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In the olden days (or nowadays in Canada), people had landline

phones. It was common for homes to have several (for parents, for

teenage kids, for fax, for dialup internet. . . )

Without access to phone company records, how could a researcher

estimate the distribution of number of landlines per household?
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In the olden days (or nowadays in Canada), people had landline

phones. It was common for homes to have several (for parents, for

teenage kids, for fax, for dialup internet. . . )

Without access to phone company records, how could a researcher

estimate the distribution of number of landlines per household? A

simple sampling method:

• Choose phone numbers randomly from the (local) phonebook.

• Ask each person you call “how many landlines do you have”?

• Assemble a representative sample of such data, and plot a

histogram.
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phones. It was common for homes to have several (for parents, for

teenage kids, for fax, for dialup internet. . . )

Without access to phone company records, how could a researcher

estimate the distribution of number of landlines per household? A

simple sampling method:

• Choose phone numbers randomly from the (local) phonebook.

• Ask each person you call “how many landlines do you have”?

• Assemble a representative sample of such data, and plot a

histogram.

Let X be the random variable “# of landlines per home”. Does the

histogram you build up approximate the distribution of X? Even if

you called every number in the phonebook?
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In the olden days (or nowadays in Canada), people had landline

phones. It was common for homes to have several (for parents, for

teenage kids, for fax, for dialup internet. . . )

Without access to phone company records, how could a researcher

estimate the distribution of number of landlines per household? A

simple sampling method:

• Choose phone numbers randomly from the (local) phonebook.

• Ask each person you call “how many landlines do you have”?

• Assemble a representative sample of such data, and plot a

histogram.

Let X be the random variable “# of landlines per home”. Does the

histogram you build up approximate the distribution of X? Even if

you called every number in the phonebook?

Question: How many people will give you the answer 0?
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In the landline sampling scenario, the sample distribution is not the

distribution of X . Rather, it is the distribution of Xs: the size bias of

X . (More precisely: if X
d
=µ, then the sample distribution is µs, the

size bias transform of µ.)

If X is a non-negative random variable with mean m > 0, then Xs

has distribution

µs(dx) =
x

m
1[0,∞)(x)µ(dx).
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In the landline sampling scenario, the sample distribution is not the

distribution of X . Rather, it is the distribution of Xs: the size bias of

X . (More precisely: if X
d
=µ, then the sample distribution is µs, the

size bias transform of µ.)

If X is a non-negative random variable with mean m > 0, then Xs

has distribution

µs(dx) =
x

m
1[0,∞)(x)µ(dx).

This can be understood more effectively as a functional equation: for

any nice test function f ,

E[Xf(X)] = mE[f(Xs)] = E[X]E[f(Xs)].

From here we see that µ can be “recovered” from µs. . .
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In the landline sampling scenario, the sample distribution is not the

distribution of X . Rather, it is the distribution of Xs: the size bias of

X . (More precisely: if X
d
=µ, then the sample distribution is µs, the

size bias transform of µ.)

If X is a non-negative random variable with mean m > 0, then Xs

has distribution

µs(dx) =
x

m
1[0,∞)(x)µ(dx).

This can be understood more effectively as a functional equation: for

any nice test function f ,

E[Xf(X)] = mE[f(Xs)] = E[X]E[f(Xs)].

From here we see that µ can be “recovered” from µs. . . except for

any mass at 0.
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Let X1, . . . , Xn be independent non-negative random variables,

with E[Xi] = mi > 0. Let

W =
n
∑

i=1

Xi.

How does the size bias W s relate to the Xs
i ?
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Let X1, . . . , Xn be independent non-negative random variables,

with E[Xi] = mi > 0. Let

W =
n
∑

i=1

Xi.

How does the size bias W s relate to the Xs
i ?

Let I be a random index chosen from {1, . . . , n}, independent from

{X1, . . . , Xn}, with P(I = i) = mi/
∑n

j mj . Then

W s d
=W −XI +Xs

I .

If the Xi are i.i.d. you can choose any single index uniformly at

random, or you can just choose (say) the first one:

W s d
=Xs

1 +X2 + · · ·+Xn.
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Maybe the size biased distribution doesn’t come out so different from

the original one; what does this say about the distribution?

Question: Is there a distribution µ for which µs = µ?

E[Xf(X)] = mE[f(Xs)] = mE[f(X)]
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the original one; what does this say about the distribution?

Question: Is there a distribution µ for which µs = µ?

E[Xf(X)] = mE[f(Xs)] = mE[f(X)]

Answer: Yes. µ = δm, and that’s it.



Fixed Points of Size Bias

• Empirical

Bias

• Sampling

• Size

• Sums

• Fixed Point

• Free Size?

Zero Bias

Free Zero Bias

Properties

7 / 37

Maybe the size biased distribution doesn’t come out so different from

the original one; what does this say about the distribution?

Question: Is there a distribution µ for which µs = µ?

E[Xf(X)] = mE[f(Xs)] = mE[f(X)]

Answer: Yes. µ = δm, and that’s it.

More interesting: what if we allow for a shift as well: X 7→ Xs − 1.

Are there fixed points?
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the original one; what does this say about the distribution?

Question: Is there a distribution µ for which µs = µ?
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Answer: Yes. µ = δm, and that’s it.

More interesting: what if we allow for a shift as well: X 7→ Xs − 1.

