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Setting
Let (A, τ) be a noncommutative probability space. That is, A is a unital algebra
equipped with an involution (a∗)∗ = a and a tracial faithful state τ , that is,

1 τ(1) = 1;
2 τ(ab) = τ(ba);
3 τ(aa∗) ≥ 0 and equality holds iff a = 0.

Examples of such spaces are (L∞(P),E) and (Mn(C), tr /n). The distribution of
a = a∗ ∈ A is given by

{τ(an) : n ∈ N}; τ(an) =

∫
xn dµa.

The convergence in distribution is characterized by the convergence of the moments.
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Tensor product

Let (A1, τ1) and (A2, τ2) be two noncommutative probability spaces. We equipped the
tensor product A1 ⊗A2 with the trace τ1 ⊗ τ2 such that

τ1 ⊗ τ2(a1 ⊗ a2) = τ1(a1)τ2(a2),

and extended by linearity. The space (A1 ⊗A2, τ1 ⊗ τ2) is again a noncommutative
probability space.
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Freeness

Definition 1
We say that subalgebras A1, . . . ,Ad ⊆ A are free if

τ(a1 · · · ak) = 0,

whenever
1 k ≥ 0;
2 ai ∈ Aji , τ(ai ) = 0, ji ∈ [d ], for all i ∈ [k];
3 j1 ̸= j2, . . . , jk−1 ̸= jk .

Random variables a1, . . . , ad ∈ A are free whenever their spanning algebras are.
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Free central limit theorem

Theorem 1 (Voiculescu - ’85)

Let a, a1, . . . , an ∈ A be free i.i.d self-adjoint random variables with mean λ = τ(a) and
variance σ2 = var(a). Then

Sn =
1

σ
√
n

∑
k∈[n]

ak − λ

converges in distribution to the semi-circle law µsc , whose density is given by

f (x) =
1
2π

√
4 − x21|x |≤2.
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Model

Let a, a1, . . . , an ∈ A be free i.i.d self-adjoint random variables with mean λ = τ(a) and
variance σ2 = var(a). Let bk ∈ A⊗A given by

bk =
ak ⊗ ak − τ ⊗ τ(a⊗ a)√

var(a⊗ a)
.

We are interested in the central limit theorem for bk , namely, the convergence in
distribution of

Sn :=
1√
n

∑
k∈[n]

bk . (1)
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Motivation - Quantum channels

Consider Mk ∈ Md(C) self-adjoint i.i.d random matrices. A random quantum channel
can be described as

M :=
1√
n

∑
k∈[n]

Mi ⊗M i − EMi ⊗Mi .

Under some conditions [Lancien, S., Youssef - ’23], the spectral distribution of M
converges as d goes to infinity to

Sn =
1√
n

∑
k∈[n]

ak ⊗ ak − τ ⊗ τ(ak ⊗ ak).
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Model

Let δ2 = var(b1) = σ2(σ2 + 2λ2). Then, we can rewrite

Sn =
1

δ
√
n

∑
k∈[n]

ak ⊗ ak − λ2.

Remark 1.1
Even though the variables ak are free, the variables ak ⊗ ak are not usually free. This
was proved by Collins-Lamarre 2016. So, the usual free central limit theorem is not
applicable.
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Result

Theorem 2 (L. S. Y - ’24)

Let a, a1, . . . , an ∈ A be free i.i.d self-adjoint random variables with mean λ = τ(a) and
variance σ2 = var(a). Let

q =
2λ2

σ2 + 2λ2 ∈ [0, 1].

Then the normalized sums Sn for bk converges in distribution to

µq :=
√
q

(
1√
2
µsc +

1√
2
µsc

)
⊞
√

1 − q µsc .
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Scheme

Theorem 3 (Bozejko-Speicher - ’93)

Let c1, . . . , cn be exchangeable centered random variables. Suppose that
τ(ci1 · · · cik ) = 0 whenever there exists an indice il different from the rest. Then

Sn =
1√
n

∑
k∈[n]

ck

converges in distribution and

lim
n→∞

τ(Sp
n ) =

∑
π∈P2(p)

τ(π).
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Scheme
1 The condition over ci is called the centering condition.

