Structure of free group factors

Srivatsav Kunnawalkam Elayavalli aka Sri

UCSD

October 2023

 $\mathbb{C}\langle t_1,\cdots,t_d
angle$: *-algebra of noncommutative *-polynomials in d formal variables t_1,\ldots,t_d

 $\mathbb{C}\langle t_1,\cdots,t_d \rangle$: *-algebra of noncommutative *-polynomials in d formal variables t_1,\ldots,t_d .

If A is any *-algebra, and $x=(x_1,\cdots,x_d)\in A^d$ is a self-adjoint tuple, then there is a unique *-homomorphism $\mathbb{C}\langle t_1,\cdots,t_d\rangle \to A$ which sends t_j to x_j .

 $\mathbb{C}\langle t_1,\cdots,t_d \rangle$: *-algebra of noncommutative *-polynomials in d formal variables t_1,\ldots,t_d .

If A is any *-algebra, and $x=(x_1,\cdots,x_d)\in A^d$ is a self-adjoint tuple, then there is a unique *-homomorphism $\mathbb{C}\langle t_1,\cdots,t_d\rangle \to A$ which sends t_j to x_j .

Definition

 $\mathbb{C}\langle t_1,\cdots,t_d
angle$: *-algebra of noncommutative *-polynomials in d formal variables t_1,\ldots,t_d .

If A is any *-algebra, and $x=(x_1,\cdots,x_d)\in A^d$ is a self-adjoint tuple, then there is a unique *-homomorphism $\mathbb{C}\langle t_1,\cdots,t_d\rangle\to A$ which sends t_j to x_j .

Definition

Given a tracial von Neumann algebra (M,τ) and $x\in M^d_{sa}$, we define the <u>law of x</u>, denoted ℓ_x , to be the linear functional $\ell_x\colon \mathbb{C}\langle t_1,\cdots,t_d\rangle\to\mathbb{C}$ given by

$$\ell_{\mathsf{x}}(f) = \tau(f(\mathsf{x})).$$

 $\Sigma_{d,R}$: set of all linear maps $\mathbb{C}\langle t_1,\ldots,t_d\rangle \to \mathbb{C}$ arising as the law of some tuple in a tracial von Neumann algebra.

 $\mathbb{C}\langle t_1,\cdots,t_d
angle$: *-algebra of noncommutative *-polynomials in d formal variables t_1,\ldots,t_d .

If A is any *-algebra, and $x=(x_1,\cdots,x_d)\in A^d$ is a self-adjoint tuple, then there is a unique *-homomorphism $\mathbb{C}\langle t_1,\cdots,t_d\rangle \to A$ which sends t_j to x_j .

Definition

Given a tracial von Neumann algebra (M,τ) and $x\in M^d_{sa}$, we define the <u>law of x</u>, denoted ℓ_x , to be the linear functional $\ell_x\colon \mathbb{C}\langle t_1,\cdots,t_d\rangle\to\mathbb{C}$ given by

$$\ell_{\mathsf{x}}(f) = \tau(f(\mathsf{x})).$$

 $\Sigma_{d,R}$: set of all linear maps $\mathbb{C}\langle t_1,\ldots,t_d\rangle \to \mathbb{C}$ arising as the law of some tuple in a tracial von Neumann algebra.

Equip $\Sigma_{d,R}$ with the weak* topology (topology of pointwise convergence on $\mathbb{C}\langle t_1,\ldots,t_d\rangle$).

Voiculescu's microstate space

Let (M,τ) be a diffuse tracial von Neumann algebra, and $X,Y\subset M_{\operatorname{sa}}$ finite such that $\|x\|\leq R$ for all $x\in X\cup Y$. For each weak* neighborhood $\mathcal O$ of $\ell_{X\sqcup Y}$ in $\Sigma_{d,R}$ and $n\in\mathbb N$, we define

$$\Gamma_{R}^{(n)}(X:Y;\mathcal{O}) = \{A \in \mathbb{M}_n(\mathbb{C})_{sa}^X: \exists B \in \mathbb{M}_n(\mathbb{C})_{sa}^Y \mid \ell_{A \sqcup B} \in \mathcal{O}, \|A_x\|, \|B_y\| \leq R\}.$$

