Free probability of type B prime*

Takahiro Hasebe (Hokkaido University)

Joint work with Katsunori Fujie
arXiv:2310.14582

April 9th, 2024, UC Berkeley
*This work was supported by JSPS

- Open Partnership Joint Research Projects grant no. JPJSBP120209921,
- Bilateral Joint Research Projects (JSPS-MEAE-MESRI, grant no. JPJSBP120203202),
- Grant-in-Aid for Transformative Research Areas (B) grant no. 23H03800JSPS,
- Grant-in-Aid for Young Scientists 19K14546,
- Grant-in-Aid for JSPS Scientific Research 18H01115, and by Hokkaido University Ambitious Doctoral Fellowship (Information Science and Al)

Backgrounds

Let X be an $N \times N$ GUE such that its empirical eigenvalue distribution

$$
\frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_{i}(X)} \rightarrow \frac{1}{2 \pi} \sqrt{4-x^{2}} 1_{(-2,2)}(x) d x, \quad N \rightarrow \infty
$$

It is also known that $\lambda_{1}(X) \rightarrow 2$ (Strong convergence). Baik, Ben Arous, Peché studied finite-rank perturbations. Especially, Peché (2006) proved

$$
\lambda_{1}\left(X+\theta E_{11}\right) \rightarrow\left\{\begin{array}{ll}
2 & \text { if } \theta \leq 1 \\
\theta+1 / \theta, & \text { if } \theta>1
\end{array} \text { (Outlier }\right)
$$

Some works from free probabilistic perspectives (not comprehensive)

- S. T. Belinschi, H. Bercovici, M. Capitaine, and M. Février, Ann. Probab. 45 (2017), 3571-3625.
- S. T. Belinschi, H. Bercovici, M. Capitaine, Int. Math. Res. Not. 4 (2021), 2588-2641.
- G. Cébron, A. Dahlqvist, and F. Gabriel, arXiv:2205.01926.
- D. Shlyakhtenko, Indiana Univ. Math. J. 67 (2018), no. 2, 971-991.

Aim

We want to describe large- N limit of normalized / unnormalized traces of polynomials in random matrices

$$
\begin{equation*}
\left\{U_{i} A_{i} U_{i}^{*}, V_{i} F_{i} V_{i}^{*}\right\}_{i \in I} \quad\left(\text { or } \quad\left\{U_{i} A_{i} U_{i}^{*}, F_{i}\right\}_{i \in I}\right) \tag{1}
\end{equation*}
$$

where

- $\left\{U_{i}, V_{i}: i \in I\right\}$ is independent family of Haar unitary matrices,
- $A_{i}=A_{i}^{(N)}$ are deterministic matrices in $\mathrm{M}_{N}(\mathbb{C})$ such that for each i

$$
\left(U_{i} A_{i} U_{i}^{*}, \frac{1}{N} \operatorname{Tr}_{\mathrm{M}_{N}(\mathbb{C})}\right) \rightarrow\left(a_{i}, \varphi\right)
$$

where $\left\{a_{i}\right\}$ are nc r.v.s in a nc probability space (\mathcal{A}, φ).

- F_{i} are deterministic matrices such that, for each i,

$$
\left(V_{i} F_{i} V_{i}^{*}, \operatorname{Tr}_{\mathrm{M}_{N}(\mathbb{C})}\right) \rightarrow\left(f_{i}, \Phi\right)
$$

where $\left\{f_{i}\right\}$ are nc r.v.s in a nc probability space (\mathcal{F}, Φ).
Question: How to describe the mixtures of a_{i} and f_{i}, e.g. the limit of $\operatorname{Tr}\left(U_{1} A_{1} U_{1}^{*} V_{1} F_{1} V_{1}^{*} U_{2} A_{2} U_{2}^{*}\right) ?$

Aim (continued)

a_{i} : the limit of $U_{i} A_{i} U_{i}^{*}$ (main part), φ : the limit of $\frac{1}{N} \operatorname{Tr}_{N}$
f_{i} : the limit of $V_{i} F_{i} V_{i}^{*}$ (perturbation part), Φ : the limit of Tr_{N}
Known results

- the family $\left\{U_{i} A_{i} U_{i}^{*}\right\}_{i \in I}$ is asymptotically free (Voiculescu), i.e., $\left\{a_{i}\right\}$ is free in (\mathcal{A}, φ). For example,

$$
\varphi\left(a_{1} a_{2} a_{1} a_{2}\right)=\varphi\left(a_{1}^{2}\right) \varphi\left(a_{2}\right)^{2}+\varphi\left(a_{1}\right)^{2} \varphi\left(a_{2}^{2}\right)-\varphi\left(a_{1}\right)^{2} \varphi\left(a_{2}\right)^{2} .
$$

