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Basic notation

We consider a non commutative probability space (A, τ). A is
an algebra τ is a linear functional such that

1 τ is linear, weak*-continuous,

2 τ(I) = 1 - normal,

3 τ(XX∗) ≥ 0 - positive,

4 τ(XX∗) = 0 implies X = 0 - faithful.
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Distribution

A (noncommutative) random variable X is a self-adjoint
element of A with a probability measure µ on R such as

τ(Xn) =

∫
R

xnµ(dx).
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Free independence

We say that subalgebras Ai ⊂ A are free independent if for
every choice of i1 ̸= i2 . . . ̸= in and every choice of Xi ∈ Ai such
that τ(Xi) = 0 we have

τ(X1X2 . . . Xn) = 0,
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Example

Let G be the free product of groups Gi , i ∈ I, let A = CG be the
group algebra,

ϕ(g) = δg=e be the group trace, and set Ai = CGi ⊂ A.

Then Ai : i ∈ I are free independent.
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Let µ and ν be probability measures on R, and X,Y self-adjoint
free random variables with respective distributions µ and ν.

The distribution of X + Y is called the free additive convolution
of µ and ν and is denoted by µ⊞ ν.
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The analytic approach to free convolution is based on the
Cauchy transform

Gµ(z) =
∫
R

1
z − y

µ(dy).

For measures with compact support the Cauchy transform is
analytic at infinity and related to the moment generating
function MX as follows:

MX(z) =
∞∑

n=0

τ(Xn) zn =
1
z

GX(1/z).
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The Cauchy transform has an inverse in some neighbourhood
of infinity which has the form

G−1
µ (z) =

1
z
+ Rµ(z),

where Rµ(z) is analytic in a neighbourhood of zero and is
called R-transform.
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The coefficients of its series expansion

RX(z) =
∞∑

n=0

Kn+1(X) zn.

are called free cumulants of the random variable X.

The free convolution can now be computed via the identity

Rµ⊞ν(z) = Rµ(z) + Rν(z).
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The Wigner semicircle law has density

dµ(x) =
1

2π

√
4 − x2 dx

on −2 ≤ x ≤ 2. Its Cauchy-Stieltjes transform is given by the
formula

Gµ(z) =
z −

√
z2 − 4
2

and the R-transform is

RX(z) = z.

Wiktor Ejsmont join work Patrycja Hęćka The Boolean quadratic forms and tangent law



Free probability
Free central limit theorems for quadratic forms

Boolean central limit theorems for quadratic forms

We say that a sequence Xn of random variables converges in
distribution towards X as n → ∞, denoted by

Xn
distr−−→ X

if we have for all m ∈ N

lim
n→∞

τ(Xm
n ) = τ(X m).
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Let Xi be free copies of a centered random variable X of
variance 1, then the sequence of quadratic forms

Qn =
1
n

n∑
i,j=1

a(n)
i,j XiXj

converges in distribution to a compound free Poisson
distribution with jump distribution µ.
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The free tangent law, W. Ejsmont and F. Lehner 2000

Let X1, X2, . . . , Xn ∈ Asa be free centred identically distributed
random variables of variance 1, then

Qn =
1
n

n∑
k ,j=1

i(XkXj −XjXk )
distr−−→ Y ,

where RY (z) = tan(z).
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It is worth mentioning that one of the fundamental examples of
Nevanlinna functions is the tangent function, see Donoghue,
1974.
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Proof 1.

Let

Qn =
1
n

n∑
i,j=1

a(n)
i,j XiXj

where Xi are free centred identically distributed random
variables of variance 1.
Let

Q′
n =

1
n

n∑
i,j=1

a(n)
i,j XiXj

where Xi sequence of standard free semicircular variables.
Then

limn→∞Kr (Qn) = limn→∞Kr (Q′
n)
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Proof 1.

We may assume without loss of generality that Xi are standard
free semicircular variables.

The cumulants can be computed using formula of
Leonov/Shiryaev and evaluate to

Kr
( n∑

k ,j=1
k<j

i(XkXj −XjXk )
)
= Tr(Ar

n) where An =
[ 0 i
−i 0

]
n ,

hence the odd cumulants vanish.
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The eigenvalues of the matrix An are λk = cot
(

π
2n + k

nπ
)

for
k ∈ {0, . . . ,n − 1} hence the even cumulants evaluate to

K2m
( n∑

k ,j=1
k<j

i(XkXj −XjXk )
)
=

n−1∑
k=0

cot2m
(

π

2n
+

k
n
π

)

= n2m T2m−1

(2m − 1)!
+O(n2m−2)

where T2m−1 are the tangent numbers

tan z =
∞∑

n=1

Tn
zn

n!
= z +

2
3!

z3 +
16
5!

z5 +
272
7!

z7 + · · · ,
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Hence
lim

n→∞
K2m(Qn) =

T2m−1

(2m − 1)!

and we conclude that

lim
n→∞

RQn(z) = tan(z).
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Proof 2.

