On operator valued R-diagonal and Haar unitary elements

Ken Dykema (with John Griffin)

Texas A&M University

February 20, 2024 Zooming in to UC-Berkeley Probabalistic Operator Algebra Seminar

Haar unitary and R-diagonal elements

We work in a tracial von Neumann algebra (\mathcal{M}, τ) . Namely, \mathcal{M} is a von Neumann algebra and τ is a normal, faithful, tracial state on \mathcal{M} .

Note: some results described in this talk have non-tracial versions, but for simplicity we assume we are in the tracial setting.

A Haar unitary element is a unitary $u \in \mathcal{M}$ so that $\tau(u^n) = 0$ for all $n \in \mathbb{Z} \setminus \{0\}$. This entails that τ of spectral measure of u is Haar measure on the unit circle.

A *circular element* is $z \in \mathcal{M}$ where $\operatorname{Re} z$ and $\operatorname{Im} z$ are free, centered semicircular elements with the same second moment.

Theorem [Voiculsecu '90]

If z is a circular element, then it has polar decomposition z=u|z|, where u is a Haar unitary and u and |z| are *-free from each other.

Dykema Operator valued February 2024 2 / 29

R-diagonality

Free cumulants of a family of elements in \mathcal{M} were introduced by [Speicher '94].

[Nica, Speicher, '97] defined $a \in \mathcal{M}$ to be *R-diagonal* if all the cumulants of the pair (a,a^*) vanish except for those corresponding to alternating patterns (a,a^*,\ldots,a,a^*) and (a^*,a,\ldots,a^*,a) of even length.

Proposition [Nica, Shlyakhtenko, Speicher '01]

An element $a\in\mathcal{M}$ is R-diagonal if and only if a has the same *-distribution as uh (in some tracial von Neumann algebra), where u is a Haar unitary, $h\geq 0$ and where u and h are *-free.

In particular, Haar unitary elements and circular elements are R-diagonal.

Dykema Operator valued February 2024 3 / 29

R-diagonality (alternative formulation)

Definition [Boedihardjo, D., '18]

Given $\epsilon = (\epsilon(1), \dots, \epsilon(n)) \in \{1, *\}^n$, the maximal alternating interval partition $\sigma(\epsilon)$ of ϵ is the partition into the largest possible interval blocks such that each block is alternating.

$$\mathsf{E.g.,}\ \epsilon = \underbrace{(*,1,*,\underbrace{*,1},\underbrace{1,*})} \ \Longrightarrow \ \sigma(\epsilon) = \big\{\{1,2,3\},\{4,5\},\{6,7\}\big\}.$$

Prop. (equivalent, mild reformulation of part of [NiShISp '01])

 $a \in \mathcal{M}$ is R-diagonal if and only if

- (a) all odd alternating moments vanish
- (b) $\forall n \ \forall \epsilon \in \{1, *\}^n$, $\phi\left(\prod_{V \in \sigma(\epsilon)} \left(\left(\prod_{j \in V} a^{\epsilon(j)}\right) \phi\left(\prod_{j \in V} a^{\epsilon(j)}\right) \right) \right) = 0.$

Dykema Operator valued February 2024

Operator-valued noncommutative probability spaces

B-valued noncommutative probability spaces

Let (B, τ_B) be a tracial von Neumann algebra. We work in a tracial, B-valued W*-noncommutative probability space $(\mathcal{A}, \mathcal{E})$; this means \mathcal{A} is a von Neumann algebra containing B as a unital subalgebra and $\mathcal{E}: \mathcal{A} \to B$ is a normal, faithful conditional expectation such that $\tau = \tau_B \circ \mathcal{E}$ is a trace on \mathcal{A} .

B-valued *-moments

The B-valued *-moments of $a \in \mathcal{A}$ are the multilinear maps $B \times \cdots \times B \to B$ of the form

$$(b_1,\ldots,b_{n-1})\mapsto \mathcal{E}(a^{\epsilon(1)}b_1a^{\epsilon(2)}b_2\cdots a^{\epsilon(n-1)}b_{n-1}a^{\epsilon(n)})$$

for $n \in \mathbf{N}$ and $\epsilon = (\epsilon(1), \dots, \epsilon(n)) \in \{1, *\}^n$.

