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C⟨t1, · · · , td⟩: *-algebra of noncommutative *-polynomials in d formal variables t1, . . . ,
td .

If A is any ∗-algebra, and x = (x1, · · · , xd) ∈ Ad is a self-adjoint tuple, then there is a
unique ∗-homomorphism C⟨t1, · · · , td⟩ → A which sends tj to xj .

Definition

Given a tracial von Neumann algebra (M, τ) and x ∈ Md
sa, we define the law of x ,

denoted ℓx , to be the linear functional ℓx : C⟨t1, · · · , td⟩ → C given by

ℓx(f ) = τ(f (x)).

Σd,R : set of all linear maps C⟨t1, . . . , td⟩ → C arising as the law of some tuple in a tracial
von Neumann algebra.

Equip Σd,R with the weak∗ topology (topology of pointwise convergence on
C⟨t1, . . . , td⟩).
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Voiculescu’s microstate space

Let (M, τ) be a diffuse tracial von Neumann algebra, and X ,Y ⊂ Msa finite such that
∥x∥ ≤ R for all x ∈ X ∪ Y . For each weak∗ neighborhood O of ℓX⊔Y in Σd,R and n ∈ N,
we define

Γ
(n)
R (X : Y ;O) = {A ∈ Mn(C)Xsa : ∃B ∈ Mn(C)Ysa | ℓA⊔B ∈ O, ∥Ax∥, ∥By∥ ≤ R}.

Orbital covering numbers

We say that Ξ orbitally (ε, ∥ · ∥2)-covers Ω if for every A ∈ Ω, there is a B ∈ Ξ and an
n × n unitary matrix V so that ∥A− VBV ∗∥2 < ε.Define the orbital covering number
K orb

ε (Ω, ∥ · ∥2) as the minimal cardinality of a set that orbitally (ε, ∥ · ∥2)-covers Ω.
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Let X ,Y ⊂ Msa not necessarily finite, satisfying X ′′ ⊂ Y ′′ and ∥x∥ ≤ R for all
x ∈ X ∪Y . Let F ,G be finite subsets of X , Y respectively. For a weak∗-neighborhood O
of ℓX⊔Y , we define

hε(F : G ;O) := lim sup
n→∞

1

n2
logK orb

ε (Γ
(n)
R (F : G ;O)),

hε(F : G) := inf
O∋ℓF⊔G

hε(O),

hε(X : Y ) := sup
F⊂finiteX

inf
G⊂finiteY

hε(F : G)

h(X : Y ) := sup
ϵ>0

hε(X : Y )

Theorem (Jung, Hayes):

h(X1 : Y1) = h(X2 : Y2) if X
′′
1 = X ′′

2 and Y ′′
1 = Y ′′

2

Definition (Jung, Hayes):

M is strongly 1-bounded if −∞ < h(M) < ∞.
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Fact 1:

h(M) = h(M : M) for every tracial von Neumann algebra (M, τ).

Fact 2:

Suppose N ≤ M. Then h(N : M) ≥ 0 if M embeds into an ultrapower of R, and
h(N : M) = −∞ if M does not embed into an ultrapower of R.

Fact 3:

h(N1 : M1) ≤ h(N2 : M2) if N1 ⊂ N2 ⊂ M2 ⊂ M1 and N1 is diffuse.

Fact 4:

h(N : M) ≤ 0 if N ≤ M and N is hyperfinite.

Fact 5:

h(M) = ∞ if M is diffuse, and M = W∗(x1, · · · , xn) where xj ∈ Msa for all 1 ≤ j ≤ n and
δ0(x1, · · · , xn) > 1. For example this applies if M = L(Fn), for n > 1.
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Lemma 1:

h(N : M) = h(N : MU ) if N ⊂ M is diffuse, and U is an ultrafilter on a set I . In
particular, h(MU ) ≥ h(M).

Lemma 2:

h(N1 ∨ N2 : M) ≤ h(N1 : M) + h(N2 : M) if N1,N2 ⊂ M and N1 ∩ N2 is diffuse. In
particular, h(N1 ∨ N2) ≤ h(N1) + h(N2).