The matrix 1
n An = 1

n

[ 0 i
−i 0

]
n has characteristic polynomial

χn(λ) =
i(λ− i

n )
n + i(λ+ i

n )
n

2i
.

The cumulant generating function

RQn(z) =
∞∑

k=1

Tr(Ak
n)

nk zk−1,

can be obtained from the logarithmic derivative of the
characteristic polynomial.
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Indeed if we factorize the characteristic polynomial
χn(λ) =

∏n
i=1(λ− λi) then

χ′
n(λ)

χn(λ)
=

n∑
i=1

1
λ− λi

and
1
z
χ′

n(1/z)
χn(1/z)

=
∞∑

k=0

n∑
i=1

λk
i zk = n + zRQn(z).
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In our case

lim
n→∞

RQn(z) = lim
n→∞

1
z

(
1
z
χ′

n(1/z)
χn(1/z)

− n
)

= tan(z).
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The free zigzag law

Let X1, X2, . . . , Xn ∈ Asa be free centred identically distributed
random variables of variance 1„ then

Qn =
1

2n

n∑
k ,l=1
k<l

(
XkXl +XlXk + i(XkXl −XlXk )

) distr−−→ Y ,

where RY (z) = 1
2(tan(z) + sec(z)− 1).
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An alternating permutation (or zigzag permutation) of the set
{1,2,3, ...,n} is an arrangement of those numbers so that each
entry is alternately greater or less than the preceding entry.

For example, the five alternating permutations of 1, 2, 3, 4 are:
1, 3, 2, 4 because 1 < 3 > 2 < 4,
1, 4, 2, 3 because 1 < 4 > 2 < 3,
2, 3, 1, 4 because 2 < 3 > 1 < 4,
2, 4, 1, 3 because 2 < 4 > 1 < 3,
3, 4, 1, 2 because 3 < 4 > 1 < 2.
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The determination of the number En of alternating permutations
of the set {1, ...,n} is called André’s problem.

Theorem (Désiré André, 1879)

∞∑
n=0

En

n!
= tan(z) + sec(z).
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Free generalized tangent law

Let X1, X2, . . . , Xn ∈ Asa be free centred identically distributed
random variables of variance 1„ then for any a, b ∈ R with
a2 + b2 = 1 and b ̸= 0, the limit law

Qn =
1
n

n∑
k ,j=1
k<j

(
a(XkXj +XjXk ) + ib(XkXj −XjXk )

) distr−−→ Y ,

has R-transform

RY (z) =
tan(bz)

b − a tan(bz)
.
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A tangent number T (k+1)
n of order k + 1 defined by

tank+1(z) =
∞∑

n=k+1

T (k+1)
n zn

n!
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Carlitz and Scoville’s [Duke Math. J. 39 (1972)]

tan(z)
1 − x tan(z)

=
∞∑

n=1

Pn(x)
zn

n!

where Pn(x) =
∑n−1

k=0 T (k+1)
n xk
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Free generalized tangent law

RY (z) =
tan(bz)

b − a tan(bz)
=

∞∑
n=1

(
n−1∑
k=0

T (k+1)
n akbn−1−k

)
zn

n!

Kn =

∑n−1
k=0 T (k+1)

n akbn−1−k

n!
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Random matrix model
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Random matrix model

Let XN×NM be a complex Gaussian random matrix of size
N × NM
and let

AM =


0 a + ib a + ib . . . a + ib

a − ib 0 a + ib . . . a + ib

a − ib a − ib 0
. . . a + ib

...
. . . . . .

a − ib a − ib a − ib . . . 0

 .
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Random matrix model

Let PN be a sequence of N × N deterministic matrices all of
whose moments with respect to the normalized trace converge
to 1, e.g., the identity matrices PN =

[
1 0
0 1

]
N or any projection

matrix of large rank like PN =
[

1 0
0 1

]
N − 1

N

[
1 1
1 1

]
N , then the

spectral measures of

1
M

XN×NM [AM ⊗ PN ]X ∗
N×NM

converge in distribution to the free generalized tangent law

R(z) =
tan(bz)

b − a tan(bz)
.
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Boolean Independence.