- the pair $\left(\left\langle U_{i} A_{i} U_{i}^{*}: i \in I\right\rangle,\left\langle V_{i} F_{i} V_{i}^{*}: i \in I\right\rangle\right)$ is asymptotically cyclic-antimonotone indep. (Collins, Hasebe, Sakuma '18, cf. Shlyakhtenko '18), for example

$$
" \Phi\left(a_{1} f_{1} a_{2} f_{2} a_{3}\right)=\Phi\left(f_{1} f_{2}\right) \varphi\left(a_{1} a_{3}\right) \varphi\left(a_{2}\right) "
$$

- the family $\left\{V_{i} F_{i} V_{i}^{*}: i \in I\right\}$ is asympt. trivially indep. (Collins, Hasebe, Sakuma '18), i.e., all (genuine) mixed moments vanish, e.g.

$$
\Phi\left(f_{1} f_{2}\right)=\Phi\left(f_{1} f_{2} f_{1}\right)=0, \quad f_{1} \in \mathcal{F}_{1}, f_{2} \in \mathcal{F}_{2}
$$

These rules allow us to calculate any traces of any polynomials.

An abstract framework

The following framework allows us to describe the previous limits very well.

Definition

(1) Let (\mathcal{A}, φ) be a unital ncps.
(2) (\mathcal{F}, Φ) : ncps, where \mathcal{F} is an \mathcal{A}-algebra, i.e., \mathcal{F} is an algebra having an \mathcal{A}-bimodule structure consistent with \mathcal{F} 's own multiplication.
The tuple $(\mathcal{A}, \varphi, \mathcal{F}, \Phi)$ is called a ncps of type \mathbf{B}^{\prime}.
We further set

$$
\begin{align*}
& \mathcal{B} \equiv \mathcal{A}\langle\mathcal{F}\rangle:=\mathcal{A} \oplus \mathcal{F}, \tag{2}\\
& \left(a_{1}, f_{1}\right) \cdot\left(a_{2}, f_{2}\right):=\left(a_{1} a_{2}, a_{1} f_{2}+f_{1} a_{2}+f_{1} f_{2}\right) \tag{3}\\
& \varphi(a+f):=\varphi(a), \quad \underline{\varphi^{\prime}(a+f):=\Phi(f)} . \tag{4}
\end{align*}
$$

We thus get a triple $\left(\mathcal{B}, \varphi, \varphi^{\prime}\right)$ having two linear functionals. (Infinitesimal nc prob. space)

An abstract framework (continued)

$$
\begin{align*}
& \mathcal{B} \equiv \mathcal{A}\langle\mathcal{F}\rangle:=\mathcal{A} \oplus \mathcal{F} \tag{5}\\
& \left(a_{1}, f_{1}\right) \cdot\left(a_{2}, f_{2}\right):=\left(a_{1} a_{2}, a_{1} f_{2}+f_{1} a_{2}+f_{1} f_{2}\right) \tag{6}\\
& \varphi(a+f):=\varphi(a), \quad \underline{\varphi^{\prime}(a+f):=\Phi(f)} \tag{7}
\end{align*}
$$

Remark

φ models the limit of $\frac{1}{N} \operatorname{Tr}_{N} . \varphi^{\prime}$ models the limit of Tr_{N} but it only captures the perturbation part.

Remark

In the setting of type B (due to Biane, Goodman and Nica 03'), f is considered to be "infinitesimal" and the multiplication was defined by

$$
\left(a_{1}, f_{1}\right) \cdot\left(a_{2}, f_{2}\right):=\left(a_{1} a_{2}, a_{1} f_{2}+f_{1} a_{2}\right)
$$

In this case, one does not need multiplication inside \mathcal{F}. (\mathcal{F} is required to be just an \mathcal{A}-bimodule.) Then the tuple $(\mathcal{A}, \varphi, \mathcal{F}, \Phi)$ was called a ncps of type B.

Independences

We define the sets of alternating sequences

$$
\begin{aligned}
& I^{(n)}:=\left\{\left(i_{1}, i_{2}, \ldots, i_{n}\right) \in I^{n} \mid i_{1} \neq i_{2} \neq \cdots \neq i_{n}\right\}(n \geq 2), \quad I^{(1)}:=I \\
& I^{(\infty)}:=\bigcup_{n \in \mathbb{N}} I^{(n)}
\end{aligned}
$$

and sets of tuples of elements

$$
\mathcal{A}_{\mathbf{i}}:=\mathcal{A}_{i_{1}} \times \mathcal{A}_{i_{2}} \times \cdots \times \mathcal{A}_{i_{n}} \quad \text { and } \quad \check{\mathcal{A}}_{\mathbf{i}}:=\AA_{\mathcal{A}_{1}} \times \AA_{i_{2}} \times \cdots \times \circ_{i_{n}}
$$

where $\mathbf{i}=\left(i_{1}, i_{2}, \ldots, i_{n}\right) \in I^{(n)}$ and $\circ_{\mathcal{A}}^{i}:=\left\{a \in \mathcal{A}_{i}: \varphi(a)=0\right\}$.