Dykema Operator valued February 2024

Operator-valued R-diagonal elements [Śniady, Speicher '01]

B-valued free cumulants were defined by [Speicher '98].

B-valued R-diagonal elements were defined [Śniady, Speicher '01] in terms of B-valued cumulants.

Theorem [Śniady, Speicher '01]

An element $a \in \mathcal{A}$ is B-valued R-diagonal if and only if there exists an enlargement $(\widetilde{A},\widetilde{\mathcal{E}})$ of (A,\mathcal{E}) and a unitary $u \in \widetilde{A}$ such that

- u commutes with B,
- $\{u, u^*\}$ is free from $\{a, a^*\}$ (over B),
- $\widetilde{\mathcal{E}}(u^k) = 0$ for all $k \in \mathbb{Z} \setminus \{0\}$,
- a and ua have the same B-valued *-moments.

Dykema Operator valued February 2024 6 / 29

Operator-valued R-diagonal elements (2)

Corollary

If a is a B-valued R-diagonal element with polar decomposition a=v|a|, then the partial isometry v is also B-valued R-diagonal.

Proof: The B-valued *-moments of v are determined by those of a. But with u as in the previous theorem, a and ua have the same B-valued *-monents. The polar decomopsition of ua is uv, so v and uv have the same B-valued *-moments.

Corollary

If a is a B-valued R-diagonal and if d is *-free from a (over B), then ad is B-valued R-diagonal.

Proof: Let u be a Haar unitary commuting with B and *-free from $\{a,d\}$. Then ua has the same *-moments as a, and ua is *-free from d, so uad has the same *-moments as ad.

Dykema Operator valued February 2024 7 / 29

Operator-valued R-diagonal elements (3)

Reformulation [Boedihardjo, D. '18]

An element $a \in A$ is R-diagonal if and only if

(a) all alternating moments of odd length vanish, for example those of the form

$$\mathcal{E}(ab_1a^*b_2ab_3a^*b_4a),$$

(b) $\forall n \ \forall \epsilon \in \{1, *\}^n, \ \forall b_1, \dots, b_n \in B$,

$$\mathcal{E}\left(\prod_{V\in\sigma(\epsilon)}\left(\left(\prod_{j\in V}a^{\epsilon(j)}b_j\right)-\mathcal{E}\left(\prod_{j\in V}a^{\epsilon(j)}b_j\right)\right)\right)=0,$$

where $\sigma(\epsilon)$ is the maximal alternating interval partition associated to ϵ .

In particular, all B-valued *-moments of an R-diagonal element a are determined by the alternating B-valued *-moments.

Dykema Operator valued February 2024

8 / 29

Operator-valued R-diagonal elements (4)

Thus, the *-moments of an R-diagonal element a are determined by the *-moments having the even, alternating *-moments, denoted

$$\alpha_n(b_1, \dots, b_{2n-1}) := \mathcal{E}(a^*b_1 a b_2 a^* b_3 a \cdots b_{2n-2} a^* b_{2n-1} a)$$
$$\beta_n(b_1, \dots, b_{2n-1}) := \mathcal{E}(ab_1 a^* b_2 a b_3 a^* \cdots a^* b_{2n-2} a b_{2n-1} a^*).$$

Dykema Operator valued February 2024 9 / 29

B-valued circular elements ([Śniady '03] ?)

A B valued circular element is an R-diagonal element z whose B-valued cumulants vanish except for those of second order. In practice, these are the completely positive maps $B \to B$

$$\alpha_1(b) = \mathcal{E}(z^*bz), \quad \beta_1(b) = \mathcal{E}(zbz^*),$$

and then the higher even, alternating moments are determined recursively (via the moment-cumulant formula) for $n \geq 2$ by

$$\alpha_n(b_1, \dots, b_{n-1}) = \mathcal{E}(a^*b_1 a b_2 a^* b_3 a \dots b_{2n-2} a^* b_{2n-1} a)$$

$$= \alpha_1(b_1) b_2 \alpha_{n-1}(b_3, \dots, b_{2n-1})$$

$$+ \sum_{k=2}^{n-1} \alpha_1(b_1 \beta_{k-1}(b_2, \dots, b_{2k-2}) b_{2k-1}) b_{2k}$$

$$\alpha_{n-k}(b_{2k+1}, \dots, b_{2n-1})$$

$$+ \alpha_1(b_1 \beta_{n-1}(b_2, \dots, b_{2n-1}) b_{2n-1})$$

and likewise, reversing the roles of β and α .