2 The set P2(p) is the set of pair partitions of p, namely, the partitions
π = {V1, . . . ,Vp/2} such that ⋃

j∈[p/2]

Vj = [p],

and |Vj | = 2 for each j ∈ [p/2].
3 For a partition π ∈ P(p), we define

τ(π) = τ(ci1 · · · cip),

where ik = ij if and only if j , k are in the same block of π.
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Centering of tensors

1 For δc = δb = a⊗ a− λ2 and π ∈ P(p), we have

δpτ ⊗ τ(π) =
∑
I⊆[p]

(−1)|I |λ2|I |τ2

 →∏
j∈I c

aij

 .

2 If {1} ∈ π, we have

δpτ ⊗ τ(π) = δpτ ⊗ τ
(
(ai1 ⊗ ai1)bi2 · · · bip

)
− λ2δpτ ⊗ τ(bi2 · · · bip)

= 0.
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Decomposition of partitions

1 If π can be decomposed into small partitions, say, π = π1 ⊞ π2, then

τ ⊗ τ(π) = τ ⊗ τ(π1)τ ⊗ τ(π2).

2 τ ⊗ τ(π) is then a multiplicative function on

P(∞) :=
⋃
n∈N

P(n).
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Decomposition of partitions

1 42 53 6 7 98 10

1 92 73 54 6 8 10
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Type of partitions

1 We say that π ∈ P2(p) has a crossing if there exists i < k < j < l such that
V = {i , j} ∈ π and U = {k , l} ∈ π. In this case, we say that V crosses U.

2 A noncrossing pair partition π ∈ NC2(p) is a partition such that all of its blocks
are noncrossing.

3 A partition is connected if it cannot be decomposed into nontrivial subpartitions.
The set of connected pair partitions is denoted by Pcon

2 (p).
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Intersection graph

1 Given a partition π = {V1, . . . ,Vp/2} ∈ P2(p), we define its intersection graph
G (π) as follows. The vertices of G (π) are the blocks V1, . . . ,Vp/2, and there
exists an edge between Vi and Vj if they cross.

2 We denote cc(π) the number of connected components of G (π), ncr(π) the
number of isolated vertices of G (π) and cr(π) the number of non-isolated vertices,
that is,

cr(π) + ncr(π) = p/2.
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Examples

1 42 73 65 8

(a) Connected partition

1 2 3 54 86 7

(b) General partition

1 62 3 4 5 7 8

(c) Noncrossing partition
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The free cumulants of pair partitions

Consider π ∈ P2(p). We decompose π into its connected components. Namely, let
π̂ ∈ NC (p) be the choice of connected components and for each T ∈ π̂, we draw
πT ∈ Pcon

2 (T ). Hence

|P2(p)| =
∑

π̂∈NC(p)

∏
T∈π̂

|Pcon
2 (T )|.

The mapping Φ(π) = (π̂, (πT )T∈π̂) is a bijection (Lehner - ’01).
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Bijection Φ

(a) π (b) π̂

(c) π{1,2,3,4} (d) π{5,8} ∼= π{6,7}

Figure: A partition π and its image Φ(π).
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Decomposition of τ(π)

1 Using Φ and the fact that τ ⊗ τ(π) is multiplicative, we get

∑
π∈P2(p)

τ ⊗ τ(π) =
∑

π̂∈NC(p)

∏
T∈π̂

 ∑
πT∈Pcon

2 (T )

τ ⊗ τ(πT )

 .

2 If |T | = 2, we have τ ⊗ τ(πT ) = 1.

Corollary 1

If π ∈ NC2(p), we have τ ⊗ τ(π) = 1.
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Bipartite pair partitions

Definition 2

Let π ∈ P2(p). We say that π is a bipartite pair partition and is denoted by π ∈ Pbi
2 (p)

if G (π) is bipartite. We denote π ∈ Pbicon
2 (p) if π is connected and bipartite.