Voiculescu's microstate space

Let (M, τ) be a diffuse tracial von Neumann algebra, and $X, Y \subset M_{\text{sa}}$ finite such that $\|x\| \leq R$ for all $x \in X \cup Y$. For each weak* neighborhood $\mathcal O$ of $\ell_{X \sqcup Y}$ in $\Sigma_{d,R}$ and $n \in \mathbb N$, we define

$$\Gamma_{R}^{(n)}(X:Y;\mathcal{O}) = \{A \in \mathbb{M}_{n}(\mathbb{C})_{sa}^{X}: \exists B \in \mathbb{M}_{n}(\mathbb{C})_{sa}^{Y} \mid \ell_{A \sqcup B} \in \mathcal{O}, \|A_{x}\|, \|B_{y}\| \leq R\}.$$

Orbital covering numbers

We say that Ξ orbitally $(\varepsilon, \|\cdot\|_2)$ -covers Ω if for every $A \in \Omega$, there is a $B \in \Xi$ and an $n \times n$ unitary matrix V so that $\|A - VBV^*\|_2 < \varepsilon$.

Voiculescu's microstate space

Let (M, τ) be a diffuse tracial von Neumann algebra, and $X, Y \subset M_{\text{sa}}$ finite such that $\|x\| \leq R$ for all $x \in X \cup Y$. For each weak* neighborhood $\mathcal O$ of $\ell_{X \sqcup Y}$ in $\Sigma_{d,R}$ and $n \in \mathbb N$, we define

$$\Gamma_R^{(n)}(X:Y;\mathcal{O}) = \{A \in \mathbb{M}_n(\mathbb{C})_{sa}^X: \exists B \in \mathbb{M}_n(\mathbb{C})_{sa}^Y \mid \ell_{A \sqcup B} \in \mathcal{O}, \|A_x\|, \|B_y\| \leq R\}.$$

Orbital covering numbers

We say that Ξ orbitally $(\varepsilon, \|\cdot\|_2)$ -covers Ω if for every $A \in \Omega$, there is a $B \in \Xi$ and an $n \times n$ unitary matrix V so that $\|A - VBV^*\|_2 < \varepsilon$. Define the orbital covering number $K_{\varepsilon}^{\text{orb}}(\Omega, \|\cdot\|_2)$ as the minimal cardinality of a set that orbitally $(\varepsilon, \|\cdot\|_2)$ -covers Ω .

Let $X,Y\subset M_{\operatorname{sa}}$ not necessarily finite, satisfying $X''\subset Y''$ and $\|x\|\leq R$ for all $x\in X\cup Y$. Let F,G be finite subsets of X,Y respectively. For a weak*-neighborhood $\mathcal O$ of $\ell_{X\sqcup Y}$, we define

Let $X,Y\subset M_{\mathrm{sa}}$ not necessarily finite, satisfying $X''\subset Y''$ and $\|x\|\leq R$ for all $x\in X\cup Y$. Let F,G be finite subsets of X,Y respectively. For a weak*-neighborhood $\mathcal O$ of $\ell_{X\sqcup Y}$, we define

$$egin{aligned} h_{arepsilon}(F:G;\mathcal{O}) &:= \limsup_{n o \infty} rac{1}{n^2} \log \mathcal{K}^{\mathsf{orb}}_{arepsilon}(\Gamma_R^{(n)}(F:G;\mathcal{O})), \ h_{arepsilon}(F:G) &:= \inf_{\mathcal{O} \ni \ell_{F \sqcup G}} h_{arepsilon}(\mathcal{O}), \ h_{arepsilon}(X:Y) &:= \sup_{F \subset \mathsf{finite} X} \inf_{G \subset \mathsf{finite} Y} h_{arepsilon}(F:G) \ h(X:Y) &:= \sup_{arepsilon > 0} h_{arepsilon}(X:Y) \end{aligned}$$

Let $X,Y\subset M_{\mathrm{sa}}$ not necessarily finite, satisfying $X''\subset Y''$ and $\|x\|\leq R$ for all $x\in X\cup Y$. Let F,G be finite subsets of X,Y respectively. For a weak*-neighborhood $\mathcal O$ of $\ell_{X\sqcup Y}$, we define

$$egin{aligned} h_{arepsilon}(F:G;\mathcal{O}) &:= \limsup_{n o \infty} rac{1}{n^2} \log \mathcal{K}^{\mathsf{orb}}_{arepsilon}(\Gamma_R^{(n)}(F:G;\mathcal{O})), \ h_{arepsilon}(F:G) &:= \inf_{\mathcal{O} \ni \ell_{F \sqcup G}} h_{arepsilon}(\mathcal{O}), \ h_{arepsilon}(X:Y) &:= \sup_{F \subset \mathsf{finite}\, X} \inf_{G \subset \mathsf{finite}\, Y} h_{arepsilon}(F:G) \ h(X:Y) &:= \sup_{arepsilon > 0} h_{arepsilon}(X:Y) \end{aligned}$$