Dykema Operator valued February 2024 10 / 29

B-valued circular elements (2)

Given any two completely positive maps α_1 and β_1 from B to B, there exists a unique corresponding B-valued circular element z such that

$$\alpha_1(b) = \mathcal{E}(z^*bz), \quad \beta_1(b) = \mathcal{E}(zbz^*).$$

Proposition [Boedihardjo, D. '18]

The B-valued circular element z can be realized in a tracial B-valued W*-noncommutative probability space if and only if for a faithful tracial state τ_B on B, we have

$$\tau_B(\alpha_1(b_1)b_2) = \tau_B(b_1\beta_1(b_2))$$

for all $b_1, b_2 \in B$.

Dykema Operator valued February 2024 11 / 29

Example [Boedihardjo, D. '18]

Take $B=\mathbb{C}^2$ endowed with the equal weight trace and consider the completely positive maps $B\to B$

$$\alpha_1(\lambda_1, \lambda_2) = \left(\frac{\lambda_1}{2}, \frac{\lambda_1}{2} + \lambda_2\right)$$
$$\beta_1(\lambda_1, \lambda_2) = \left(\frac{\lambda_1 + \lambda_2}{2}, \lambda_2\right).$$

Let z be the corresponding (tracial) circular element. We compute the distribution of z^*z with respect to $\tau_B \circ \mathcal{E}$ and see that it has zero kernel, so it has polar decomposition z = u|z|, with u unitary.

We cannot have that u and |z| are *-free over B, because $\beta_1(1)=1$ while $\alpha_1(1)\neq 1$.

Conclusion

In the B-valued setting, circular elements and (more generally) R-diagonal elements need not have free polar decompositions.

Dykema Operator valued February 2024 12 / 29

Classes of B-valued Haar unitaries

We work in (A, \mathcal{E}) as before.

Definition

Let $u \in \mathcal{A}$ be a unitary element. We say u is

- (a) a Haar unitary element if $\mathcal{E}(u^n) = 0$ for all $n \in \mathbb{Z} \setminus \{0\}$,
- (b) a balanced unitary element if $\mathcal{E}(u^{\epsilon(1)}b_1u^{\epsilon(2)}b_2\cdots u^{\epsilon(n-1)}b_{n-1}u^{\epsilon(n)})=0 \text{ whenever } \#\{j\mid \epsilon(j)=*\} \neq \#\{j\mid \epsilon(j)=1\} \text{ and } b_1,\ldots,b_{n-1}\in B,$
- (c) an R-diagonal unitary element if u is also R-diagonal,
- (d) a normalizing Haar unitary element if u is Haar unitary and if, for some automorphism θ of B and all b in B, $u^*bu = \theta(b)$.

Theorem

(d) \Longrightarrow (c) \Longrightarrow (b) \Longrightarrow (a), and none of the reverse implications hold.

Dykema Operator valued February 2024 13 / 29

Example: a Haar unitary that is not balanced

Let τ be the trace on $C(\mathbb{T})$ given by integration with respect to Haar measure on the unit circle \mathbb{T} . Let $v \in C(\mathbb{T})$ be the identity map on \mathbb{T} (thus, a Haar unitary with respect to τ). Let

 $\mathcal{A}=M_2(C(\mathbb{T}))\cong M_2(\mathbb{C})\otimes C(\mathbb{T})$ and let $B\subseteq \mathcal{A}$ be the diagonal matrices having scalar entries, so $B\cong \mathbb{C}^2$. Let $\mathcal{E}:\mathcal{A}\to B$ be

$$\mathcal{E}\left(\left(\begin{smallmatrix}f_{11} & f_{12} \\ f_{21} & f_{22}\end{smallmatrix}\right)\right) = \left(\begin{smallmatrix}\tau(f_{11}) & 0 \\ 0 & \tau(f_{22})\end{smallmatrix}\right).$$

Let $p=\frac{1}{2}\left(\begin{smallmatrix}1&1\\1&1\end{smallmatrix}\right)$ and let $u=p\otimes v+(1-p)\otimes v^*.$ Then u is Haar unitary with respect to \mathcal{E} , but $\mathcal{E}(ue_{11}u)=\frac{1}{2}\left(\begin{smallmatrix}1&0\\0&-1\end{smallmatrix}\right)$, so u is not a balanced unitary.