Proposition 1

Let π ∈ Pcon
2 (p), for even integer p ≥ 4. Then, the following hold.

1 If π /∈ Pbicon
2 (p), then τ(π) = 0.

2 If π ∈ Pbicon
2 (p), then

τ ⊗ τ(π) = 2
(q

2

)p/2
.
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Proof’s outline

1 We label the blocks V1, . . . ,Vp/2 of π such that Vj crosses at least one Vl , for
l < j .

2 We remove the blocks Vj one at a time.
3 How do we remove each block?
4 How does each block affect the rest of the blocks?
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The first block

For simplicity, let us assume that δ = 1, then

q =
2λ2

σ2 + 2λ2 =
2σ2λ2

σ2(σ2 + 2λ2)
= 2σ2λ2.

Let V = {1, v} ∈ π be a block. Let I1 = {2, . . . , v − 1}, I2 = {v + 1, . . . , p}. Then

τ ⊗ τ(π) = τ ⊗ τ (bi1BI1bivBI2) .

Let aiv = a. Then

τ ⊗ τ(π) = τ ⊗ τ ((a⊗ a)BI1(a⊗ a)BI2)− λ4τ ⊗ τ (BI1BI2) .
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The first block

We then have

τ ⊗ τ ((a⊗ a)BI1(a⊗ a)BI2) =
∑
J1⊆I1
J2⊆I2

(−1)|J1|+|J2|λ2(|J1|+|J2|)τ2 (aaJc1aaJc2).
The variable a is free from {aJc1 , aJc2}. Then

τ
(
aaJc1aaJc2

)
= σ2τ(aJc1 )τ(aJc2 ) + λ2τ(aJc1aJc2 ).
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The first block

• λ4
∑
J1⊆I1
J2⊆I2

(−1)|J1|+|J2|λ2(|J1|+|J2|)τ2(aJc1aJc2 )= λ4τ ⊗ τ(BI1BI2)

• σ4
∑
J1⊆I1
J2⊆I2

(−1)|J1|+|J2|λ2(|J1|+|J2|)τ2(aJc1 )τ
2(aJc2 )= σ4τ ⊗ τ(BI1)τ ⊗ τ(BI2) = 0

• σ2λ2
∑
J1⊆I1
J2⊆I2

(−1)|J1|+|J2|λ2(|J1|+|J2|)τ(aJc1 )τ(aJc2 )τ(aJc1aJc2 )=?

• σ2λ2
∑
J1⊆I1
J2⊆I2

(−1)|J1|+|J2|λ2(|J1|+|J2|)τ(aJc1aJc2 )τ(aJc1 )τ(aJc2 )=?
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The first block
Let (ãk)k∈N be another free i.i.d family of copies of a, free independent from (ak)k∈N.
Let B1 be a vector such that

(B1)j = aij ⊗ ãij − λ2; j ∈ I1

(B1)j = aij ⊗ aij − λ2; j ∈ I2.

Consider τ ⊗ τ(π \ V ,V (1)) given by

τ ⊗ τ(π \ V ,V (1)) = τ ⊗ τ ((B1)I1(B1)I2) .

For comparison,

τ ⊗ τ(π \ V ) = τ ⊗ τ ((B)I1(B)I2) .
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The first block

We deduce that

τ ⊗ τ(π) = 2σ2λ2τ ⊗ τ(π \ V ,V (1)) = qτ ⊗ τ(π \ V ,V (1)).

In the first interaction, consider a block U = {u1, u2} that crosses V , say 1 < u1 < v ,
then

1 Variables in V : (ai1 ⊗ ai1 , aiv ⊗ aiv )− λ2;
2 Variables in U: (aiu1 ⊗ ãiu1 , aiu2 ⊗ aiu2 )− λ2 .
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Second block
Let a = aiu1 and assume that u2 = 2. Removing U now, we get

τ ⊗ τ(π \ V ,V (1)) = τ ⊗ τ
(
(a⊗ ã)(B1)I ′1(a⊗ a)(B1)I ′2

)
− λ4τ ⊗ τ

(
(B1)I ′1(B1)I ′2

)
.