Theorem (Jung, Hayes):

$$h(X_1:Y_1)=h(X_2:Y_2)$$
 if $X_1''=X_2''$ and $Y_1''=Y_2''$

Let $X,Y\subset M_{\mathrm{sa}}$ not necessarily finite, satisfying $X''\subset Y''$ and $\|x\|\leq R$ for all $x\in X\cup Y$. Let F,G be finite subsets of X,Y respectively. For a weak*-neighborhood $\mathcal O$ of $\ell_{X\sqcup Y}$, we define

$$egin{aligned} h_{arepsilon}(F:G;\mathcal{O}) &:= \limsup_{n o \infty} rac{1}{n^2} \log \mathcal{K}^{\mathsf{orb}}_{arepsilon}(\Gamma^{(n)}_R(F:G;\mathcal{O})), \ h_{arepsilon}(F:G) &:= \inf_{\mathcal{O} \ni \ell_{F \sqcup G}} h_{arepsilon}(\mathcal{O}), \ h_{arepsilon}(X:Y) &:= \sup_{F \subset \mathsf{finite} X} \inf_{G \subset \mathsf{finite} Y} h_{arepsilon}(F:G) \ h(X:Y) &:= \sup_{arepsilon > 0} h_{arepsilon}(X:Y) \end{aligned}$$

Theorem (Jung, Hayes):

$$h(X_1:Y_1)=h(X_2:Y_2) \text{ if } X_1''=X_2'' \text{ and } Y_1''=Y_2''$$

Definition (Jung, Hayes):

M is strongly 1-bounded if $-\infty < h(M) < \infty$.

h(M) = h(M : M) for every tracial von Neumann algebra (M, τ) .

h(M) = h(M : M) for every tracial von Neumann algebra (M, τ) .

Fact 2:

Suppose $N \leq M$. Then $h(N:M) \geq 0$ if M embeds into an ultrapower of \mathcal{R} , and $h(N:M) = -\infty$ if M does not embed into an ultrapower of \mathcal{R} .

h(M) = h(M : M) for every tracial von Neumann algebra (M, τ) .

Fact 2:

Suppose $N \leq M$. Then $h(N:M) \geq 0$ if M embeds into an ultrapower of \mathcal{R} , and $h(N:M) = -\infty$ if M does not embed into an ultrapower of \mathcal{R} .

Fact 3:

 $h(N_1:M_1) \leq h(N_2:M_2)$ if $N_1 \subset N_2 \subset M_2 \subset M_1$ and N_1 is diffuse.

h(M) = h(M : M) for every tracial von Neumann algebra (M, τ) .

Fact 2:

Suppose $N \leq M$. Then $h(N:M) \geq 0$ if M embeds into an ultrapower of \mathcal{R} , and $h(N:M) = -\infty$ if M does not embed into an ultrapower of \mathcal{R} .

Fact 3:

 $h(N_1:M_1) \leq h(N_2:M_2)$ if $N_1 \subset N_2 \subset M_2 \subset M_1$ and N_1 is diffuse.

Fact 4:

 $h(N:M) \leq 0$ if $N \leq M$ and N is hyperfinite.

h(M) = h(M : M) for every tracial von Neumann algebra (M, τ) .

Fact 2:

Suppose $N \leq M$. Then $h(N:M) \geq 0$ if M embeds into an ultrapower of \mathcal{R} , and $h(N:M) = -\infty$ if M does not embed into an ultrapower of \mathcal{R} .

Fact 3:

 $h(N_1:M_1) \leq h(N_2:M_2)$ if $N_1 \subset N_2 \subset M_2 \subset M_1$ and N_1 is diffuse.

Fact 4:

 $h(N:M) \leq 0$ if $N \leq M$ and N is hyperfinite.

Fact 5:

 $h(M)=\infty$ if M is diffuse, and $M=\mathrm{W}^*(x_1,\cdots,x_n)$ where $x_j\in M_{sa}$ for all $1\leq j\leq n$ and $\delta_0(x_1,\cdots,x_n)>1$. For example this applies if $M=L(\mathbb{F}_n)$, for n>1.

Lemma 1:

 $h(N:M)=h(N:M^{\mathcal{U}})$ if $N\subset M$ is diffuse, and \mathcal{U} is an ultrafilter on a set I. In particular, $h(M^{\mathcal{U}})\geq h(M)$.