Are there fixed points?

Exercise: The unique fixed point is Poisson(m).
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Maybe the size biased distribution doesn’t come out so different from

the original one; what does this say about the distribution?

Question: Is there a distribution µ for which µs = µ?

E[Xf(X)] = mE[f(Xs)] = mE[f(X)]

Answer: Yes. µ = δm, and that’s it.

More interesting: what if we allow for a shift as well: X 7→ Xs − 1.

Are there fixed points?

Exercise: The unique fixed point is Poisson(m).

E[f(X)] = E[f(Xs − 1)] =
1

m
E[Xf(X − 1)]

Taking f(x) = xk sets up a recursion of moments.
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The concept of bias in general is challenging to make sense of in a

multivariate context. In the case of a single (selfadjoint) random

variable, it is not clear how a “free size bias” should differ from the

classical one! (It’s just a transform on probability measures.)
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The concept of bias in general is challenging to make sense of in a

multivariate context. In the case of a single (selfadjoint) random

variable, it is not clear how a “free size bias” should differ from the

classical one! (It’s just a transform on probability measures.)

One could ask: does the size bias relate similarly to freely

independent sums? I.e. If X1, . . . , Xn are f.i.d. is it true that

(X1 +X2 + · · ·+Xn)
s d
=Xs

1 +X2 + · · ·+Xn ?
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multivariate context. In the case of a single (selfadjoint) random

variable, it is not clear how a “free size bias” should differ from the

classical one! (It’s just a transform on probability measures.)

One could ask: does the size bias relate similarly to freely

independent sums? I.e. If X1, . . . , Xn are f.i.d. is it true that

(X1 +X2 + · · ·+Xn)
s d
=Xs

1 +X2 + · · ·+Xn ?

No. Take shifted f.i.d. semicircular random variables.

Perhaps, then, the “free size bias” should be a new transform which

does have this free sum exchange property? And whose shift-fixed

point is a free Poisson?
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The concept of bias in general is challenging to make sense of in a

multivariate context. In the case of a single (selfadjoint) random

variable, it is not clear how a “free size bias” should differ from the

classical one! (It’s just a transform on probability measures.)

One could ask: does the size bias relate similarly to freely

independent sums? I.e. If X1, . . . , Xn are f.i.d. is it true that

(X1 +X2 + · · ·+Xn)
s d
=Xs

1 +X2 + · · ·+Xn ?

No. Take shifted f.i.d. semicircular random variables.

Perhaps, then, the “free size bias” should be a new transform which

does have this free sum exchange property? And whose shift-fixed

point is a free Poisson? We have some thoughts on this, but nothing

that can see the light of day just yet.
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Let Z
d
=N (0, σ2). A very useful computational tool is the

integration by parts formula (aka Stein’s formula)

E[Zf(Z)] = σ2 E[f ′(Z)]

which holds for any f ∈ C1(R) for which f and f ′ are sufficiently

integrable.
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integration by parts formula (aka Stein’s formula)

E[Zf(Z)] = σ2 E[f ′(Z)]

which holds for any f ∈ C1(R) for which f and f ′ are sufficiently

integrable. In fact, this identity (holding over all f ∈ C∞
c (R) for

example) uniquely specifies the centered normal distribution of

variance σ2.



Gaussian Integration by Parts

• Empirical

Bias

Zero Bias

• Gaussian

• Stein Kernel

• Zero Bias

• Construction

• Properties

• Stein Kernel

• Divisble
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Let Z
d
=N (0, σ2). A very useful computational tool is the

integration by parts formula (aka Stein’s formula)

E[Zf(Z)] = σ2 E[f ′(Z)]

which holds for any f ∈ C1(R) for which f and f ′ are sufficiently

integrable. In fact, this identity (holding over all f ∈ C∞
c (R) for

example) uniquely specifies the centered normal distribution of

variance σ2.

The extent to which a distribution fails to satisfy the above equation

can be viewed, in multiple ways, as a measure of its distance from a

normal distribution. Tools based on this idea are generally called

Stein’s Method, and can produce extremely sharp estimates for

normal approximation.

One approach is with Stein kernels.
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Let X be a real-valued random variable. We say that X (or rather its

distribution) possesses a Stein kernel A = AX if, for all

f ∈ C∞
c (R),

E[Xf(X)] = E[A(X)f ′(X)].

If X
d
=N (0, σ2), then X possesses the constant Stein kernel

A = σ2. (So bounds on derivatives of the Stein kernel can measure

distance from normality; this leads to Stein discrepancy sharply

controlling L2-Wasserstein distance.)
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Let X be a real-valued random variable. We say that X (or rather its

distribution) possesses a Stein kernel A = AX if, for all

f ∈ C∞
c (R),

E[Xf(X)] = E[A(X)f ′(X)].

If X
d
=N (0, σ2), then X possesses the constant Stein kernel

A = σ2. (So bounds on derivatives of the Stein kernel can measure

distance from normality; this leads to Stein discrepancy sharply

controlling L2-Wasserstein distance.)

Stein kernels are unique when they exist; but not every distribution µ
has a Stein kernel Aµ. Characterizing those that do is a difficult

problem that is an area of active research. One existence theorem: if

µ has mean 0 and has a density ρ with connected support, then

Aµ(x) =
1

ρ(x)

∫ ∞

x

y ρ(y) dy.
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Stein kernels are one way to deform the Stein equation.