Dykema Operator valued February 2024 14 / 29

Example: a balanced unitary that is not R-diagonal

Let τ be the canonical trace on $C^*(\mathbb{Z} \times \mathbb{Z})$, with $v, w \in C^*(\mathbb{Z} \times \mathbb{Z})$ commuting Haar unitaries. Let

 $\mathcal{A}=M_2(C^*(\mathbb{Z}\times\mathbb{Z}))\cong M_2(\mathbb{C})\otimes C^*(\mathbb{Z}\times\mathbb{Z})$ and let $B\subseteq\mathcal{A}$ be the diagonal matrices having scalar entries, so $B\cong\mathbb{C}^2$. As before, let $\mathcal{E}:\mathcal{A}\to B$ be

$$\mathcal{E}\left(\left(\begin{smallmatrix}f_{11} & f_{12} \\ f_{21} & f_{22}\end{smallmatrix}\right)\right) = \left(\begin{smallmatrix}\tau(f_{11}) & 0 \\ 0 & \tau(f_{22})\end{smallmatrix}\right).$$

and $p=\frac{1}{2}\left(\begin{smallmatrix}1&1\\1&1\end{smallmatrix}\right)$. Let $u=p\otimes v+(1-p)\otimes w$. Then it is straightforward to compute that u is a balanced unitary, but when $b_1=b_2=b_3=1\oplus 0\in B$ (identified with the matrix unit $e_{11}\in\ M_2(\mathbb{C})$), we find

$$E((u^*b_1u - E(u^*b_1u))b_2(ub_3u^* - E(ub_3u^*))) = \frac{1}{8} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \neq 0.$$

Thus, u is not an R-diagonal element.

Dykema Operator valued February 2024 15 / 29

Example: an R-diagonal unitary that is not normalizing

Let $B=\mathbb{C}^2$ and let z be the B-valued circular element corresponding to the maps

$$\alpha_1(\lambda_1, \lambda_2) = \left(\frac{\lambda_1}{2}, \frac{\lambda_1}{2} + \lambda_2\right)$$
$$\beta_1(\lambda_1, \lambda_2) = \left(\frac{\lambda_1 + \lambda_2}{2}, \lambda_2\right).$$

We know that z has polar decomposition z=u|z|, with u unitary. By the Corollary to [Śniady, Speicher '01], this u is an R-diagonal unitary element.

Dykema Operator valued February 2024 16 / 29

Example: an R-diagonal unitary that is not normalizing (2)

However, if u were normalizing with $u^*bu=\theta(b)$, then we would have, for every $x\in\mathcal{A},\ \mathcal{E}(x)=0\implies\mathcal{E}(uxu^*)=0$, since

$$\tau_B(\mathcal{E}(uxu^*)^*\mathcal{E}(uxu^*)) = \tau_B \circ \mathcal{E}(ux^*u^*\mathcal{E}(uxu^*)) = \tau_B \circ \mathcal{E}(x^*u^*\mathcal{E}(uxu^*)u)$$
$$= \tau_B \circ \mathcal{E}(x^*\theta(\mathcal{E}(uxu^*))) = \tau_B(\mathcal{E}(x^*)\theta(\mathcal{E}(uxu^*))) = 0.$$

This implies, for all $x \in \mathcal{A}$, $\mathcal{E}(uxu^*) = \theta^{-1}(\mathcal{E}(x))$.

Now we get

$$\begin{split} \mathcal{E}(zz^*bzz^*) &= \mathcal{E}(u|z|^2u^*bu|z|^2u^*) = \theta^{-1}(\mathcal{E}(|z|^2\theta(b)|z|^2)) \\ &= \theta^{-1}(\mathcal{E}(z^*z\theta(b)z^*z)). \end{split}$$

However, $\mathcal{E}(zz^*bzz^*)$ and $\mathcal{E}(z^*z\theta(b)z^*z)$ can be computed in terms of the defining completely positive maps α_1 and β_1 , and we easily see that the above equality fails to hold (for both possible automorphisms θ) when $b=(1,0)\in B$.

Dykema Operator valued February 2024 17 / 29

Motivating Question: what can B-valued R-diagonal unitaries look like if they are not normalizing?