Lemma 1:

 $h(N:M)=h(N:M^{\mathcal{U}})$ if $N\subset M$ is diffuse, and \mathcal{U} is an ultrafilter on a set I. In particular, $h(M^{\mathcal{U}})\geq h(M)$.

Lemma 2:

 $h(N_1 \vee N_2 : M) \leq h(N_1 : M) + h(N_2 : M)$ if $N_1, N_2 \subset M$ and $N_1 \cap N_2$ is diffuse. In particular, $h(N_1 \vee N_2) \leq h(N_1) + h(N_2)$.

Lemma 1:

 $h(N:M)=h(N:M^{\mathcal{U}})$ if $N\subset M$ is diffuse, and \mathcal{U} is an ultrafilter on a set I. In particular, $h(M^{\mathcal{U}})\geq h(M)$.

Lemma 2:

 $h(N_1 \vee N_2 : M) \leq h(N_1 : M) + h(N_2 : M)$ if $N_1, N_2 \subset M$ and $N_1 \cap N_2$ is diffuse. In particular, $h(N_1 \vee N_2) \leq h(N_1) + h(N_2)$.

Lemma 3:

Suppose that $(N_{\alpha})_{\alpha}$ is an increasing chain of diffuse von Neumann subalgebras of a von Neumann algebra M. Then

$$h\left(\bigvee_{\alpha}N_{\alpha}:M\right)=\sup_{\alpha}h(N_{\alpha}:M).$$

Lemma 4:

Let I be a countable set, and $M=\bigoplus_{i\in I}M_i$ with M_i diffuse for all i. Suppose that τ is a faithful trace on M, and that λ_i is the trace of the identity on M_i . Endow M_i with the trace $\tau_i=\frac{\tau|_{M_i}}{\lambda_i}$. Then

$$h(M,\tau) \leq \sum_{i} \lambda_{i}^{2} h(M_{i},\tau_{i}).$$

Lemma 4:

Let I be a countable set, and $M=\bigoplus_{i\in I}M_i$ with M_i diffuse for all i. Suppose that τ is a faithful trace on M, and that λ_i is the trace of the identity on M_i . Endow M_i with the trace $\tau_i=\frac{\tau|_{M_i}}{\lambda_i}$. Then

$$h(M,\tau) \leq \sum_{i} \lambda_i^2 h(M_i,\tau_i).$$

Lemma 5:

If $z \in \mathcal{P}(Z(M))$, $N \leq M$ and $h(N : M) \leq 0$, then $h(Nz : Mz) \leq 0$.

Lemma 4:

Let I be a countable set, and $M = \bigoplus_{i \in I} M_i$ with M_i diffuse for all i. Suppose that τ is a faithful trace on M, and that λ_i is the trace of the identity on M_i . Endow M_i with the trace $\tau_i = \frac{\tau_i^{|M_i|}}{\lambda_i}$. Then

$$h(M,\tau) \leq \sum_{i} \lambda_i^2 h(M_i,\tau_i).$$

Lemma 5:

If $z \in \mathcal{P}(Z(M))$, $N \leq M$ and $h(N : M) \leq 0$, then $h(Nz : Mz) \leq 0$.

Lemma 6:

 $h(pNp:pMp)=\frac{1}{\tau(p)^2}h(N:M)$, if $N\leq M$ is diffuse, p is a nonzero projection in N, and M is a factor.

lacktriangledown N has a diffuse quasi-regular hyperfinite subalgebra (Voiculescu ightarrow Jung ightarrow Hayes).

- $\textbf{0} \ \ \textit{N} \ \ \text{has a diffuse quasi-regular hyperfinite subalgebra} \ \ \text{(Voiculescu} \ \rightarrow \ \text{Jung} \ \rightarrow \ \text{Hayes)}.$
- $oldsymbol{0}$ N is non-prime (Ge), N has property Gamma (Jung).

- lacktriangledown N has a diffuse quasi-regular hyperfinite subalgebra (Voiculescu ightarrow Jung ightarrow Hayes).
- N is non-prime (Ge), N has property Gamma (Jung).
- $oldsymbol{0}$ N is generated by two hyperfinite subalgebras with diffuse intersection (Jung).

- lacktriangledown N has a diffuse quasi-regular hyperfinite subalgebra (Voiculescu ightarrow Jung ightarrow Hayes).
- N is non-prime (Ge), N has property Gamma (Jung).
- **3** *N* is generated by two hyperfinite subalgebras with diffuse intersection (Jung).