E[Xf(X)] = σ2 · E[f ′(X)] Stein equation

E[Xf(X)] = E[A(X)f ′(X)] Stein kernel
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Stein kernels are one way to deform the Stein equation. A different

way relates to size bias:

E[Xf(X)] = σ2 · E[f ′(X)] Stein equation

E[Xf(X)] = E[A(X)f ′(X)] Stein kernel

E[Xf(X)] = m · E[f(Xs)] size bias
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way relates to size bias:
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E[Xf(X)] = E[A(X)f ′(X)] Stein kernel

E[Xf(X)] = m · E[f(Xs)] size bias

E[Xf(X)] = c · E[f ′(X∗)] zero bias
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Stein kernels are one way to deform the Stein equation. A different

way relates to size bias:

E[Xf(X)] = σ2 · E[f ′(X)] Stein equation

E[Xf(X)] = E[A(X)f ′(X)] Stein kernel

E[Xf(X)] = m · E[f(Xs)] size bias

E[Xf(X)] = c · E[f ′(X∗)] zero bias

Setting f ≡ 1, we see size bias X∗ only makes sense if E[X] = 0.
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way relates to size bias:
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E[Xf(X)] = E[A(X)f ′(X)] Stein kernel

E[Xf(X)] = m · E[f(Xs)] size bias

E[Xf(X)] = c · E[f ′(X∗)] zero bias

Setting f ≡ 1, we see size bias X∗ only makes sense if E[X] = 0.

Setting f(x) = x, we see that c = E[X2] = Var[X] = σ2.
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Stein kernels are one way to deform the Stein equation. A different

way relates to size bias:

E[Xf(X)] = σ2 · E[f ′(X)] Stein equation

E[Xf(X)] = E[A(X)f ′(X)] Stein kernel

E[Xf(X)] = m · E[f(Xs)] size bias

E[Xf(X)] = σ2 · E[f ′(X∗)] zero bias

Setting f ≡ 1, we see size bias X∗ only makes sense if E[X] = 0
Setting f(x) = x, we see that c = E[X2] = Var[X] = σ2.

The zero bias transform X 7→ X∗ (or more precisely µ 7→ µ∗) is

well-defined on the space D0,σ2 of probability distributions on R with

mean 0 and variance σ2. It can be constructed in several different

ways (all leading to the same measure µ∗).

The normal distribution X
d
=N (0, t) is the unique fixed point.
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For one concrete (probabilistic) construction of the zero bias, we

need to get even more biased.
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For one concrete (probabilistic) construction of the zero bias, we

need to get even more biased.

Let X be a non-constant L2 random variable, with distribution µ.

The square bias of X (or more precisely of µ) is the distribution µ2,

realized as the distribution of a random variable X2, defined by

µ2(dx) =
1

E[X2]
x2 µ(dx).

The associated functional equation is

E[f(X2f(X))] = E[X2] · E[f(X2)].
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For one concrete (probabilistic) construction of the zero bias, we

need to get even more biased.

Let X be a non-constant L2 random variable, with distribution µ.

The square bias of X (or more precisely of µ) is the distribution µ2,

realized as the distribution of a random variable X2, defined by

µ2(dx) =
1

E[X2]
x2 µ(dx).

The associated functional equation is

E[f(X2f(X))] = E[X2] · E[f(X2)].

Proposition. If X has mean 0 and finite second moment, then

X∗ d
=UX2

where U
d
=Unif[0, 1] is independent from X2.
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• Every mean 0, finite variance random variable has a zero bias.

• For any constant α 6= 0, (αX)∗ = αX∗.

• If Xn ⇀ X and Var[Xn] → Var[X], then X∗
n ⇀ X∗.

• The distribution of X∗ is always absolutely continuous.

• The support of µ∗ is equal to the convex hull of the support of µ.
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• Every mean 0, finite variance random variable has a zero bias.

• For any constant α 6= 0, (αX)∗ = αX∗.

• If Xn ⇀ X and Var[Xn] → Var[X], then X∗
n ⇀ X∗.

• The distribution of X∗ is always absolutely continuous.

• The support of µ∗ is equal to the convex hull of the support of µ.

The zero bias has a similar independent sum exchange property to

the size bias:



Properties of the Zero Bias

• Empirical

Bias

Zero Bias

• Gaussian

• Stein Kernel

• Zero Bias

• Construction

• Properties

• Stein Kernel

• Divisble
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• Every mean 0, finite variance random variable has a zero bias.

• For any constant α 6= 0, (αX)∗ = αX∗.

• If Xn ⇀ X and Var[Xn] → Var[X], then X∗
n ⇀ X∗.

• The distribution of X∗ is always absolutely continuous.

• The support of µ∗ is equal to the convex hull of the support of µ.

The zero bias has a similar independent sum exchange property to

the size bias: If X1, . . . , Xn are independent mean 0 random

variables and E[X2
i ] = σ2i > 0, and if I is a random index in

{1, . . . , n} independent from {X1, . . . , Xn} with

P(I = i) = σ2i /
∑n

j σ
2
j , then

(

n
∑

i

Xi

)∗
d
=

n
∑

i

Xi −XI +X∗
I .