One example: we understand the \mathbb{C}^2 -valued circular element z of the previous example quite well and we know z=u|z|, where u is an R-diagonal unitary that is not normalizing (and also not free from |z|).

We know the distribution of $|z|^2$ with respect to $\tau_B \circ \mathcal{E}$. Can we use this to find the \mathbb{C}^2 -valued distribution of |z| and thereby to describe the \mathbb{C}^2 -valued distribution of u?

Another idea: suppose there exists a B-valued circular element z, and suppose z=u|z| with u and |z| *-free over B. Let us call this a *free polar decomposition*. Perhaps freeness would help us to find out more about the *-moments of u from those of z. Of course, if u is already normalizing (of B), then we are not so interested in this case.

Dykema Operator valued February 2024 18 / 29

Bipolar decompositions

Unfortunately, we don't understand well, in terms of cumulants, conditions for a polar decomposition of a B-valued R-diagonal to have a free and normalizing unitary part. (There is a theorem in [Boedihardjo, Dykema '18] that purports to do so, but it is erroneous. See [erratum '23].) Instead, we turn to bipolar decompositions.

Definition

Let $(\mathcal{A},\mathcal{E})$ be a B-valued W*-noncommutative probability space and let $a \in \mathcal{A}$. A bipolar decomposition of a is a pair (u,x) of elements in some B-valued W*-noncommutative probability space $(\mathcal{A}',\mathcal{E}')$, such that u is a partial isometry, x is self-adjoint and ux has the same *-moments as a.

Bipolar decompositions are not unique. Examples include polar decompositions. "Bipolar" refers to the positive and negative directions of \mathbb{R} . If (u,x) is a bipolar decomposition, then x=s|x| for a symmetry (namely, a self-adjoint unitary) s that commutes with s. Thus, s that commutes with s thus, s that commutes with s that commutes with s thus, s that commutes with s thus, s that commutes with s that s that commutes with s that s that

ykema Operator valued February 2024

19 / 29

Bipolar decompositions (2)

Definition

A bipolar decomposition (u, x) in $(\mathcal{A}', \mathcal{E}')$ of an element a is

- minimal if u^*u equals the support projection of x;
- unitary if u is a unitary element;
- tracial if there is a normal tracial state τ_B on B so that $\tau_B \circ \mathcal{E}'$ is a trace on the *-algebra generated by u and x;
- standard if there is a symmetry $s \in \mathcal{A}'$ such that x = s|x| and such that s commutes with s, with s and with every s is s.
- even if all odd moments of x vanish, namely, if $\mathcal{E}'(xb_1xb_2\cdots xb_{2n}x)=0$ for all $n\geq 1$ and $b_1,\ldots,b_{2n}\in B$.
- free if u and x are *-free over B (with respect to the conditional expectation \mathcal{E}');
- normalizing if it is unitary and u normalizes the algebra B, namely, if $u^*bu=\theta(b)$ for every $b\in B$, for some automorphism θ of B.

Dykema Operator valued February 2024 20 / 29

Bipolar decompositions (3)

Lemma

Every B-valued element, a, has a bipolar decomposition that is standard, even and minimal. If a is tracial, then this bipolar decomposition can also be taken to be tracial.

Proof: If a=v|a| is the polar decomposition, then take $u=v\oplus (-v)$ and $x=|a|\oplus (-|a|).$

Lemma on R-diagonal unitaries in bipolar decompositions

Suppose a B-valued R-diagonal element a has a bipolar decomposition (v,x). Then a also has a bipolar decomposition (v',x'), where x' has the same distribution as x and where v' is B-valued R-diagonal. Furthermore, if (v,x) is tracial, unitary, minimal, standard, free or normalizing, then also (v',x') can be taken to be tracial, unitary, minimal, standard, free, or normalizing, respectively.