- $\textbf{0} \ \ \textit{N} \ \ \text{has a diffuse quasi-regular hyperfinite subalgebra} \ \ \text{(Voiculescu} \ \rightarrow \ \text{Jung} \ \rightarrow \ \text{Hayes)}.$
- N is non-prime (Ge), N has property Gamma (Jung).
- **3** *N* is generated by two hyperfinite subalgebras with diffuse intersection (Jung).

For the following, $h(N) < \infty$.

1 $N = L(\Gamma)$ where Γ is a finitely presented sofic group with vanishing first L^2 -Betti number (Shlyakhtenko, Jung, H-J-KE'21B).

- $\textbf{0} \ \ \textit{N} \ \ \text{has a diffuse quasi-regular hyperfinite subalgebra} \ \ \text{(Voiculescu} \ \rightarrow \ \text{Jung} \ \rightarrow \ \text{Hayes)}.$
- N is non-prime (Ge), N has property Gamma (Jung).
- $oldsymbol{0}$ *N* is generated by two hyperfinite subalgebras with diffuse intersection (Jung).

- $N = L(\Gamma)$ where Γ is a finitely presented sofic group with vanishing first L^2 -Betti number (Shlyakhtenko, Jung, H-J-KE'21B).
- ② N is a free orthogonal quantum group von Neumann algebra (Brannan-Vergnioux).

- $\textbf{0} \ \ \textit{N} \ \ \text{has a diffuse quasi-regular hyperfinite subalgebra} \ \ \text{(Voiculescu} \ \rightarrow \ \text{Jung} \ \rightarrow \ \text{Hayes)}.$
- N is non-prime (Ge), N has property Gamma (Jung).
- $oldsymbol{0}$ N is generated by two hyperfinite subalgebras with diffuse intersection (Jung).

- $N = L(\Gamma)$ where Γ is a finitely presented sofic group with vanishing first L^2 -Betti number (Shlyakhtenko, Jung, H-J-KE'21B).
- ② N is a free orthogonal quantum group von Neumann algebra (Brannan-Vergnioux).
- N has Property (T) (H-J-KE'21A).

- $\textbf{0} \ \ \textit{N} \ \ \text{has a diffuse quasi-regular hyperfinite subalgebra} \ \ \text{(Voiculescu} \ \rightarrow \ \text{Jung} \ \rightarrow \ \text{Hayes)}.$
- N is non-prime (Ge), N has property Gamma (Jung).
- $oldsymbol{0}$ N is generated by two hyperfinite subalgebras with diffuse intersection (Jung).

- $N = L(\Gamma)$ where Γ is a finitely presented sofic group with vanishing first L^2 -Betti number (Shlyakhtenko, Jung, H-J-KE'21B).
- ② N is a free orthogonal quantum group von Neumann algebra (Brannan-Vergnioux).
- N has Property (T) (H-J-KE'21A).
- N is a graph product of finite dimensional von Neumann algebras, with vanishing cohomology (AIM Hexagon).
- **3** First example of ultrapower of non Gamma factor M with $h(M) \leq 0$ (CIKE'23).

• $N_1 * N_2$ where (N_1, τ_1) and (N_2, τ_2) are Connes-embeddable diffuse tracial von Neumann algebras (Jung).

- $N_1 * N_2$ where (N_1, τ_1) and (N_2, τ_2) are Connes-embeddable diffuse tracial von Neumann algebras (Jung).
- 2 The free perturbation algebras of Voiculescu (Brown).

- $N_1 * N_2$ where (N_1, τ_1) and (N_2, τ_2) are Connes-embeddable diffuse tracial von Neumann algebras (Jung).
- 2 The free perturbation algebras of Voiculescu (Brown).
- **3** Certain examples of amalgamated free products $N_1 *_B N_2$ where B is amenable (Brown-Dykema-Jung).

Examples of $h(N) = \infty$

- $N_1 * N_2$ where (N_1, τ_1) and (N_2, τ_2) are Connes-embeddable diffuse tracial von Neumann algebras (Jung).
- 2 The free perturbation algebras of Voiculescu (Brown).
- **3** Certain examples of amalgamated free products $N_1 *_B N_2$ where B is amenable (Brown-Dykema-Jung).
- **①** Von Neumann algebras of Connes-embeddable nonamenable groups Γ admitting non inner cocycles $c:\Gamma\to\mathbb{C}\Gamma$ (Shlyakhtenko).