If the variables are i.i.d. we can just take (say) I = 1:

(X1 +X2 + · · ·+Xn)
∗ d
=X∗

1 +X2 + · · ·+Xn.
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Let X
d
=µ. The defining equation for the zero bias is

E[Xf(X)] = σ2 E[f ′(X∗)]
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Let X
d
=µ. The defining equation for the zero bias is

E[Xf(X)] = σ2 E[f ′(X∗)]

= σ2
∫

f ′(x)µ∗(dx)
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∫

f ′(x)µ∗(dx) = σ2
∫

f ′(x) ρX∗(x) dx.
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Let X
d
=µ. The defining equation for the zero bias is

E[Xf(X)] = σ2 E[f ′(X∗)]

= σ2
∫

f ′(x)µ∗(dx) = σ2
∫

f ′(x) ρX∗(x) dx.

Now suppose that X has a density ρX that is strictly positive on the

interior of its support (i.e. suppµ is connected). In this case

suppµ∗ = suppµ, and hence

E[Xf(X)] = σ2
∫

f ′(x) ρX∗(x) dx

= σ2
∫

ρX∗(x)

ρX(x)
f ′(x) ρX(x) dx
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Let X
d
=µ. The defining equation for the zero bias is

E[Xf(X)] = σ2 E[f ′(X∗)]

= σ2
∫

f ′(x)µ∗(dx) = σ2
∫

f ′(x) ρX∗(x) dx.

Now suppose that X has a density ρX that is strictly positive on the

interior of its support (i.e. suppµ is connected). In this case

suppµ∗ = suppµ, and hence

E[Xf(X)] = σ2
∫

f ′(x) ρX∗(x) dx

= σ2
∫

ρX∗(x)

ρX(x)
f ′(x) ρX(x) dx

= E[A(X)f ′(X)] where A = σ2 ρX∗/ρX .

In fact µ has a Stein kernel whenever µX ≪ µX∗ (which is

equivalent to assuming µX ≈ µX∗ ).
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A distribution (the law of X) is (classically) infinitely divisible if, for every n,

there are i.i.d. random variables X1,n, . . . , Xn,n with

X
d
=X1,n + · · ·+Xn,n.

A forthcoming paper by L. Goldstein and U. Schmock proves the following very

interesting characterization of infinitely divisible distributions with finite second

moment. For this result, we extend the zero bias to the non-centered case by

shifting: if E[X] = m, we work with (X −m)∗ +m.
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A distribution (the law of X) is (classically) infinitely divisible if, for every n,

there are i.i.d. random variables X1,n, . . . , Xn,n with

X
d
=X1,n + · · ·+Xn,n.

A forthcoming paper by L. Goldstein and U. Schmock proves the following very

interesting characterization of infinitely divisible distributions with finite second

moment. For this result, we extend the zero bias to the non-centered case by

shifting: if E[X] = m, we work with (X −m)∗ +m.

Theorem. [Goldstein, Schmock, 2023+] X is infinitely divisible if and only if

there exist random variables U, Y with {U,X, Y } independent,

U
d
=Unif[0, 1], and

(X −m)∗ +m
d
= X + UY.

2017 work of Arras and Houdré used non-probabilistic methods to prove a

slightly weaker relation to the Kolmogorov formulation:
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An L2 random variable with variance σ2 is (classically) infinitely

divisible if and only if its cumulant generating function (log Fourier

transform) has the following form:

C(ξ) = −
σ2

2
ξ2ν({0}) + σ2

∫

R\{0}

exp(iξx)− iξx− 1

x2
ν(dx)

for some probability measure ν on R.
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An L2 random variable with variance σ2 is (classically) infinitely

divisible if and only if its cumulant generating function (log Fourier

transform) has the following form:

C(ξ) = −
σ2

2
ξ2ν({0}) + σ2

∫

R\{0}

exp(iξx)− iξx− 1

x2
ν(dx)

for some probability measure ν on R.

Goldstein and Schmock prove directly that an L2 random variable X
has a cumulant generation of the above form if and only if

(X −m)∗ +m
d
=X + UY

and moreover ν is the distribution of Y . This yields a concrete

meaning for this Lévy–Khinchine measure.
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In noncommutative probability, we frequently let single-variable

functions do double-duty and act on operators by functional calculus.

If p is an ordinary polynomial, and A is a C∗ algebra, let

pA : A → A be the associated functional calculus function.

Propositon. pA ∈ C∞(A ;A ), and the Fréchet derivative DpA is

given by

[DpA ](a)[h] = (∂p)(a)#h

where ∂p : A → A ⊗ A is the free difference quotient. Here

(a⊗ b)#h := ahb, and ∂p is defined by

∂xk :=
k
∑

i=1

xk−i ⊗ xi−1.

Equivalently: identifying C[x]⊗ C[x] ≈ C[x, y], really

(∂p)(x, y) =
p(x)− p(y)

x− y
.
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The Stein equation (i.e. Gaussian integration by parts) uniquely

specific Z
d
=N (0, σ2) via the functional equation

E[Zf(Z)] = σ2 E[f ′(Z)], f ∈ C∞
c (R).
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The Stein equation (i.e. Gaussian integration by parts) uniquely

specific Z
d
=N (0, σ2) via the functional equation

E[Zf(Z)] = σ2 E[f ′(Z)], f ∈ C∞
c (R).

The natural guess for the free version of this equation is:

E[Sf(S)] = σ2 E⊗ E[∂f(S)], f ∈ C∞
c (R).