Dykema Operator valued February 2024 21 / 29

Free, normalizing bipolar decompositions of R-diagonals

Recall our notation for the even alternating moments:

$$\alpha_n(b_1, \dots, b_{2n-1}) := \mathcal{E}(a^*b_1 a b_2 a^* b_3 a \cdots b_{2n-2} a^* b_{2n-1} a)$$
$$\beta_n(b_1, \dots, b_{2n-1}) := \mathcal{E}(ab_1 a^* b_2 a b_3 a^* \cdots a^* b_{2n-2} a b_{2n-1} a^*).$$

Theorem [Boedihardjo, D. '18] (but using current terminology)

Let a be a B-valued R-diagonal element. Then a has a free, normalizing bipolar decomposition (u,x) with corresponding automorpihsm $u^*bu=\theta(b)$ if and only if

$$\alpha_n(b_1, \theta(b_2), b_3, \dots, \theta(b_{2n-2}), b_{2n-1})$$

$$= \theta(\beta_n(\theta(b_1), b_2, \theta(b_3), \dots, b_{2n-2}, \theta(b_{2n-1})))$$

for all n and $b_1, \ldots, b_{2n-1} \in B$.

If a is actually B-valued circular, then the above condition becomes $\alpha_1(b) = \theta(\beta_1(\theta(b)))$ for all $b \in B$.

Dykema Operator valued February 2024

22 / 29

Example with a free normalizing bipolar decomposition but no normalizing polar decomposition

Let z be a copy of Voiculescu's circular element (\mathbb{C} -valued) in a W*-noncommutative probability space (A_0, τ_0) . Suppose (B, τ_B) is a tracial von Neumann algebra, $B \neq \mathbb{C}$. Let $(A, \tau) = (A_0, \tau_0) * (B, \tau_B)$ be the free product of von Neumann algebras and let $\mathcal{E}: \mathcal{A} \to B$ be the τ -preserving conditional expectation onto B. By [Śniady, Speicher '01], a is also B-valued circular in $(\mathcal{A}, \mathcal{E})$, with corresponding completely positive maps $\alpha_1(b) = \beta_1(b) = \tau_B(b)1$. By the previous Theorem, for every τ_B -preserving automorphism θ of B, there is a free, normalizing bipolar decomposition (u, x) of a with $u^*bu=\theta(b)$ for all $b\in B$. However, the polar decomposition of a is a=v|a| with $v\in\mathcal{A}_0$ that is Haar unitary with respect to τ_0 . Thus, vis free from B and cannot normalize B.

Dykema Operator valued February 2024 23 / 29

More on that example

The previous example can be concretely realized in the free product (over $\mathbb C$)

$$(\mathcal{A}, \tau) = (B \rtimes_{\theta} \mathbb{Z}, \tau_B \circ E) * (L^{\infty}[-2, 2], \tau_2)$$

where $E: B \rtimes_{\theta} \mathbb{Z} \to B$ is the conditional expectation and τ_2 is by integration against Lebesgue measure. Let $\mathcal{E}: \mathcal{A} \to B$ be the τ -preserving conditional expectation.

Now take a semicircular element $x\in L^\infty[-2,2]$ and a symmetry s so that x=s|x|. Let $u\in B\rtimes_\theta\mathbb{Z}$ be the Haar unitary implimenting θ . Then z=us|x| is a circular element with respect to τ , is *-free from B, us and |x| are *-free from each other and (u,x) is a free, normalizing bipolar decomposition for z.

Dykema Operator valued February 2024 24 / 29

But under a nondegeneracy condition:

$\mathsf{Theorem}$

Let a be a B-valued random variable in a B-valued W*-noncommutative probability space $(\mathcal{A}, \mathcal{E})$ and assume that either of the subspaces

$$\operatorname{span} \left\{ \mathcal{E}((a^*a)^k) \mid k \ge 0 \right\} \text{ or } \operatorname{span} \left\{ \mathcal{E}((aa^*)^k) \mid k \ge 0 \right\}$$

is weakly dense in B. Suppose that a has free bipolar decompositions (u,x) and (\tilde{u},\tilde{x}) in B-valued W*-noncommutative probability spaces (A', E') and (A, E), respectively, with E faithful. Suppose u and \tilde{u} are unitaries satisfying $E'(u) = 0 = \tilde{E}(\tilde{u})$ and suppose that unormalizes B. Then \tilde{u} normalizes B, and induces the same automorphism, namely, $\tilde{u}^*b\tilde{u}=u^*bu$ for all $b\in B$.

Dykema Operator valued February 2024

Motivating question and answer in a special case

Question

Suppose a tracial B-valued circular element a has a tracial, free, bipolar decomposition (u,x) with u unitary. Must a also have a free bipolar decomposition that is normalizing?