Definition

A family of subalgebras $\left(\mathcal{A}_{i}\right)_{i \in I}$ of \mathcal{A} containing $1_{\mathcal{A}}$ are said to be free if $\varphi\left(a_{1} a_{2} \cdots a_{n}\right)=0$ holds for any $\mathbf{i}=\left(i_{1}, i_{2}, \ldots, i_{n}\right) \in I^{(\infty)}$ and any $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathcal{\mathcal { A }}_{\mathbf{i}}$.

Independences (continued)

(\mathcal{A}, φ) : unital ncps, $(\mathcal{F}, \Phi): \mathcal{A}$-algebra \mathcal{F} with a linear functional Φ,
Definition (Ben Ghorbal-Schürmann, 2002, terminology was different)
Subalgebras $\left(\mathcal{F}_{i}\right)_{i \in I}$ of \mathcal{F} are said to be trivially independent with respect to Φ if $\Phi\left(f_{1} f_{2} \cdots f_{n}\right)=0$ holds for every $n \geq 2, \mathbf{i} \in I^{(n)}$ and every $\left(f_{1}, f_{2}, \ldots, f_{n}\right) \in \mathcal{F}_{\mathbf{i}}$. "All genuine mixed moments vanish".

Definition (Collins, Hasebe, Sakuma 2018)

Let \mathcal{A}_{1} a subalgebra of \mathcal{A} containing $1_{\mathcal{A}}$ and \mathcal{F}_{1} a subalgebra of \mathcal{F}. The pair $\left(\mathcal{A}_{1}, \mathcal{F}_{1}\right)$ is said to be cyclic-antimonotone independent if

$$
\Phi\left(a_{0} f_{1} a_{1} f_{2} \cdots a_{n-1} f_{n} a_{n}\right)=\varphi\left(a_{0} a_{n}\right)\left[\prod_{1 \leq i \leq n-1} \varphi\left(a_{i}\right)\right] \Phi\left(f_{1} f_{2} \cdots f_{n}\right)
$$

for $n \in \mathbb{N}, a_{i} \in \mathcal{A}_{1}, f_{i} \in \mathcal{F}_{1}$. Note: in some papers, $\varphi\left(a_{n} a_{0}\right)$ in RHS

B'-freeness

Let $(\mathcal{A}, \varphi, \mathcal{F}, \Phi)$ be a ncps of type B^{\prime}. Recall the setting

$$
\begin{aligned}
& \mathcal{B}:=\mathcal{A} \oplus \mathcal{F}, \\
& \left(a_{1}, f_{1}\right) \cdot\left(a_{2}, f_{2}\right):=\left(a_{1} a_{2}, a_{1} f_{2}+f_{1} a_{2}+f_{1} f_{2}\right) \\
& \varphi(a+f):=\varphi(a), \quad \varphi^{\prime}(a+f):=\Phi(f) .
\end{aligned}
$$

For a unital subalgebra $\mathcal{A}_{1} \subset \mathcal{A}$ and a subalgebra $\mathcal{F}_{1} \subset \mathcal{F}$, let $\mathcal{A}_{1}\left\langle\mathcal{F}_{1}\right\rangle$ be the subalg. of \mathcal{B} generated by $\mathcal{A}_{1}, \mathcal{F}_{1} \subseteq \mathcal{B} . \mathcal{A}_{1}\left\langle\mathcal{F}_{1}\right\rangle$ is the set of linear combinations of elements of the form a_{i} and $a_{1} f_{1} a_{2} f_{2} \cdots a_{k} f_{k} a_{k+1}$.

Definition

Let $1 \in \mathcal{A}_{i} \subset \mathcal{A}$ and $\mathcal{F}_{i} \subset \mathcal{F}$ (subalg.). We call $\left(\mathcal{A}_{i}, \mathcal{F}_{i}\right)_{i \in I}$ are \mathbf{B}^{\prime}-free if
(F) $\left(\mathcal{A}_{i}\right)_{i \in I}$ are free with respect to (\mathcal{A}, φ),
(CM) the pair $\left(\left\langle\mathcal{A}_{i}: i \in I\right\rangle,\left\langle\mathcal{F}_{i}: i \in I\right\rangle\right)$ of algebras generated by $\left\{\mathcal{A}_{i}\right\}$ and $\left\{\mathcal{F}_{i}\right\}$ is cyclic-antimonotone independent w.r.t. $(\mathcal{A}, \varphi, \mathcal{F}, \Phi)$,
(T$)\left(\mathcal{F}_{i}\right)_{i \in I}$ are trivially independent with respect to (\mathcal{F}, Φ).