We should restrict to polynomials f to make sense of this from the

definition ∂f : A → A ⊗ A .
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The Stein equation (i.e. Gaussian integration by parts) uniquely

specific Z
d
=N (0, σ2) via the functional equation

E[Zf(Z)] = σ2 E[f ′(Z)], f ∈ C∞
c (R).

The natural guess for the free version of this equation is:

E[Sf(S)] = σ2 E⊗ E[∂f(S)], f ∈ C∞
c (R).

We should restrict to polynomials f to make sense of this from the

definition ∂f : A → A ⊗ A . But if we interpret ∂f as a genuine

difference quotient, we can interpret this more directly for any

measurable function f as

E[Sf(S)] = σ2 E

[

f(S)− f(S′)
S − S′

]

where S, S′ are two classically independent copies of the putative

random variable S.



The Semicircle Law and the Free Stein Equation
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Proposition. The unique solution (in distribution) to the free Stein equation

E[Sf(S)] = σ2 E⊗ E[∂f(S)], f ∈ C[x]

is the semicircle law S of variance σ2.
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Proposition. The unique solution (in distribution) to the free Stein equation

E[Sf(S)] = σ2 E⊗ E[∂f(S)], f ∈ C[x]

is the semicircle law S of variance σ2.

Proof. Renormalize σ2 = 1. Take f(x) = xk. Thus

E[Sk+1] = E[S · Sk] = E⊗ E

[

k
∑

i=1

Sk−i ⊗ Si−1

]

=
k
∑

i=1

E[Sk−i]E[Si−1].
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[

k
∑

i=1

Sk−i ⊗ Si−1
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=
k
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i=1

E[Sk−i]E[Si−1].

If k is even, see by induction (from E[X] = 0) that all terms are 0; so odd

moments of S are 0.
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Proof. Renormalize σ2 = 1. Take f(x) = xk. Thus
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[

k
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i=1

Sk−i ⊗ Si−1

]

=
k
∑

i=1

E[Sk−i]E[Si−1].

If k is even, see by induction (from E[X] = 0) that all terms are 0; so odd

moments of S are 0. . Then taking k = 2m− 1,

E[S2m] =
2m−1
∑

i=1

E[S2m−1−i]E[Si−1]
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Proposition. The unique solution (in distribution) to the free Stein equation

E[Sf(S)] = σ2 E⊗ E[∂f(S)], f ∈ C[x]

is the semicircle law S of variance σ2.

Proof. Renormalize σ2 = 1. Take f(x) = xk. Thus

E[Sk+1] = E[S · Sk] = E⊗ E

[

k
∑

i=1

Sk−i ⊗ Si−1

]

=
k
∑

i=1

E[Sk−i]E[Si−1].

If k is even, see by induction (from E[X] = 0) that all terms are 0; so odd

moments of S are 0. . Then taking k = 2m− 1,

E[S2m] =
2m−1
∑

i=1

E[S2m−1−i]E[Si−1] =
m−1
∑

j=0

E[S2m−2j ]E[S2j].

�
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Putatively, we define the free zero bias X◦ of a (law of a) centered,

variance t random variable X by the functional equation

E[Xf(X)] = σ2 E⊗ E[∂f(X◦)], f ∈ C∞
c (R)

where, to define the right-hand-side beyond polynomials f , we

interpret for Y ◦ a classically independent copy of (the putative) X◦

E⊗ E[∂f(X◦)] = E

[

f(X◦)− f(Y ◦)
X◦ − Y ◦

]

.
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Putatively, we define the free zero bias X◦ of a (law of a) centered,

variance t random variable X by the functional equation

E[Xf(X)] = σ2 E⊗ E[∂f(X◦)], f ∈ C∞
c (R)

where, to define the right-hand-side beyond polynomials f , we

interpret for Y ◦ a classically independent copy of (the putative) X◦

E⊗ E[∂f(X◦)] = E

[

f(X◦)− f(Y ◦)
X◦ − Y ◦

]

.

Note:
f(x)−f(y)

x−y = E[f ′(Ux+ (1− U)y)] where U
d
=Unif[0, 1],

so we could give the definition as

E[Xf(X)] = σ2E[f ′(UX◦ + (1− U)Y ◦)], f ∈ C∞
c (R).

This means that X∗ d
=UX◦ + (1− U)Y ◦

.
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For z ∈ C+, taking the resolvent function fz(x) =
1

z−x , we

calculate that

∂fz(x, y) =

1
z−x − 1

z−y

x− y
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For z ∈ C+, taking the resolvent function fz(x) =
1

z−x , we

calculate that

∂fz(x, y) =

1
z−x − 1

z−y

x− y
=

1

(z − x)(z − y)
= fz(x)fz(y).

Plugging this into the defining equation

E[Xfz(X)] = σ2E⊗ E[∂fz(X
◦)]

and simplifying yields the following quadratic equation for Cauchy

transforms GX(z) = E[ 1
z−X ]:

σ2GX◦(z)2 = zGX(x)− 1.

So the question is: given a Cauchy transform G(z) (mean 0,

variance t), is there a square root of 1
σ2 (zG(z)− 1) that is a

Cauchy transform? The answer is always yes.