Note that under the nondegeneracy hypothesis, that

$$\operatorname{span} \left\{ \mathcal{E}((a^*a)^k) \mid k \ge 0 \right\} \text{ or } \operatorname{span} \left\{ \mathcal{E}((aa^*)^k) \mid k \ge 0 \right\}$$

is weakly dense in B, we would conclude that every free bipolar decomposition of a is normalizing.

Theorem

Yes, when $B = \mathbb{C}^2$.

Dykema Operator valued February 2024 26 / 29

The theorem covering the case $B = \mathbb{C}^2$

In particular, we prove that if a is tracial \mathbb{C}^2 -valued circular in $(\mathcal{A}, \mathcal{E})$ with corresponding completely positive maps α_1 and β_1 and if a has a free bipolar decomposition (u,x) with u unitary, then $\alpha_1 = \theta \circ \beta_1 \circ \theta$ for one of the two automorphisms θ of \mathbb{C}^2 .

Method of proof: arduous calculation.

Just to give a taste of this: the defining maps α_1 and β_1 , as well as the trace τ_B , are defined in terms of certain parameters. Taking a=ux, we use the freeness assumption to obtain certain relations, e.g.,

$$\mathcal{E}((aa^*)^n) = \mathcal{E}(u\mathcal{E}(x^{2n})u^*) = \mathcal{E}(u\mathcal{E}((a^*a)^n)u^*)$$

and more complicated ones, e.g., involving $\mathcal{E}((aa^*)^n(a^*a)^m(aa^*)^k)$. We can dispense with a degnerate case and assume without loss of generality $\operatorname{span}\{1_B,\mathcal{E}(a^*a)\}=B$. Using all of this and more, we obtain some nasty-looking algebraic relations among the aforementioned parameters. With help of Mathematica, we are able to show that we must have $\alpha_1=\theta\circ\beta_1\circ\theta$ for one of the θ .

Dykema Operator valued February 2024 27 / 29

Open questions:

Assume that

$$\operatorname{span} \left\{ \mathcal{E}((a^*a)^k) \mid k \ge 0 \right\} \text{ or } \operatorname{span} \left\{ \mathcal{E}((aa^*)^k) \mid k \ge 0 \right\}$$

is weakly dense in B,

Question

Suppose a tracial B-valued circular element a has a tracial, free, bipolar decomposition (u,x) with u unitary. Must u normalize B?

Question

Suppose a tracial B-valued R-diagonal element a has a tracial, free, bipolar decomposition (u, x). Must its polar decomposition be free?

Dykema Operator valued February 2024 28 / 29

Thanks for your attention! Selected References (chronological):

- [1] D. Voiculescu, Circular and semicircular systems and free product factors, Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989), Progr. Math., vol. 92, Birkhäuser Boston, 1990, pp. 45–60.
- [2] R. Speicher, Multiplicative functions on the lattice of noncrossing partitions and free convolution, Math. Ann. 298 (1994), 611–628.
- [3] A. Nica and R. Speicher, *R-diagonal pairs—a common approach to Haar unitaries and circular elements*, Free Probability Theory (Waterloo, Ontario, 1995), Fields Inst. Commun., vol. 12, Amer. Math. Soc., 1997, pp. 149–188.
- [4] R. Speicher, Combinatorial Theory of the Free Product with Amalgamation and Operator-Valued Free Probability Theory, Mem. Amer. Math. Soc., vol. 627, 1998.
- [5] A. Nica, D. Shlyakhtenko, and R. Speicher, *R-diagonal elements and freeness with amalgamation*, Canad. J. Math. **53** (2001), 355–381.
- [6] P. Śniady and R. Speicher, Continuous family of invariant subspaces for R-diagonal operators, Invent. Math. 146 (2001), 329–363.
- [7] P. Śniady, Multinomial identities arising from free probability theory, J. Combin. Theory Ser. A 101 (2003), 1–19.
- [8] M. Boedihardjo and K. Dykema, On algebra-valued R-diagonal elements., Houston J. Math. 44 (2018), 209–252;: Erratum 49 (2023), 157–158.
- [9] K. Dykema and J. A. Griffin, On operator valued Haar unitaries and bipolar decompositions of R-diagonal elements, Integral Equations Operator Theory, to appear, available at arXiv:2306.17333(w/Mathematica).

Dykema Operator valued February 2024 29 / 29