We obtain

τ ⊗ τ
(
(a⊗ ã)(B1)I ′1(a⊗ a)(B1)I ′2

)
=

∑
J1⊆I ′1
J2⊆I ′2

(−1)|J1|+|J2|λ2(|J1|+|J2|)τ
(
aaJc1aaJc2

)
τ
(
ãāJc1aaJc2

)
,

where āij = ãij if j ∈ I1 or āij = aij if I2. Recall that

τ
(
aaJc1aaJc2

)
τ
(
ãāJc1aaJc2

)
=

(
σ2τ(aJc1 )τ(aJc2 ) + λ2τ(aJc1aJc2 )

)
λ2τ(āJc1aJc2 ).
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Second block

• λ4
∑
J1⊆I ′1
J2⊆I ′2

(−1)|J1|+|J2|λ2(|J1|+|J2|)τ(aJc1aJc2 )τ(āJc1aJc2 )= λ4τ ⊗ τ(π \ {V ,U},V (1))

• λ2σ2
∑
J1⊆I ′1
J2⊆I ′2

(−1)|J1|+|J2|λ2(|J1|+|J2|)τ(aJc1 )τ(aJc2 )τ(āJc1aJc2 )=
q

2
τ ⊗ τ(π \ {V ,U},V (1),U(0)).

Hence

τ ⊗ τ(π) = qτ ⊗ τ(π \ V ,V (1)) = q · q
2
τ ⊗ τ(π \ {V ,U},V (1),U(0)).
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Illustration

(a) Cycle C4

{1, 4}

{2, 7} {5, 8}

{3, 6}
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Illustration

(ai1 ⊗ ai1 , ai4 ⊗ ai4 )

(ai2 ⊗ ai2 , ai7 ⊗ ai7 ) (ai5 ⊗ ai5 , ai8 ⊗ ai8 )

(ai3 ⊗ ai3 , ai6 ⊗ ai6 )

(ai2 ⊗ ãi2 , ai7 ⊗ ai7 ) (ai5 ⊗ ai5 , ai8 ⊗ ai8 )

(ai3 ⊗ ãi3 , ai6 ⊗ ai6 )

(ãi5 ⊗ ai5 , ai8 ⊗ ai8 )

(ai3 ⊗ ãi3 , ai6 ⊗ ai6 ) (ai3 ⊗ ãi3 , ai6 ⊗ ai6 )
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Free cumulants

Let sq be the limiting law. By Lehner’s argument, its odd free cumulants κfreen (sq)
vanish, κfree2 (sq) = 1 and for n ≥ 2, we have

κfree2n (sq) = 2
(q

2

)n
|Pbicon

2 (2n)|.

Using the bijection Φ, it can be checked that

τ(s2p
q ) =

∑
π∈Pbi

2 (2p)

2cc(π)−pqcr(π).
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Limiting law
Recall that

µq :=
√
q

(
1√
2
µsc +

1√
2
µsc

)
⊞
√

1 − q µsc .

Since the free cumulants are multilinear and linearize the free convolution, it suffices to
check that s1 has distribution µ1.

Proposition 2

τ
(
(x1 + x2)

2p) = ∑
π∈Pbi

2 (2p)

2cc(π),

where x1, x2 are classical i.i.d semi-circle random variables.
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Combinatorics of bipartite pair partitions
1 Firstly, we have

τ
(
(x1 + x2)

2p) = p∑
l=0

(
2p
2l

)
ClCp−l = CpCp+1.

2 Note that∑
I⊆[2p]

| {(π1, π2) : π1 ∈ NC2(I ), π2 ∈ NC2(I
c)} | =

p∑
l=0

(
2p
2l

)
ClCp−l .

3 We must prove that∑
π∈Pbi

2 (2p)

2cc(π) =
∑

I⊆[2p]

| {(π1, π2) : π1 ∈ NC2(I ), π2 ∈ NC2(I
c)} |

Santos Tensor CLT



Introduction
Existence
Partitions

Contribution of noncrossing partitions
Contribution of connected partitions

Limiting Law
Perspectives

Combinatorics of bipartite pair partitions
1 Firstly, we have

τ
(
(x1 + x2)

2p) = p∑
l=0

(
2p
2l

)
ClCp−l = CpCp+1.