We call $\left(\mathcal{A}_{i}, \mathcal{F}_{i}\right)_{i \in I}$ are \mathbf{B}^{\prime}-free if
(F) $\left(\mathcal{A}_{i}\right)_{i \in I}$ are free with respect to (\mathcal{A}, φ),
(CM) $\left(\left\langle\mathcal{A}_{i}: i \in I\right\rangle,\left\langle\mathcal{F}_{i}: i \in I\right\rangle\right)$ is cyclic-antimonotone indep. w.r.t. $(\mathcal{A}, \varphi, \mathcal{F}, \Phi)$
(T) $\left(\mathcal{F}_{i}\right)_{i \in I}$ are trivially independent with respect to (\mathcal{F}, Φ).

Theorem (Fujie and H.)

$\left(\mathcal{A}_{i}, \mathcal{F}_{i}\right)_{i \in I}$ are B^{\prime}-free if and only if:
(1) the pair $\left(\mathcal{A}_{i}, \mathcal{F}_{i}\right)$ is cyclic-antimonotone independent for every $i \in I$;
(2) $\left(\mathcal{A}_{i}\left\langle\mathcal{F}_{i}\right\rangle\right)_{i \in I}$ are infinitesimally free in $\left(\mathcal{B}, \varphi, \varphi^{\prime}\right)$, i.e., for every $\mathbf{i}=\left(i_{1}, i_{2}, \ldots, i_{n}\right) \in I^{(\infty)}$ and $\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in \dot{\mathcal{B}}_{\mathbf{i}}$ we have $\varphi\left(b_{1} b_{2} \cdots b_{n}\right)=0$ and

$$
\varphi^{\prime}\left(b_{1} b_{2} \cdots b_{n}\right)=\left\{\begin{array}{l}
\varphi^{\prime}\left(b_{(n+1) / 2}\right) \prod_{k=1}^{(n-1) / 2} \varphi\left(b_{k} b_{n-k+1}\right) \text { if } n \text { is odd and } \\
i_{k}=i_{n-k+1} \text { for all } k=1,2, \ldots,(n-1) / 2 \\
0, \quad \text { otherwise. }
\end{array}\right.
$$

Key lemma

Let $(\mathcal{A}, \varphi, \mathcal{F}, \Phi)$ be a ncps of type B^{\prime} and

$$
\begin{aligned}
& \mathcal{B} \equiv \mathcal{A}\langle\mathcal{F}\rangle:=\mathcal{A} \oplus \mathcal{F} \\
& \left(a_{1}, f_{1}\right) \cdot\left(a_{2}, f_{2}\right):=\left(a_{1} a_{2}, a_{1} f_{2}+f_{1} a_{2}+f_{1} f_{2}\right) \\
& \varphi(a+f):=\varphi(a), \quad \varphi^{\prime}(a+f):=\Phi(f)
\end{aligned}
$$

Let $\kappa_{n}, \kappa_{n}^{\prime}: \mathcal{B}^{n} \rightarrow \mathbb{C}$ be free cumulants and infinitesimal free cumulants with respect to $\left(\varphi, \varphi^{\prime}\right)$, respectively:

$$
\begin{aligned}
\varphi\left(b_{1} b_{2} \cdots b_{n}\right) & =\sum_{\pi \in \mathrm{NC}(n)} \prod_{V \in \pi} \kappa_{|V|}\left(b_{i}: i \in V\right) \\
\varphi^{\prime}\left(b_{1} b_{2} \cdots b_{n}\right) & =\sum_{\pi \in \mathrm{NC}(n)} \sum_{W \in \pi} \kappa_{|W|}^{\prime}\left(b_{i}: i \in W\right) \prod_{V \in \pi \backslash\{W\}} \kappa_{|V|}\left(b_{i}: i \in V\right)
\end{aligned}
$$

Rem: κ_{n}^{\prime} are recursively obtained by taking formal derivatives of (8), e.g.,

$$
\begin{array}{r}
\varphi(b)=\kappa_{1}(b) \quad \Longrightarrow \quad \varphi^{\prime}(b)=\kappa_{1}^{\prime}(b), \\
\varphi\left(b_{1} b_{2}\right)=\kappa_{2}\left(b_{1}, b_{2}\right)+\kappa_{1}\left(b_{1}\right) \kappa_{2}\left(b_{2}\right) \\
\Longrightarrow \varphi^{\prime}\left(b_{1} b_{2}\right)=\kappa_{2}^{\prime}\left(b_{1}, b_{2}\right)+\kappa_{1}^{\prime}\left(b_{1}\right) \kappa_{2}\left(b_{2}\right)+\kappa_{1}\left(b_{1}\right) \kappa_{2}^{\prime}\left(b_{2}\right)
\end{array}
$$

Key lemma (continued)