Examples of $h(N) = \infty$

- $N_1 * N_2$ where (N_1, τ_1) and (N_2, τ_2) are Connes-embeddable diffuse tracial von Neumann algebras (Jung).
- 2 The free perturbation algebras of Voiculescu (Brown).
- **3** Certain examples of amalgamated free products $N_1 *_B N_2$ where B is amenable (Brown-Dykema-Jung).
- Von Neumann algebras of Connes-embeddable nonamenable groups Γ admitting non inner cocycles $c: \Gamma \to \mathbb{C}\Gamma$ (Shlyakhtenko).
- Matrix ultraproducts (Jekel).

Examples of $h(N) = \infty$

- $N_1 * N_2$ where (N_1, τ_1) and (N_2, τ_2) are Connes-embeddable diffuse tracial von Neumann algebras (Jung).
- 2 The free perturbation algebras of Voiculescu (Brown).
- **3** Certain examples of amalgamated free products $N_1 *_B N_2$ where B is amenable (Brown-Dykema-Jung).
- Von Neumann algebras of Connes-embeddable nonamenable groups Γ admitting non inner cocycles $c: \Gamma \to \mathbb{C}\Gamma$ (Shlyakhtenko).
- Matrix ultraproducts (Jekel).
- **6** $L(\Gamma)$ where Γ is a hyperbolic tower in the sense of Sela (KE'22).

Definition:

Let (M, τ) be a tracial von Neumann algebra. We say that $P \leq M$ is Pinsker if $h(P:M) \leq 0$ and for any $P \leq Q \leq M$ with $P \neq Q$ we have h(Q:M) > 0.

If $Q \leq M$ is diffuse and $h(Q:M) \leq 0$, then there is a unique Pinsker algebra $P \leq M$ with $Q \subseteq P$. E.g.

$$P = \bigvee_{N \le M, N \supseteq Q, h(N:M) \le 0} N.$$

We say P the Pinsker algebra of $Q \subseteq M$.

Theorem: (Hayes, BC1, BC2)

Fix $r \in \mathbb{N} \cup \{\infty\}$. Then:

- $extbf{Q} \quad Q \leq L(\mathbb{F}_r)$ is amenable if and only if $h(Q:L(\mathbb{F}_r)) = 0$,
- $P \leq L(\mathbb{F}_r)$ is Pinsker if and only if it is maximal amenable.

For an inclusion $N \leq M$ of tracial von Neumann algebras, we let

$$\mathcal{H}_{\mathsf{anti-c}}(\mathsf{N} \leq \mathsf{M}) = \bigcap_{\mathsf{T} \in \mathsf{Hom}_{\mathsf{N}-\mathsf{N}}(\mathsf{L}^2(\mathsf{M}),\mathsf{L}^2(\mathsf{N}) \otimes \mathsf{L}^2(\mathsf{N}))} \mathsf{ker}(\mathsf{T}).$$

Where $\operatorname{Hom}_{N-N}(L^2(M), L^2(N) \otimes L^2(N))$ is the space of bounded, linear, N-N bimodular maps $T: L^2(M) \to L^2(N) \otimes L^2(N)$.

For an inclusion $N \leq M$ of tracial von Neumann algebras, we let

$$\mathcal{H}_{\mathsf{anti-c}}(\mathsf{N} \leq \mathsf{M}) = \bigcap_{\mathsf{T} \in \mathsf{Hom}_{\mathsf{N}-\mathsf{N}}(\mathsf{L}^2(\mathsf{M}), \mathsf{L}^2(\mathsf{N}) \otimes \mathsf{L}^2(\mathsf{N}))} \mathsf{ker}(\mathsf{T}).$$

Where $\operatorname{Hom}_{N-N}(L^2(M), L^2(N) \otimes L^2(N)$ is the space of bounded, linear, N-N bimodular maps $T: L^2(M) \to L^2(N) \otimes L^2(N)$.

This contains by Hayes the following generalizations of the normalizer of $N \leq M$

$$q^{1}\mathcal{N}_{M}(N) = \left\{ x \in M : \text{ there exists } x_{1}, \cdots, x_{n} \in M \text{ so that } xN \subseteq \sum_{j=1}^{n} Nx_{j} \right\}.$$

$$\mathcal{N}_{M}^{wq}(N) = \{ u \in \mathcal{U}(M) : uNu^{*} \cap N \text{ is diffuse} \}.$$