A Geometric Mean Cauchy Transform
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Lemma. Let X,Y be real-valued random variables. Then for z ∈ C+,

z 7→ −
√

GX(z)GY (z) =
√

GX(z)
√

GY (z)

is a Cauchy transform of a probability measure. We denote the associated

measure as the law of a random variable X♭Y .
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measure as the law of a random variable X♭Y .

Example. If X ≡ 1 and Y ≡ −1, GX♭Y (z) =
1√

z2−1
.
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is a Cauchy transform of a probability measure. We denote the associated

measure as the law of a random variable X♭Y .

Example. If X ≡ 1 and Y ≡ −1, GX♭Y (z) =
1√

z2−1
.

Proposition. If Xn ⇀ X and Yn ⇀ Y then Xn♭Yn ⇀ X♭Y .
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Lemma. Let X,Y be real-valued random variables. Then for z ∈ C+,

z 7→ −
√

GX(z)GY (z) =
√

GX(z)
√

GY (z)

is a Cauchy transform of a probability measure. We denote the associated

measure as the law of a random variable X♭Y .

Example. If X ≡ 1 and Y ≡ −1, GX♭Y (z) =
1√

z2−1
.

Proposition. If Xn ⇀ X and Yn ⇀ Y then Xn♭Yn ⇀ X♭Y .

We will mostly use this with Y = 0. Define X♭ := X♭0; i.e.

GX♭(z) = −

√

1

z
GX(z).

We call this the ‘El Gordo transform’. We will see that it is a free analogue of

the map (on distributions) X 7→ UX where U
d
=Unif[0, 1].
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The square bias E[X2f(X)] = E[X2]E[f(X2)] can be identified

by its Cauchy transform:

GX2(z) =
1

E[X2]
(z2GX(z)− E[X]− z).
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The square bias E[X2f(X)] = E[X2]E[f(X2)] can be identified

by its Cauchy transform:

GX2(z) =
1

E[X2]
(z2GX(z)− E[X]− z).

Definition. Given any L2 random variable X , define (the law of) its

free zero bias by

X◦ d
=(X2)♭.

This is the free version of the zero bias construction X∗ = UX2.
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The square bias E[X2f(X)] = E[X2]E[f(X2)] can be identified

by its Cauchy transform:

GX2(z) =
1

E[X2]
(z2GX(z)− E[X]− z).

Definition. Given any L2 random variable X , define (the law of) its

free zero bias by

X◦ d
=(X2)♭.

This is the free version of the zero bias construction X∗ = UX2.

In terms of Cauchy transforms:

E[X2] ·GX◦(z)2 = zGX(x)−
E[X]

z
− 1

which reduces to the correct equation for the (originally defined) free

zero bias when E[X] = 0.
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Example. If X is a (centered) semicircular random variable,

X◦ d
=X . (If and only if, actually.)
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Example. If X is a (centered) semicircular random variable,

X◦ d
=X . (If and only if, actually.)

Example. If X is centered with point masses at −a < 0 < b, then

GX◦(z) =
1

√

(z + a)(z − b)
.

In particular: if X is Rademacher (a = b = 1), X◦ is arcsine

distributed

ρX◦(x) =
1

π

1
√

(1− x2)+
.
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Example. If X is a (centered) semicircular random variable,

X◦ d
=X . (If and only if, actually.)

Example. If X is centered with point masses at −a < 0 < b, then

GX◦(z) =
1

√

(z + a)(z − b)
.

In particular: if X is Rademacher (a = b = 1), X◦ is arcsine

distributed

ρX◦(x) =
1

π

1
√

(1− x2)+
.

Example. If X is arcsine distributed, then

ρX◦(x) =
1

π

√

1 +
1

√

(1− x2)+
.
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Theorem. Let X be a mean 0, non-constant, L2 random variable.

Let µ denote the distribution of X and let µ◦ denote the distribution

of the free zero bias X◦. Then for any compact interval [a, b] ⊂ R,

(µ◦([a, b]))2 ≤ (b− a)E[|X|].

Consequently, µ◦ is absolutely continuous with respect to Lebesgue

measure.
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Theorem. Let X be a mean 0, non-constant, L2 random variable.

Let µ denote the distribution of X and let µ◦ denote the distribution

of the free zero bias X◦. Then for any compact interval [a, b] ⊂ R,

(µ◦([a, b]))2 ≤ (b− a)E[|X|].

Consequently, µ◦ is absolutely continuous with respect to Lebesgue

measure.

This mirrors a (until now unknown) continuity property of the

classical zero bias:

(µ∗([a, b])) ≤ (b− a)E[|X|].

Moreover: suppµ◦ is contained in the convex hull of suppµ.
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Theorem. Let X be a mean 0, non-constant, L2 random variable.

Let µ denote the distribution of X and let µ◦ denote the distribution

of the free zero bias X◦. Then for any compact interval [a, b] ⊂ R,

(µ◦([a, b]))2 ≤ (b− a)E[|X|].

Consequently, µ◦ is absolutely continuous with respect to Lebesgue

measure.

This mirrors a (until now unknown) continuity property of the

classical zero bias:

(µ∗([a, b])) ≤ (b− a)E[|X|].

Moreover: suppµ◦ is contained in the convex hull of suppµ.

The proofs use the relation X∗ = UX◦ + (1− U)Y ◦, together

with several integral representations of the free difference quotient.
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Theorem. Let X be a mean 0, non-constant, L2 random variable

with variance σ2. Then

E[Xf(X)] = σ2 E⊗ E[∂f(X◦)], f ∈ C1
b (R).