Let $(\mathcal{A}, \varphi, \mathcal{F}, \Phi)$ be a ncps of type B^{\prime} and

$$
\begin{align*}
& \mathcal{B} \equiv \mathcal{A}\langle\mathcal{F}\rangle:=\mathcal{A} \oplus \mathcal{F}, \tag{9}\\
& \left(a_{1}, f_{1}\right) \cdot\left(a_{2}, f_{2}\right):=\left(a_{1} a_{2}, a_{1} f_{2}+f_{1} a_{2}+f_{1} f_{2}\right) \tag{10}\\
& \varphi(a+f):=\varphi(a), \quad \varphi^{\prime}(a+f):=\Phi(f) . \tag{11}
\end{align*}
$$

Lemma (Characterization of c.a.m.-independence)

Let $\left(\mathcal{A}_{i}\right)_{i \in I}$ be subalgebras of \mathcal{A} containing $1_{\mathcal{A}}$ and $\left(\mathcal{F}_{i}\right)_{i \in I}$ be subalgebras of \mathcal{F}. Then the pair $\left(\left\langle\mathcal{A}_{i}: i \in I\right\rangle,\left\langle\mathcal{F}_{i}: i \in I\right\rangle\right)$ is cyclic-antimonotone if and only if the following condition holds.

- For any $n \in \mathbb{N}$, any indices $i_{1}, i_{2} \ldots, i_{n} \in I$ and elements

$$
\begin{aligned}
& a_{j}+f_{j} \in \mathcal{A}_{i_{j}} \oplus \mathcal{F}_{i_{j}} \subseteq \mathcal{B} \text {, we have } \\
& \qquad \kappa_{n}^{\prime}\left(a_{1}+f_{1}, a_{2}+f_{2}, \ldots, a_{n}+f_{n}\right)=\Phi\left(f_{1} f_{2} \cdots f_{n}\right)
\end{aligned}
$$

Proof of the main theorem

Recall that the main theorem asserts:

$$
\left\{\begin{array} { l }
{ (\mathcal { A } _ { i } , \mathcal { F } _ { i }) : \text { c.a.m.-indep. } \forall i \in I } \\
{ (\underbrace { \mathcal { A } _ { i } \langle \mathcal { F } _ { i } \rangle } _ { = : \mathcal { B } _ { i } }) _ { i \in I } : \text { i.-free in } (\mathcal { B } , \varphi , \varphi ^ { \prime }) }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
\left(\mathcal{A}_{i}\right)_{i} \text { is free } \\
\left(\left\langle\mathcal{A}_{i}: i \in I\right\rangle,\left\langle\mathcal{F}_{i}: i \in I\right\rangle\right) \text { : c.a.m indep } \\
\left(\mathcal{F}_{i}\right)_{i \in I} \text { are trivially indep. in }(\mathcal{F}, \Phi)
\end{array}\right.\right.
$$

Part \Longrightarrow. The trivial indep. is an easy consequence of the definitions.
Freeness is a part of i.-freeness.
Now the goal is to prove the c.a.m.-indep.: for any $n \in \mathbb{N}$, any indices $i_{1}, i_{2} \ldots, i_{n} \in I$ and elements $a_{j}+f_{j} \in \mathcal{A}_{i_{j}} \oplus \mathcal{F}_{i_{j}}$, we have

$$
\begin{equation*}
\kappa_{n}^{\prime}\left(a_{1}+f_{1}, a_{2}+f_{2}, \ldots, a_{n}+f_{n}\right)=\Phi\left(f_{1} f_{2} \cdots f_{n}\right) \tag{*}
\end{equation*}
$$

If some $i_{k} \neq i_{\ell}$ then the LHS vanishes by i .-freeness. The RHS also vanishes by trivial indep. So (*) holds.
If $i_{1}=i_{2}=\cdots=i_{n}$ then $(*)$ is a consequence of c.a.m.-independence and the key lemma.

Recall that the main theorem asserts:
$\left\{\begin{array}{l}\left(\mathcal{A}_{i}, \mathcal{F}_{i}\right): \text { c.a.m.-indep. } \forall i \in I \\ \left(\mathcal{A}_{i}\left\langle\mathcal{F}_{i}\right\rangle\right)_{i \in I}: \text { i.-free in }\left(\mathcal{B}, \varphi, \varphi^{\prime}\right)\end{array} \Longleftrightarrow\left\{\begin{array}{l}\left(\mathcal{A}_{i}\right)_{i} \text { is free } \\ \left(\left\langle\mathcal{A}_{i}: i \in I\right\rangle,\left\langle\mathcal{F}_{i}: i \in I\right\rangle\right) \text { : c.a.m indep } \\ \left(\mathcal{F}_{i}\right)_{i \in I} \text { are trivially indep. in }(\mathcal{F}, \Phi)\end{array}\right.\right.$

The part \Longleftarrow. In case φ, Φ are tracial, the proof is simpler because of:

Lemma (Cébron-Gilliers)

Suppose that $\varphi, \varphi^{\prime}$ are tracial. Then subalgebras $\left(\mathcal{B}_{i}\right)_{i \in I}$ of \mathcal{B} are infinitesimally free if and only if the following condition holds:
(1) For every $n \geq 2$, every $\mathbf{i}=\left(i_{1}, i_{2}, \ldots, i_{n}\right) \in I^{(n)}$ with $i_{n} \neq i_{1}$ and $\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in \grave{\mathcal{B}}_{\mathbf{i}}$ we have $\varphi\left(b_{1} b_{2} \cdots b_{n}\right)=\varphi^{\prime}\left(b_{1} b_{2} \cdots b_{n}\right)=0$.