Lemma 3:

Suppose that (Nα)α is an increasing chain of diffuse von Neumann subalgebras of a von
Neumann algebra M. Then

h

(∨
α

Nα : M

)
= sup

α
h(Nα : M).
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Lemma 4:

Let I be a countable set, and M =
⊕

i∈I Mi with Mi diffuse for all i . Suppose that τ is a
faithful trace on M, and that λi is the trace of the identity on Mi . Endow Mi with the

trace τi =
τ |Mi
λi

. Then

h(M, τ) ≤
∑
i

λ2
i h(Mi , τi ).

Lemma 5:

If z ∈ P(Z(M)), N ≤ M and h(N : M) ≤ 0, then h(Nz : Mz) ≤ 0.

Lemma 6:

h(pNp : pMp) = 1
τ(p)2

h(N : M), if N ≤ M is diffuse, p is a nonzero projection in N, and

M is a factor.
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Examples of h(N) < ∞
1 N has a diffuse quasi-regular hyperfinite subalgebra (Voiculescu → Jung → Hayes).

2 N is non-prime (Ge), N has property Gamma (Jung).

3 N is generated by two hyperfinite subalgebras with diffuse intersection (Jung).

For the following, h(N) < ∞.

1 N = L(Γ) where Γ is a finitely presented sofic group with vanishing first L2-Betti
number (Shlyakhtenko, Jung, H-J-KE’21B).

2 N is a free orthogonal quantum group von Neumann algebra (Brannan-Vergnioux).

3 N has Property (T) (H-J-KE’21A).

4 N is a graph product of finite dimensional von Neumann algebras, with vanishing
cohomology (AIM Hexagon).

5 First example of ultrapower of non Gamma factor M with h(M) ≤ 0 (CIKE’23).
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Examples of h(N) = ∞
1 N1 ∗ N2 where (N1, τ1) and (N2, τ2) are Connes-embeddable diffuse tracial von

Neumann algebras (Jung).

2 The free perturbation algebras of Voiculescu (Brown).

3 Certain examples of amalgamated free products N1 ∗B N2 where B is amenable
(Brown-Dykema-Jung).

4 Von Neumann algebras of Connes-embeddable nonamenable groups Γ admitting non
inner cocycles c : Γ → CΓ (Shlyakhtenko).

5 Matrix ultraproducts (Jekel).

6 L(Γ) where Γ is a hyperbolic tower in the sense of Sela (KE’22).
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Definition:

Let (M, τ) be a tracial von Neumann algebra. We say that P ≤ M is Pinsker if
h(P : M) ≤ 0 and for any P ≤ Q ≤ M with P ̸= Q we have h(Q : M) > 0.

If Q ≤ M is diffuse and h(Q : M) ≤ 0, then there is a unique Pinsker algebra P ≤ M
with Q ⊆ P. E.g.

P =
∨

N≤M,N⊇Q,h(N:M)≤0

N.

We say P the Pinsker algebra of Q ⊆ M.

Theorem: (Hayes, BC1, BC2)

Fix r ∈ N ∪ {∞}. Then:
(i) Q ≤ L(Fr ) is amenable if and only if h(Q : L(Fr )) = 0,

(ii) P ≤ L(Fr ) is Pinsker if and only if it is maximal amenable.
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For an inclusion N ≤ M of tracial von Neumann algebras, we let

Hanti-c(N ≤ M) =
⋂

T∈HomN−N (L2(M),L2(N)⊗L2(N))

ker(T ).

Where HomN−N(L
2(M), L2(N)⊗ L2(N) is the space of bounded, linear, N-N bimodular

maps T : L2(M) → L2(N)⊗ L2(N).

This contains by Hayes the following generalizations of the normalizer of N ≤ M

q1NM(N) =

{
x ∈ M : there exists x1, · · · , xn ∈ M so that xN ⊆

n∑
j=1

Nxj

}
.

N wq
M (N) = {u ∈ U(M) : uNu∗ ∩ N is diffuse}.
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Definition

Let (M, τ) be a tracial von Neumann algebra. For Q,P ≤ M diffuse, we define the
intertwining space from Q to P inside M, denoted IM(Q,P), to be the set of ξ ∈ L2(M)
so that

Span{aξb : a ∈ Q, b ∈ P}
∥·∥2

has finite dimension as a right P-module. We define the weak intertwining space from Q
to P inside M by

wIM(Q,P) =
⋃

Q0≤Q diffuse

IM(Q0,P).