Moreover, the following hold.

• For any constant α 6= 0, (αX)◦ = αX◦.

• If Xn ⇀ X and Var[Xn] → Var[X] > 0, then X◦
n ⇀ X◦.

• X◦ d
=Y ◦

if and only if X2 d
=Y 2

.
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Theorem. Let X be a mean 0, non-constant, L2 random variable

with variance σ2. Then

E[Xf(X)] = σ2 E⊗ E[∂f(X◦)], f ∈ C1
b (R).

Moreover, the following hold.

• For any constant α 6= 0, (αX)◦ = αX◦.

• If Xn ⇀ X and Var[Xn] → Var[X] > 0, then X◦
n ⇀ X◦.

• X◦ d
=Y ◦

if and only if X2 d
=Y 2

.

However, the free sum exchange property (probably?) does not

hold: if X,Y,X◦ are all coupled to be freely independent,

(X + Y )◦
d

6=X◦ + Y (???)

But there is an analog.
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For any probability distribution µ, its Cauchy transform Gµ(z) =
∫ µ(dx)

z−x is

analytic in C+. It is univalent (analytically invertible) in a truncated cone

{z ∈ C+ : |z| > r, Imz > α|Rez|}, with image contained in a similar

truncated cone.

The R-transform: Rµ(z) = G
〈−1〉
µ (z)− 1

z .

Also useful: the reciprocal Cauchy transform Fµ = 1/Gµ, and the

Voiculescu transform ϕµ(z) = Rµ(1/z). In their terms,

ϕµ(z) = F−1
µ (z)− z.
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For any probability distribution µ, its Cauchy transform Gµ(z) =
∫ µ(dx)

z−x is

analytic in C+. It is univalent (analytically invertible) in a truncated cone

{z ∈ C+ : |z| > r, Imz > α|Rez|}, with image contained in a similar

truncated cone.

The R-transform: Rµ(z) = G
〈−1〉
µ (z)− 1

z .

Also useful: the reciprocal Cauchy transform Fµ = 1/Gµ, and the

Voiculescu transform ϕµ(z) = Rµ(1/z). In their terms,

ϕµ(z) = F−1
µ (z)− z.

Given two probability distributions µ, ν, their subordinator is the analytic

function

ωµ,ν = G〈−1〉
µ ◦Gµ⊞ν .

I.e. the defining equation is Gµ(ωµ,ν(z)) = Gµ⊞ν(z); this actually defines

ωµ,ν everywhere on C+.

Fact. If µn ⇀ µ and νn ⇀ ν, then ωµn,νn → ωµ,ν uniformly on compact

subsets of C+. (Folklore known for decades; proof in our paper, using Montel’s

theorem.)
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• Lévy Measure

• Any Y Will Do

• Compact

• Etc.

31 / 37

Biane showed that the subordinator function plays an important role

in free conditional expectation. In particular, with fz(x) =
1

z−x , if

X,Y are freely independent then

E[fz(X + Y )|X] =
1

ωµ,ν(z)−X
.
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Biane showed that the subordinator function plays an important role

in free conditional expectation. In particular, with fz(x) =
1

z−x , if

X,Y are freely independent then

E[fz(X + Y )|X] =
1

ωµ,ν(z)−X
.

We use this to prove the following.

Proposition. Let X1, . . . , Xn be f.i.d. selfadjoint centered L2

random variables, and let W = X1 + · · ·+Xn. Then

GW ◦(z) = GX◦

1
(ωX1,W−X1

(z)).

For comparison: the independent sum exchange property of the

(classical) zero bias, in terms of Fourier transforms ψ, says

ψW ∗(ξ) = ψX∗

1
(ξ) · ψW−X1

(ξ).



Free Infinite Divisibility

• Empirical

Bias

Zero Bias

Free Zero Bias

Properties

• Continuity

• Regularity

• Transforms

• Conditioning

•⊞ Divisible

• Main Theorem
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A distribution µ is called ⊞-infinitely divisible if, for all n, there are

f.i.d. random variables X1, . . . , Xn with X1 + · · ·+Xn
d
=µ.

In 1992-1993, in two landmark papers, Bercovici and Voiculescu

characterized ⊞-infinitely divisible distributions.

There is an analog to Kolmogorov’s Lévy–Khinchine formula in the

classical case. If X has mean m and finite variance σ2, then X is

⊞-infinitely divisible if and only if there is some probability measure ν
such that

ϕX(z) = m+ σ2
∫

1

z − x
ν(dx) = m+ σ2Gν(z).
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A distribution µ is called ⊞-infinitely divisible if, for all n, there are

f.i.d. random variables X1, . . . , Xn with X1 + · · ·+Xn
d
=µ.

In 1992-1993, in two landmark papers, Bercovici and Voiculescu

characterized ⊞-infinitely divisible distributions.

There is an analog to Kolmogorov’s Lévy–Khinchine formula in the

classical case. If X has mean m and finite variance σ2, then X is

⊞-infinitely divisible if and only if there is some probability measure ν
such that

ϕX(z) = m+ σ2
∫

1

z − x
ν(dx) = m+ σ2Gν(z).

