odot n}_\mathbb R$ by

$$\mathcal{E}[T(\alpha \otimes (h_1 \otimes \ldots \otimes h_n))] = Tr_{\alpha}(X(h_1), \ldots, X(h_n)).$$

Theorem.

- \blacksquare \mathcal{E} extends to a star-homomorphism from $\overline{\mathcal{TP}}(\mathcal{H}_{\mathbb{R}})$.
- \mathcal{E} extends to an isometry from $\mathcal{F}_{1/N}(\mathcal{H})$.
- \blacksquare \mathcal{E} intertwines conditional expectations.
- E intertwines Wick products.

Idea of proof. For $\alpha \in S_0(2n)$ and $F = h_1 \otimes \ldots \otimes h_{2n}$,

$$\varphi_q\left[\mathrm{T}\left(\alpha\otimes F\right)\right] = \sum_{\pi\in\mathcal{P}_2(2n)} q^{|\pi\alpha|-n} C_\pi(F) = \mathbb{E}\left[\mathrm{Tr}_\alpha(X(h_1),\ldots,X(h_{2n}))\right].$$

Hermite trace polynomials.

Definition. Hermite trace polynomials are

$$W\left(\alpha\otimes(\xi_{i(1)}\otimes\ldots\otimes\xi_{i(n)})\right)$$

or perhaps

$$\operatorname{Tr}_{\alpha}(X(\xi_{i(1)}),\ldots,X(\xi_{i(n)})).$$

Proposition.

- Contraction formulas.
- Product formulas.
- Conditional expectation: martingale property.
- Orthogonality?

Univariate pure trace polynomials I.

Let $\mathcal{H} = \mathbb{C}$ and $\eta \in \mathbb{C}[S(n)]$ (rather than $S_0(n)$).

 \blacksquare For an $N \times N$ matrix X,

$$\operatorname{Tr}_{\alpha}(X) = p_{\alpha}(x_1, \dots, x_N),$$

the power sum symmetric polynomial in the eigenvalues of X.

- Depends only on the (number) partition λ .
- \blacksquare {W (α)} orthogonal for different n but not for different λ .
- $\mathbf{x}^{\lambda} = \mathbf{x}^{\lambda}$ character of the irreducible representation indexed by the partition λ .

Theorem. $\left\{ \mathbf{W}\left(\chi^{\lambda}\right) : \lambda \in \operatorname{Par}(n; \leq N) \right\}$ form an orthogonal basis with respect to $\varphi_{1/N}$.

Hermite polynomials of matrix argument I.

Schur polynomial

$$s_{\lambda} = \frac{1}{n!} \sum_{\nu \vdash n} \frac{n!}{z_{\nu}} \chi^{\lambda}(\nu) p_{\nu} = \frac{1}{n!} \sum_{\alpha \in S(n)} \chi^{\lambda}(\alpha) p_{\alpha}.$$

Denote

$$D^* = \sum_{i=1}^{N} \frac{\partial^2}{\partial x_i^2} + \sum_{i \neq j} \frac{1}{x_i - x_j} \left(\frac{\partial}{\partial x_i} - \frac{\partial}{\partial x_j} \right)$$

and

$$E^* = \sum_{i=1}^{N} x_i \frac{\partial}{\partial x_i}.$$

Hermite polynomials of matrix argument II.

For $\lambda \in \operatorname{Par}(n)$, the Hermite polynomial of matrix argument (for $\beta=2$) is the symmetric polynomial in $\{x_1,\ldots,x_N\}$ with leading term $\frac{|\lambda|!}{c_\lambda}s_\lambda$ which is an eigenfunction of the operator D^*-E^* with eigenvalue -n (James 1975, Baker, Forrester 1997).

Theorem. In terms of $\{x_1, \ldots, x_N\}$, $\mathcal{E}[W(\chi^{\lambda})] = \operatorname{Tr}_{\chi^{\lambda}}(X)$ is (a multiple of) the Hermite polynomials of matrix argument.

Idea of proof. For $\eta \in \mathbb{C}[S_0(n)]$, define the Euler operator E on $\mathcal{TP}(\mathcal{H}_{\mathbb{R}})$ by

$$ET(\eta \otimes F) = nT(\eta \otimes F)$$

Then W $(\eta \otimes F)$ is the unique eigenfunction of the operator $E-2\mathcal{L}$ with eigenvalue n and leading term T $(\eta \otimes F)$.

Chaos decomposition I: univariate trace polynomials.

Proposition. Let $\mathcal{H}=\mathbb{C}$, so that $\mathcal{TP}(\mathbb{C})=Z(\mathbb{C}[S_0(n)]:\mathbb{C}[S(n)])$ is the centralizer. Then $\left\{\mathrm{W}\left(\chi^{\lambda':\lambda}\right):\lambda'=\lambda+\square,\lambda'\in\mathrm{Par}(n+1;\leq N)\right\}$

form an orthogonal basis for $L^2(\mathcal{TP}(\mathbb{C}), \varphi_{1/N})$.

Definition. Let $\chi^{\lambda':\lambda}$ is the character of the compression of the λ' -irreducible representation of $S_0(n)$ to the (unique) component giving a λ -irreducible representation of S(n). Then $\mathrm{W}\left(\chi^{\lambda':\lambda}\right)$ or $\mathrm{Tr}_{\chi^{\lambda':\lambda}}(X)=$ univariate Hermite trace polynomials.

Chaos decomposition III: general.

Theorem. Let $\{\xi_i : i \in \Xi\} = \mathsf{ONB}$ for $\mathcal{H}_{\mathbb{R}}$. Denote

$$\Delta(\Xi^n) = \{ \mathbf{u} \in \Xi^n : u(1) \le u(2) \le \dots \le u(n) \},$$

$$\ker(\mathbf{u}) = \pi = (I_1, \dots, I_k) \in Int(n) : u(i) = u(j) \Leftrightarrow i \stackrel{\pi}{\sim} j.$$

$$Z(\mathbb{C}[S_0(n)] : \pi) = Z(\mathbb{C}[S_0(n)] : \mathbb{C}[S(I_1)] \times \dots \times \mathbb{C}[S(I_k)]).$$

Then $A \in L^2(\mathcal{TP}(\mathcal{H}_{\mathbb{R}}), \varphi_{1/N})$ has a unique orthogonal decomposition in terms of Hermite trace polynomials

$$A = \sum_{n=0}^{\infty} \sum_{\mathbf{u} \in \Delta(\Xi^n)} W(\eta_{\mathbf{u}} \otimes_s \xi_{\mathbf{u}}),$$

where $\eta_{\mathbf{u}} \in Z(\mathbb{C}[S_0(n)] : \ker(\mathbf{u})) \cap \mathbb{C}[S_0(n)]_{\leq N}$.

Questions.

- Real Hermite trace polynomials (Redelmeier, Mingo et al.)?
- Laguerre and Jacobi trace polynomials (Graczyk, Vostrikova 2007, Bryc 2008)?
- General orthogonal trace polynomials?
- Relation to the construction by [Köstler, Nica 2021]?
- Generating functions?