- G. Cébron and N. Gilliers, Asymptotic cyclic-conditional freeness of random matrices. arXiv:2207.06249

Recall that the main theorem asserts:

$$
\left\{\begin{array} { l }
{ (\mathcal { A } _ { i } , \mathcal { F } _ { i }) : \text { c.a.m.-indep. } \forall i \in I } \\
{ (\mathcal { A } _ { i } \langle \mathcal { F } _ { i } \rangle) _ { i \in I } : \text { i.-free in } (\mathcal { B } , \varphi , \varphi ^ { \prime }) }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
\left(\mathcal{A}_{i}\right)_{i} \text { is free } \\
\left(\left\langle\mathcal{A}_{i}: i \in I\right\rangle,\left\langle\mathcal{F}_{i}: i \in I\right\rangle\right) \text { : c.a.m indep } \\
\left(\mathcal{F}_{i}\right)_{i \in I} \text { are trivially indep. in }(\mathcal{F}, \Phi)
\end{array}\right.\right.
$$

The part \Longleftarrow follows from the following:

Lemma

If $\left(\mathcal{A}_{i}\right)_{i}$ is free and $\left(\left\langle\mathcal{A}_{i}: i \in I\right\rangle,\left\langle\mathcal{F}_{i}: i \in I\right\rangle\right)$ is c.a.m indep., then for every $\left(i_{1}, i_{2}, \ldots, i_{n}\right) \in I^{(\infty)}$ with $i_{n} \neq i_{1}$ and $B_{j}=A_{j}+F_{j} \in \mathcal{A}_{i_{j}}\left\langle\mathcal{F}_{i_{j}}\right\rangle$ $=\mathcal{A}_{i_{j}} \oplus \mathcal{A}_{i_{j}}\left\langle\mathcal{F}_{i_{j}}\right\rangle_{0}$ such that $\varphi\left(B_{j}\right)=0(1 \leq j \leq n)$, we have

$$
\begin{equation*}
\varphi^{\prime}\left(B_{1} B_{2} \cdots B_{n}\right)=\Phi\left(F_{1} F_{2} \cdots F_{n}\right) \tag{12}
\end{equation*}
$$

This lemma follows from

$$
\varphi^{\prime}\left(B_{1} B_{2} \cdots B_{n}\right)=\underbrace{\varphi^{\prime}\left(A_{1} \cdots A_{n}\right)}_{=0}+\sum_{\substack{C_{j} \in\left\{A_{j}, F_{j}\right\} \\ 1 \leq j \leq n \\ C_{j}=F_{j} \text { for some } j}} \underbrace{\varphi^{\prime}\left(C_{1} C_{2} \ldots C_{n}\right)}_{=\Phi\left(C_{1} C_{2} \ldots C_{n}\right)},
$$

and the definition of cyclic-antimonotone indep. (Most terms vanish.)

Weak B'-freeness

The other model

$$
\begin{equation*}
\left\{U_{i} A_{i} U_{i}^{*}, F_{i}\right\}_{i \in I} \tag{13}
\end{equation*}
$$

shows a weaker asymptotic independence called weak B'-freeness. This is exactly B^{\prime}-freeness except trivial independence. There is a connection to conditional freeness (due to Bożejko, Speicher and Leinert).

Theorem

Let $\left(\mathcal{B}_{i}=\mathcal{A}_{i}\left\langle\mathcal{F}_{i}\right\rangle\right)_{i \in I}$. Let P be an element of \mathcal{F} with $\Phi(P) \neq 0$. Assume that $\left(\mathcal{B}_{i}\right)_{i \in I \sqcup\{p\}}$ is weakly B^{\prime}-free, where $\mathcal{B}_{p}:=\mathbb{C} 1_{\mathcal{A}} \oplus\langle P\rangle$. We define a linear functional $\varphi_{P}: \mathcal{B} \rightarrow \mathbb{C}$ as follows:

$$
\varphi_{P}(b):=\frac{\Phi(P b)}{\Phi(P)}, \quad b \in \mathcal{B}
$$

Then $\left(\mathcal{B}_{i}\right)_{i \in I}$ are conditionally free with respect to $\left(\varphi, \varphi_{P}\right)$ if and only if $\left(\mathcal{F}_{i}\right)_{i \in I}$ are boolean independent with respect to φ_{P}.