Note that this formula gives an analytic continuation for ϕX (and

hence RX ) to all of C+; Bercovici–Voiculescu proved the converse,

that the existence of such analytic continuation also implies

⊞-infinite divisibility.
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Theorem. Let X be a selfadjoint L2 random variable with mean m
and variance σ2 > 0. Then X is ⊞-infinitely divisible if and only if

there is a selfadjoint random variable Y such that

F(X−m)◦+m(z) = FY ♭(FX(z))
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Theorem. Let X be a selfadjoint L2 random variable with mean m
and variance σ2 > 0. Then X is ⊞-infinitely divisible if and only if

there is a selfadjoint random variable Y such that

F(X−m)◦+m(z) = FY ♭(FX(z)) i.e.

G(X−m)◦+m(z) = GY ♭(1/GX(z)).

Moreover, this holds if and only if

ϕX(z) = m+ σ2
∫

1

z − x
ν(dx)

where ν is the distribution if Y ; i.e. ϕX(z) = m+ σ2GY (z).
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Theorem. Let X be a selfadjoint L2 random variable with mean m
and variance σ2 > 0. Then X is ⊞-infinitely divisible if and only if

there is a selfadjoint random variable Y such that

F(X−m)◦+m(z) = FY ♭(FX(z)) i.e.

G(X−m)◦+m(z) = GY ♭(1/GX(z)).

Moreover, this holds if and only if

ϕX(z) = m+ σ2
∫

1

z − x
ν(dx)

where ν is the distribution if Y ; i.e. ϕX(z) = m+ σ2GY (z).

This is the free version of the Goldstein–Shmock result on classical

infinite divisibility equivalent to (X −m)∗ +m
d
=X + UY , where

the distribution of Y is the measure ν.
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Our reformulation of the (free) Lévy–Khintchine formula gives some

alternative meaning to the Lévy measure, which is the law of the

random variable Y for which

F(X−m)◦+m(z) = FY ♭(FX(z)).

More instructive is the way this arises in our proof.
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Our reformulation of the (free) Lévy–Khintchine formula gives some

alternative meaning to the Lévy measure, which is the law of the

random variable Y for which

F(X−m)◦+m(z) = FY ♭(FX(z)).

More instructive is the way this arises in our proof.

Theorem. Let X be (classically or freely) infinitely divisible. For

each n, write X = Xn,1 + · · ·+Xn,n for (freely) independent

identically distributed Xn,j . Then

X2

n,n → Y in distribution as n→ ∞.
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In the representation ϕX(z) = m+ σ2GY (z) for ⊞-infinitely

divisible X , it was not known exactly which probability measures

actually arise as Lévy measures (i.e. which Y ’s appear this way). In

fact, this was not known in the classical case either. Our methods

provide the definitive answer, in both cases.

Theorem. Given any random variable Y , and any m ∈ R and

σ2 > 0, there is a (unique up to distribution) ⊞-infinitely divisible

random variable X satisfying

ϕX(z) = m+ σ2GY (z).
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In the representation ϕX(z) = m+ σ2GY (z) for ⊞-infinitely

divisible X , it was not known exactly which probability measures

actually arise as Lévy measures (i.e. which Y ’s appear this way). In

fact, this was not known in the classical case either. Our methods

provide the definitive answer, in both cases.

Theorem. Given any random variable Y , and any m ∈ R and

σ2 > 0, there is a (unique up to distribution) ⊞-infinitely divisible

random variable X satisfying

ϕX(z) = m+ σ2GY (z).

We first show how to achieve this under the condition E[Y −2] <∞,

with X ’s that are limits of compound free Poisson random variables;

then we remove the negative moment condition with a cutoff

approximation.
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Our proof of the Free Lévy–Khinchine formula is quite different from

the Bercovici–Voiculescu proof, and gives new insight into the nature

of (free) Lévy measures. Our proof is not quite self-contained: in one

convergence proof, we need a priori knowledge of the fact that ϕX

has an analytic continuous to C+ when X is ⊞-infinitely divisible.

We can, however, circumvent this argument when X is

compactly-supported. Here, a compactness argument yields the

tightness required for the proof without more advanced analytic

techniques. To make this work, we needed to prove a uniformity

result which again is probability folklore but doesn’t seem to be

proved anywhere in writing (until now).

Lemma. Let µ be a ⊞-infinitely divisible random variable, supported

in [−R,R], with variance σ2. For each n, let µn be its ⊞ nth root:

µ⊞n
n = µ. Then suppµn ⊆ [−R− σ2 − 1, R+ σ2 + 1] for all n.
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As in the classical case, we can use the free zero bias to construct

free Stein kernels, under an absolute continuity assumption. Unlike

the classical case, free Stein kernels always exist (as shown by

Fathi–Nelson, and later by Cébron–Fathi–Mai) and are never unique.

The free zero bias always exists, and the free Stein kernel so

constructed is different from any of those found before.
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As in the classical case, we can use the free zero bias to construct

free Stein kernels, under an absolute continuity assumption. Unlike

the classical case, free Stein kernels always exist (as shown by

Fathi–Nelson, and later by Cébron–Fathi–Mai) and are never unique.

The free zero bias always exists, and the free Stein kernel so

constructed is different from any of those found before.

A current goal is to use the free zero bias to prove new sharp

estimates on semicircular approximation (i.e. quantitative bounds in

free CLTs). The subordination-flavored replacement for the free sum

exchange property makes this more challenging than the classical

case. Stay tuned!
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