2 Note that∑
I⊆[2p]

| {(π1, π2) : π1 ∈ NC2(I ), π2 ∈ NC2(I
c)} | =

p∑
l=0

(
2p
2l

)
ClCp−l .

3 We must prove that∑
π∈Pbi

2 (2p)

2cc(π) =
∑

I⊆[2p]

| {(π1, π2) : π1 ∈ NC2(I ), π2 ∈ NC2(I
c)} |

Santos Tensor CLT



Introduction
Existence
Partitions

Contribution of noncrossing partitions
Contribution of connected partitions

Limiting Law
Perspectives

Combinatorics of bipartite pair partitions
1 Firstly, we have

τ
(
(x1 + x2)

2p) = p∑
l=0

(
2p
2l

)
ClCp−l = CpCp+1.

2 Note that∑
I⊆[2p]

| {(π1, π2) : π1 ∈ NC2(I ), π2 ∈ NC2(I
c)} | =

p∑
l=0

(
2p
2l

)
ClCp−l .

3 We must prove that∑
π∈Pbi

2 (2p)

2cc(π) =
∑

I⊆[2p]

| {(π1, π2) : π1 ∈ NC2(I ), π2 ∈ NC2(I
c)} |

Santos Tensor CLT



Introduction
Existence
Partitions

Contribution of noncrossing partitions
Contribution of connected partitions

Limiting Law
Perspectives

Combinatorics of bipartite pair partitions

1 Let π ∈ Pbi
2 (2p). We can find bipartite sets

π1 = {V1, . . . ,Vm}, π2 = {Vm+1, . . . ,Vp} of π such that V1, . . . ,Vm do not cross,
neither do Vm+1, . . . ,Vp.

2 Hence

π1 ∈ NC2(I );

π2 ∈ NC2(I
c);

I =
m⋃
i=1

Vi .

3 We call (π1, π2, I , I
c) a noncrossing representation of π.
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Combinatorics of bipartite pair partitions

The number of noncrossing representations of π is equal to 2cc(π). Hence∑
π∈Pbi

2 (2p)

2cc(π) = |{(π1, π2, I , I
c) : I ⊆ [2p], π1 ∈ NC2(I ), π2 ∈ NC2(I

c)}|.

The result follows by summing first over I ⊆ [2p].

Remark 6.1

κfree2n (x1 + x2) = 2|Pbicon
2 (2n)|.
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Free probability
1 Higher-order tensors: A CLT for

SL
n :=

1√
n

∑
k∈[n]

a⊗L
k − λL.

2 ϵ-independent settings [Mlotkowski - ’04]. Consider (a(i))k∈N ∈ Ai free i.i.d
random variables. If A1, . . . ,AL are ϵ-independent subalgebras, what is the central
limit theorem for the variables

bk :=
→∏

l∈[L]

a
(l)
k ?
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Combinatorics

3 We computed that

κfree2n (x1 + x2) = 2|Pbicon
2 (2n)|.

This suggests that there exists a measure ν such that∫
x2p dν = |Pbi

2 (2p)|.

In this case, we can write µsc + µsc = ν ⊞ ν. This is the moment problem for
an = |Pbi

2 (2n)|.
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5 A q-Gaussian measure µq [Bozejko, Speicher, Kümmerer, Buchholz] is defined via∫

x2p dµq =
∑

π∈P2(2p)

qcrossings(π).

When q = 0, we have µ0 = µsc , and when q = 1, we have µ1 = N(0, 1).

We could
consider an integer interpolation instead, which is defined as follows. Consider
P
(m)
2 (2p) the set of m-colorable pair partitions and define∫

x2p dµm := |P(m)
2 (2p)|.

We have µ1 = µsc and µ∞ = N(0, 1). Also, µ2 = ν.
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Thank you!
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