Asymptotic infinitesimal freeness of principal minors

Let $P=\operatorname{diag}(1,1, \ldots, 1,0) \in \mathrm{M}_{N}(\mathbb{C}), Q:=I-P=\operatorname{diag}(1,0,0, \ldots, 0)$,

$$
\tilde{A}_{i}:=P U_{i} A_{i} U_{i}^{*} P .
$$

The family

$$
\begin{equation*}
\left\{\left(U_{i} A_{i} U_{i}^{*}, Q\right)\right\}_{i} \tag{14}
\end{equation*}
$$

is asymptotically weakly B^{\prime}-free. Let $\left\{\left(a_{i}, q\right)\right\}_{i}$ be the limiting nc r.v.s for (14) in $\left(\mathcal{B}, \varphi, \varphi^{\prime}\right)$, where $\mathcal{B}=\mathcal{A} \oplus \mathcal{F}$ as before. $\left(a_{i} \in \mathcal{A}, q \in \mathcal{F}\right)$.
(1) The limits of principal minors can be interpreted as $\tilde{a}_{i}:=p a_{i} p$, where $p:=1_{\mathcal{B}}-q$.
(2) Using the fact that $\left(\left\{a_{i}\right\}, q\right)$ is c.a.m.indep., it is easy to check (but important) that p is infinitesimally free from \mathcal{A} in $\left(\mathcal{B}, \varphi, \varphi^{\prime}\right)$.
So, we can apply Févier and Nica's work on infinitesimal free compressions to $p a_{i} p$.

- M. Février and A. Nica, Infinitesimal non-crossing cumulants and free probability of type B, J. Funct. Anal. 258 (2010), no. 9, 2983-3023.

Asymptotic infinitesimal freeness of principal minors (2)

Following Février-Nica, let $\mathcal{B}_{p}:=p \mathcal{B} p \subseteq \mathcal{B}$ with unit p and $\psi, \psi^{\prime}: \mathcal{B}_{p} \rightarrow \mathbb{C}$:

$$
\psi=\varphi, \quad \psi^{\prime}=\varphi+\varphi^{\prime}
$$

Note that $\psi^{\prime}(p)=\varphi(p)+\varphi^{\prime}(p)=1+\varphi^{\prime}\left(1_{\mathcal{B}}-q\right)=1-\varphi^{\prime}(q)=1-1=0$.

Lemma (An easy consequence of Février-Nica 2010)

Let $\left(\mathcal{A}_{i}\right)_{i \in I}$ be free subalgebras in (\mathcal{A}, φ). Then $\left(p \mathcal{A}_{i} p\right)_{i \in I}$ are infinitesimally free in $\left(\mathcal{B}_{p}, \psi, \psi^{\prime}\right)$.

Theorem (Fujie-H.)

Consider the decomposition of $\tilde{A}_{i}=P U_{i} A_{i} U_{i}^{*} P$:

$$
\tilde{A}_{i}=U_{i} A_{i} U_{i}^{*} \oplus\left(P U_{i} A_{i} U_{i}^{*} P-U_{i} A_{i} U_{i}^{*}\right) \in \mathrm{M}_{N}(\mathbb{C}) \oplus \mathrm{M}_{N}(\mathbb{C})
$$

$P=1 \oplus(-Q)$, and let $\psi_{N}:=\operatorname{tr}_{N} \oplus 0$ and $\psi_{N}^{\prime}:=\operatorname{tr}_{N} \oplus \operatorname{Tr}_{N}$. Then $\left\{\tilde{A}_{i}\right\}_{i \in I}$ is asympt. infinitesimally free a.s. in $\left(P\left(\mathrm{M}_{N} \oplus \mathrm{M}_{N}\right) P, \psi_{N}, \psi_{N}^{\prime}\right)$.

The crucial idea is to separate the main part and perturbation part.

Multivariate inverse Markov-Krein transform

Let $\underline{\kappa}_{n}^{\prime}: \mathcal{B}_{p}^{n} \rightarrow \mathbb{C}$ be the n-th infinitesimal free cumulant with respect to $\left(\psi, \psi^{\prime}\right)=\left(\varphi, \varphi+\varphi^{\prime}\right)$. A formula of Février-Nica yields (with $\tilde{a}_{i}:=p a_{i} p$)

$$
\begin{equation*}
\underline{\kappa}_{n}^{\prime}\left(\tilde{a}_{1}, \tilde{a}_{2}, \ldots, \tilde{a}_{n}\right)=(1-n) \kappa_{n}^{\varphi}\left(a_{1}, a_{2}, \ldots, a_{n}\right) . \tag{15}
\end{equation*}
$$