Definition

Let (M, τ) be a tracial von Neumann algebra. For $Q, P \leq M$ diffuse, we define the intertwining space from Q to P inside M, denoted $I_M(Q, P)$, to be the set of $\xi \in L^2(M)$ so that

$$\overline{\mathsf{Span}\{a\xi b:a\in Q,b\in P\}}^{\|\cdot\|_2}$$

has finite dimension as a right P-module. We define the weak intertwining space from Q to P inside M by

$$wI_M(Q, P) = \bigcup_{Q_0 < Q \text{ diffuse}} I_M(Q_0, P).$$

Definition

Let (M, τ) be a tracial von Neumann algebra. For $Q, P \leq M$ diffuse, we define the intertwining space from Q to P inside M, denoted $I_M(Q, P)$, to be the set of $\xi \in L^2(M)$ so that

$$\overline{\mathsf{Span}\{a\xi b:a\in Q,b\in P\}}^{\|\cdot\|_2}$$

has finite dimension as a right P-module. We define the weak intertwining space from Q to P inside M by

$$wI_M(Q, P) = \bigcup_{Q_0 < Q \text{ diffuse}} I_M(Q_0, P).$$

One can show that

$$wI_M(Q,Q)\subseteq \mathcal{H}_{\mathsf{anti-c}}(Q\leq M).$$

Theorem (Hayes 16)

$$h(W^*(\mathcal{H}_{anti-c}(N \leq M)) : M) = h(N : M)$$
 if $N \leq M$ is diffuse.

Theorem 1 (HJKE'23)

Fix t > 1. Then $Q \leq L(\mathbb{F}_t)$ is amenable if and only if $h(Q : L(\mathbb{F}_t)) = 0$.

Theorem 2 (HJKE'23)

Let $M = L(\mathbb{F}_t)$ for some t > 1. For any maximal amenable $P \leq L(\mathbb{F}_t)$ we have that

$$_{P}(L^{2}(M) \ominus L^{2}(P))_{P} \leq [L^{2}(P) \otimes L^{2}(P)]^{\oplus \infty}.$$

Let $A \leq M$ is a maximal abelian *-subalgebra. Write $A = L^{\infty}(X, \mu)$. The representation

$$\pi\colon C(X)\otimes C(X)\to B(L^2(M)\ominus L^2(A))$$

given by

$$\pi(f\otimes g)\xi=f\xi g,$$

gives rise to a spectral measure E on $X \times X$ whose marginals are Radon-Nikodym equivalent to μ . We say that $\nu \in \operatorname{Prob}(X \times X)$ is a <u>left/right measure</u> of $A \leq M$ if it is Radon-Nikodym equivalent to E.

Let $A \leq M$ is a maximal abelian *-subalgebra. Write $A = L^{\infty}(X, \mu)$. The representation

$$\pi\colon C(X)\otimes C(X)\to B(L^2(M)\ominus L^2(A))$$

given by

$$\pi(f\otimes g)\xi=f\xi g,$$

gives rise to a spectral measure E on $X \times X$ whose marginals are Radon-Nikodym equivalent to μ . We say that $\nu \in \operatorname{Prob}(X \times X)$ is a <u>left/right measure</u> of $A \leq M$ if it is Radon-Nikodym equivalent to E.

Let $A \leq M$ is a maximal abelian *-subalgebra. Write $A = L^{\infty}(X, \mu)$. The representation

$$\pi\colon C(X)\otimes C(X)\to B(L^2(M)\ominus L^2(A))$$

given by

$$\pi(f\otimes g)\xi=f\xi g,$$

gives rise to a spectral measure E on $X \times X$ whose marginals are Radon-Nikodym equivalent to μ . We say that $\nu \in \operatorname{Prob}(X \times X)$ is a <u>left/right measure</u> of $A \leq M$ if it is Radon-Nikodym equivalent to E.

Note that if ν is a left/right measure, and if $\phi\colon C(X)\otimes C(X)\to L^\infty(X\times X,\nu)$ is the map sending an element of $C(X)\otimes C(X)\cong C(X\times X)$ to its $L^\infty(\nu)$ -equivalence class, then there is a unique normal *-isomorphism $\rho\colon L^\infty(X\times X,\nu)\to \overline{\pi(C(X)\otimes C(X))}^{SOT}$ so that $\pi=\rho\circ\phi$.

Theorem 3 (HJKE'23)

Let $M=L(\mathbb{F}_t)$ for t>1. Suppose that $A\leq M$ is abelian and a maximal amenable subalgebra of M. Write $A=L^\infty(X,\mu)$ for some compact metrizable space X and some Borel probability measure on X. Then the left/right measure of $A\leq M$ is absolutely continuous with respect to $\mu\otimes\mu$.

Theorem 3 (HJKE'23)

Let $M=L(\mathbb{F}_t)$ for t>1. Suppose that $A\leq M$ is abelian and a maximal amenable subalgebra of M. Write $A=L^\infty(X,\mu)$ for some compact metrizable space X and some Borel probability measure on X. Then the left/right measure of $A\leq M$ is absolutely continuous with respect to $\mu\otimes\mu$.