One can show that
wIM(Q,Q) ⊆ Hanti-c(Q ≤ M).

Theorem (Hayes 16)

h(W ∗(Hanti-c(N ≤ M)) : M) = h(N : M) if N ≤ M is diffuse.
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Theorem 1 (HJKE’23)

Fix t > 1. Then Q ≤ L(Ft) is amenable if and only if h(Q : L(Ft)) = 0.

Theorem 2 (HJKE’23)

Let M = L(Ft) for some t > 1. For any maximal amenable P ≤ L(Ft) we have that

P(L
2(M)⊖ L2(P))P ≤ [L2(P)⊗ L2(P)]⊕∞.
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Let A ≤ M is a maximal abelian ∗-subalgebra. Write A = L∞(X , µ). The representation

π : C(X )⊗ C(X ) → B(L2(M)⊖ L2(A))

given by
π(f ⊗ g)ξ = f ξg ,

gives rise to a spectral measure E on X × X whose marginals are Radon-Nikodym
equivalent to µ. We say that ν ∈ Prob(X × X ) is a left/right measure of A ≤ M if it is
Radon-Nikodym equivalent to E .

Note that if ν is a left/right measure, and if ϕ : C(X )⊗ C(X ) → L∞(X × X , ν) is the
map sending an element of C(X )⊗ C(X ) ∼= C(X × X ) to its L∞(ν)-equivalence class,

then there is a unique normal ∗-isomorphism ρ : L∞(X × X , ν) → π(C(X )⊗ C(X ))
SOT

so that π = ρ ◦ ϕ.
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Theorem 3 (HJKE’23)

Let M = L(Ft) for t > 1. Suppose that A ≤ M is abelian and a maximal amenable
subalgebra of M. Write A = L∞(X , µ) for some compact metrizable space X and some
Borel probability measure on X . Then the left/right measure of A ≤ M is absolutely
continuous with respect to µ⊗ µ.

Given a free ultrafilter ω ∈ βN \ N we say that M is spectrally ω-solid if for any diffuse,
amenable Q ≤ Mω we have that W ∗(Hanti-c(Q ≤ Mω)) ∩M is amenable. We say that
M is spectrally ultrasolid if it is spectrally ω-solid for every free ultrafilter ω.

Theorem 4 (HJKE’23)

We have that L(Ft) is spectrally ultrasolid. If Q ≤ L(Ft), ω ∈ βN \ N is a free ultrafilter
and Q ′ ∩ L(Ft)

ω is diffuse, then Q is amenable.
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If M is a finite von Neumann algebra, and P,Q ≤ M we say that a corner of Q
intertwines into P inside of M and write Q ≺ P if there are nonzero projections f ∈ Q,
e ∈ P, a unital ∗-homomorphism Θ: fQf → ePe and a nonzero partial isometry v ∈ M
so that:

xv = vΘ(x) for all x ∈ fQf ,

vv∗ ∈ (fQf )′ ∩ fMf ,

v∗v ∈ Θ(fqf )′ ∩ eMe.

Theorem 5 (HJKE’23)

Fix t > 1, and let Q,P be maximal amenable subalgebras of L(Ft). Then exactly one of
the following occurs:

1 either there are nonzero projections e ∈ Q, f ∈ P and a unitary u ∈ L(FFt) so that
u∗(ePe)u = fQf , or

2 for any diffuse Q0 ≤ Q we have that Q0 ⊀ P.

In particular, if Q,P are hyperfinite subfactors of LFt) that are maximal amenable
subalgebras in L(Ft), then either they are unitarily conjugate or no corner of any diffuse
subalgebra of one can be intertwined into the other inside of L(Ft).
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Theorem 6 (HJKE’23)

Let t > 1 and let N ≤ L(Ft) be a nonamenable subfactor. Then there is a free ultrafilter
ω and an embedding ι : N →

∏
k→ω Mk(C) with ι(N)′ ∩

∏
k→ω Mk(C) = C1.

Stay tuned until next episode of free entropy theory and Peterson Thom conjecture!
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