We say that subalgebras Ai ⊂ A are Boolean independent if for
every choice of i1 ̸= i2 . . . ̸= in and every choice of Xi ∈ Ai , we
have

τ(X1X2 . . . Xn) = τ(X1)τ(X2) . . . τ(Xn)
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Example

The most natural state on the group algebra of the free group
FN with the free generators x1 , x2, . . . , xN is the Haagerup state

Hq(g) = ql(g), g ∈ FN,q ∈ (0,1)

where g = xn1
i1

xn2
i2

. . . xnk
ik

, l(g) =
∑

i |ni | and l(e) = 0.

Then group subalgebras C[Gi ] are Boolean independent where
Gi are cyclic group generated by xi .
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Let µ and ν be probability measures on R, and X,Y self-adjoint
Boolean independent random variables with respective
distributions µ and ν.

The distribution of X + Y is called the Boolean additive
convolution of µ and ν and is denoted by µ ⊎ ν.
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The analytic approach to Boolean convolution is based on the
Cauchy transform

Gµ(z) =
∫
R

1
z − y

µ(dy).

For measures with compact support the Cauchy transform is
analytic at infinity and related to the moment generating
function MX as follows:

MX(z) =
∞∑

n=0

τ(Xn) zn =
1
z

GX(1/z).
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Moreover, the moment generating transform can be written as

Mµ(z) =
1

1 − Hµ(z)
,

where Hµ(z) is analytic in a neighbourhood of zero. The
coefficients of its series expansion

HX(z) =
∞∑

n=1

Kn(X)zn

are called Boolean cumulants of the random variable X.
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Boolean Gaussian distribution

The Boolean Gaussian law with mean zero and variance a2 has
distribution

1
2
δ−a +

1
2
δa.
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Boolean Gaussian distribution

In contrast to the classical convolution, it is not true that, for
arbitrary a ∈ R, the convolution µ ⊎ δc is equal to the shift of
measure µ by the amount c.

For example, (1
2δ−a + 1

2δa) ⊎ δc is equal to(
1 + c√

4a2+c2

)
δ
(c+

√
4a2+c2)/2

+
(

1 − c√
4a2+c2

)
δ
(c−

√
4a2+c2)/2

2
.
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Boolean Gaussian distribution

We say that a family Xi i ∈ {1, . . . ,n}} is a Boolean standard
normal family if K1(Xi) = K2(Xi) = 1, Kr (Xi) = 0 for r > 2 and
Xi are Boolean independent
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Boolean generalized tangent law, Ejsmont Hęćka

Let X1, . . . ,Xn be identically distributed Boolean independent
random variables with mean τ(Xi) =

1√
n and variance 1. Then

the sequence of quadratic forms

Qn =
1
n

n∑
k ,j=1
k<j

(
a(XkXj+XjXk )+ib(XkXj−XjXk )

) d−→ Y , a,b ∈ R

where the H-transform of the limit distribution has the form

HY (z) =
1
z

tan(bz)
b − a tan(bz)

− 1.
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The limit Boolean and free cumulants are not exactly the same

K Boolean
r = K free

r+1
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The main problem

Let X1, . . . ,Xn be identically distributed Boolean independent
normal random variables and

Qn =
1
n

n∑
k ,j=1
k<j

(
a(XkXj +XjXk ) + ib(XkXj −XjXk )

)
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In the case of the Boolean normal distribution, with mean c,
variance 1 takes the particular form

Kr (Qn) = c2 Tr(JAr
n)
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where

J : =


1 1 1 . . . 1
1 1 1 . . . 1

1 1 1
. . . 1

...
. . . . . .

1 1 1 . . . 1



An : =


0 a + ib a + ib . . . a + ib

a − ib 0 a + ib . . . a + ib

a − ib a − ib 0
. . . a + ib

...
. . . . . .

a − ib a − ib a − ib . . . 0

 .
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Now we focus on the special case a = 0 and b = 1 because in
this situation we are able to determine the corresponding
measures.

We call the limit law µY the Boolean tangent law if

HY (z) =
tan z

z
− 1.

In this case the corresponding transforms are given by

Mµ(z) =
z

2z − tan(z)
, Gµ(z) =

1
2z − z2 tan(1/z)

.
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If we use the Stieltjes inversion formula, namely

dµ(x) = −1
π

lim
ϵ→0+

Im Gµ(x+iϵ) = 0 for 2/x ̸= tan(1/x) and x ̸= 0.

Thus the measure µ has no absolutely continuous part.
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In order to determine the atoms, we compute the limits

lim
ϵ→0+

iϵGµ (x + iϵ) for 2/x = tan(1/x) and x = 0.
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Finally, we get

µ({x}) =

{
x2

4−x2 for x ∈ {x | 2/x = tan(1/x)},
1
2 for x = 0.
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2/x = tan(1/x) ⇐⇒ 2 cos(1/x) = x sin(1/x)
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Thank you for your attention
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