Given a free ultrafilter $\omega \in \beta \mathbb{N} \setminus \mathbb{N}$ we say that M is spectrally ω -solid if for any diffuse, amenable $Q \leq M^{\omega}$ we have that $W^*(\mathcal{H}_{\operatorname{anti-c}}(Q \leq M^{\omega})) \cap M$ is amenable. We say that M is spectrally ultrasolid if it is spectrally ω -solid for every free ultrafilter ω .

Theorem 3 (HJKE'23)

Let $M=L(\mathbb{F}_t)$ for t>1. Suppose that $A\leq M$ is abelian and a maximal amenable subalgebra of M. Write $A=L^\infty(X,\mu)$ for some compact metrizable space X and some Borel probability measure on X. Then the left/right measure of $A\leq M$ is absolutely continuous with respect to $\mu\otimes\mu$.

Given a free ultrafilter $\omega \in \beta \mathbb{N} \setminus \mathbb{N}$ we say that M is spectrally ω -solid if for any diffuse, amenable $Q \leq M^{\omega}$ we have that $W^*(\mathcal{H}_{\text{anti-c}}(Q \leq M^{\omega})) \cap M$ is amenable. We say that M is spectrally ultrasolid if it is spectrally ω -solid for every free ultrafilter ω .

Theorem 4 (HJKE'23)

We have that $L(\mathbb{F}_t)$ is spectrally ultrasolid. If $Q \leq L(\mathbb{F}_t)$, $\omega \in \beta \mathbb{N} \setminus \mathbb{N}$ is a free ultrafilter and $Q' \cap L(\mathbb{F}_t)^{\omega}$ is diffuse, then Q is amenable.

If M is a finite von Neumann algebra, and $P,Q \leq M$ we say that a corner of Q intertwines into P inside of M and write $Q \prec P$ if there are nonzero projections $f \in Q$, $e \in P$, a unital *-homomorphism $\Theta \colon fQf \to ePe$ and a nonzero partial isometry $v \in M$ so that:

- $xv = v\Theta(x)$ for all $x \in fQf$,
- $vv^* \in (fQf)' \cap fMf$,
- $v^*v \in \Theta(fqf)' \cap eMe$.

If M is a finite von Neumann algebra, and $P,Q \leq M$ we say that a corner of Q intertwines into P inside of M and write $Q \prec P$ if there are nonzero projections $f \in Q$, $e \in P$, a unital *-homomorphism $\Theta \colon fQf \to ePe$ and a nonzero partial isometry $v \in M$ so that:

- $xv = v\Theta(x)$ for all $x \in fQf$,
- $vv^* \in (fQf)' \cap fMf$,
- $v^*v \in \Theta(fqf)' \cap eMe$.

Theorem 5 (HJKE'23)

Fix t > 1, and let Q, P be maximal amenable subalgebras of $L(\mathbb{F}_t)$. Then exactly one of the following occurs:

- either there are nonzero projections $e \in Q, f \in P$ and a unitary $u \in L(\mathbb{F}F_t)$ so that $u^*(ePe)u = fQf$, or
- ② for any diffuse $Q_0 \leq Q$ we have that $Q_0 \not\prec P$.

In particular, if Q, P are hyperfinite subfactors of $L\mathbb{F}_t$) that are maximal amenable subalgebras in $L(\mathbb{F}_t)$, then either they are unitarily conjugate or no corner of any diffuse subalgebra of one can be intertwined into the other inside of $L(\mathbb{F}_t)$.

Theorem 6 (HJKE'23)

Let t>1 and let $N\leq L(\mathbb{F}_t)$ be a nonamenable subfactor. Then there is a free ultrafilter ω and an embedding $\iota\colon N\to\prod_{k\to\omega}M_k(\mathbb{C})$ with $\iota(N)'\cap\prod_{k\to\omega}M_k(\mathbb{C})=\mathbb{C}1$.

Theorem 6 (HJKE'23)

Let t>1 and let $N\leq L(\mathbb{F}_t)$ be a nonamenable subfactor. Then there is a free ultrafilter ω and an embedding $\iota\colon N\to\prod_{k\to\omega}M_k(\mathbb{C})$ with $\iota(N)'\cap\prod_{k\to\omega}M_k(\mathbb{C})=\mathbb{C}1$.

Stay tuned until next episode of free entropy theory and Peterson Thom conjecture!