Note: Here we do not require a_{i} 's to be free. We only need p is infinitesimally free from $\left\{a_{i}\right\}$.
By the moment-cumulant formula

$$
\begin{align*}
\psi^{\prime}\left(\tilde{a}_{1} \tilde{a}_{2} \cdots \tilde{a}_{n}\right) & =\sum_{\pi \in \mathrm{NC}(n)} \kappa_{\pi}^{\prime}\left[\tilde{a}_{1}, \tilde{a}_{2}, \cdots \tilde{a}_{n}\right] \tag{16}\\
& =\sum_{\pi \in \mathrm{NC}(n)}(|\pi|-n) \kappa_{\pi}^{\varphi}\left[a_{1}, a_{2}, \ldots, a_{n}\right]
\end{align*}
$$

and hence, by the moment-cumulant formula

$$
\begin{aligned}
\varphi^{\prime}\left(\tilde{a}_{1} \tilde{a}_{2} \cdots \tilde{a}_{n}\right) & =\psi^{\prime}\left(\tilde{a}_{1} \tilde{a}_{2} \cdots \tilde{a}_{n}\right)-\varphi\left(\tilde{a}_{1} \tilde{a}_{2} \cdots \tilde{a}_{n}\right) \\
& =\sum_{\pi \in \operatorname{NC}(n)}(|\pi|-n-1) \kappa_{\pi}^{\varphi}\left[a_{1}, a_{2}, \ldots, a_{n}\right]
\end{aligned}
$$

Multivariate inverse Markov-Krein transform

Considering $\# \operatorname{Kr}(\pi)=-|\pi|+n+1$, we can write

$$
\begin{equation*}
-\varphi^{\prime}\left(\tilde{a}_{1} \tilde{a}_{2} \cdots \tilde{a}_{n}\right)=\sum_{\pi \in \mathrm{NC}(n)} \# \operatorname{Kr}(\pi) \kappa_{\pi}^{\varphi}\left[a_{1}, a_{2}, \ldots, a_{n}\right] \tag{17}
\end{equation*}
$$

When $a_{1}=a_{2}=\cdots=a_{n}$, the RHS is exactly the n-th moment with respect to the Rayleigh measure (inverse Markov-Krein transform of the distribution of a_{i} with respect to φ) (Fujie-Hasebe 2022). So (17) is worth being called a multivariate (inverse) Markov-Krein transform, cf. Arizmendi, Cébron and Gilliers.

- O. Arizmendi, G. Cébron and N. Gilliers, Combinatorics of cyclic-conditional freeness. Arxiv:2311.13178
- K. Fujie and T. Hasebe, The spectra of principal submatrices in rotationally invariant Hermitian random matrices and the Markov-Krein correspondence, ALEA Lat. Am. J. Probab. Math. Stat. 19 (2022), no. 1, 109-123.

Markov-Krein transform and infinitesimal free convolution

The previous formula implies:

Proposition

Let $a \in \mathcal{A}$. Let μ be the distribution of a with respect to φ and τ the inverse Markov-Krein transform of μ. Then the infinitesimal distribution of $\tilde{a}:=$ pap with respect to $\left(\mathcal{B}_{p}, \psi, \psi^{\prime}\right)$ is $(\mu, \mu-\tau)$.

Recall that if $\left(\mathcal{A}_{i}\right)_{i \in I}$ is free in (\mathcal{A}, φ) then $\left(p \mathcal{A}_{i} p\right)_{i \in I}$ are inf. free in $\left(\mathcal{B}_{p}, \psi, \psi^{\prime}\right)(\mathrm{F}-\mathrm{N})$. From the obvious identity $p\left(a_{1}+a_{2}\right) p=p a_{1} p+p a_{2} p$:

Corollary

Let $\mu:=\mu_{1} \boxplus \mu_{2}$ be the free convolution of distributions μ_{1}, μ_{2}. Let τ_{i}, τ be the inverse Markov-Krein transforms of $\mu_{i}, \mu(i=1,2)$, resp. Then

$$
\underbrace{\left(\mu_{1}, \mu_{1}-\tau_{1}\right) \boxplus_{i n f}\left(\mu_{2}, \mu_{2}-\tau_{2}\right)}_{\text {infinitesimal free convolution }}=(\mu, \mu-\tau)
$$

A similar formula holds for inf. mult. free convolution.

The reasoning is different but the multiplicative analogue also holds:

Proposition

Let $\mu:=\mu_{1} \boxtimes \mu_{2}$ be the multiplicative free convolution of distributions μ_{1}, μ_{2}. Let τ_{i}, τ be the inverse Markov-Krein transforms of $\mu_{i}, \mu(i=1,2)$, resp. Then

$$
\left(\mu_{1}, \mu_{1}-\tau_{1}\right) \boxtimes_{i n f}\left(\mu_{2}, \mu_{2}-\tau_{2}\right)=(\mu, \mu-\tau) .
$$

A similar formula holds for inf. mult. free convolution.

Thank you!

