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Abstract

Rigorous Guarantees for Randomized Diagonalization Algorithms

by

Jorge Garza-Vargas

Doctor of Philosophy in Mathematics

University of California, Berkeley

Associate Professor Nikhil Srivastava, Co-chair

Professor Dan-Virgil Voiculescu, Co-chair

We rigorously analyze numerical methods for (approximately) computing the eigenvalues and
eigenvectors of a matrix. Our main results are the following:

• Spectral bisection. We show that a backward-stable solution to the eigenvalue problem
can be obtained by a randomized algorithm in nearly matrix-multiplication time on any
input. More specifically, we show that for every δ > 0, there is a randomized version
of the spectral bisection algorithm that, on any input A ∈ Cn×n, with probability
1 − O(1/n), finds matrices V,D ∈ Cn×n with V invertible and D diagonal such that
∥A − V DV −1∥ ≤ δ∥A∥, using O(TMM(n) log

2(n/δ)) arithmetic operations, in finite
arithmetic with O(log4(n/δ) log n) bits of precision. Here TMM(n) is the number of
arithmetic operations required to multiply two n × n complex matrices numerically
stably, known to satisfy TMM(n) = O(nω+η) for every η > 0 where ω is the exponent of
matrix multiplication.

• The Hessenberg shifted QR algorithm. We introduce a randomized shifting strat-
egy for the Hessenberg QR algorithm, for which we prove (in the finite precision
arithmetic model) rapid global convergence. It follows from our results, that for
any δ, ϕ > 0, a randomized version of the shifted Hessenberg QR algorithm can be
used to compute, on any input A ∈ Cn×n, with probability at least 1 − ϕ, matri-
ces U, T ∈ Cn×n with U unitary and T upper triangular, such that ∥A − UTU∗∥ ≤
δ∥A∥, using O(n3 log(n/(δϕ))2 log log(n/(δϕ))) arithmetic operations performed using
O(log2(n/(δϕ)) log log(n/(δϕ))) bits of precision. This provides the first rapidly globally
convergent shifting strategy in the nonsymmetric case, which was an open problem
even under the assumption of exact arithmetic.
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• The Lanczos algorithm. We analyze the Lanczos algorithm where the initial vector
u is sampled uniformly at random from the unit sphere Sn−1, and show that when
run on a Hermitian input A ∈ Cn×n for c1 log n iterations (where c1 depends on some
coarse global property of the spectrum of A but not on n) its outputs (both the Jacobi
coefficients and the Ritz values) are exponentially concentrated around their medians.
Our techniques also allow us to understand the location of the output in the regime
of k = O(log n) iterations, and in particular we use them to show that the Lanczos
algorithm can fail to identify outlying eigenvalues when run for less than c2 log n, where
c2 depends again on the same global property of the spectrum of A used to determine
c1.

A key ingredient in showing the first two results is a smoothed analysis of the eigenvector
condition number and minimum eigenvalue gap of a matrix. In this direction we show a
general result that might be of independent interest in random matrix theory: if one adds
independent (absolutely continuous with respect to the Lebesgue measure) random variables
of small variance to the entries of an arbitrary matrix A ∈ Cn×n, with high probability, the
resulting matrix A′ will have (relatively) stable eigenvenvalues and eigenvectors.
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Chapter 1

Introduction

Given its unquestionable relevance, for the last many decades, several mathematicians,
scientists and engineers have undertaken the challenging task of designing efficient and
accurate algorithms for numerically diagonalizing a matrix (computing its eigenvalues and
eigenvectors), which is known as solving the eigenvalue problem.

On the practical side, nowadays most medium-scale eigenvalue problems can routinely be
solved by personal computers to a satisfactory level of accuracy. However, industrial and
scientific applications oftentimes require dealing with large-scale problems that are beyond
the reach of classical numerical methods.

On the other hand, despite Wilkinson’s monumental book [175], other excellent more
modern references [55, 125, 157], and important research developments throughout the years
[68, 69, 99, 174, 52, 23, 37, 167, 53, 3], the theoretical aspects of the eigenvalue problem are
still underdeveloped and lag behind their practical counterparts. In fact, to this day, many
foundational questions in the area remain open: to give an example, no formal guarantees of
success (on arbitrary inputs) have been yet given for some of the most widely used algorithms
(which occasionally happen to fail even in small and medium-sized problems).

In this thesis we develop mathematical tools that allow for the rigorous study of some of the
most popular diagonalization algorithms, with the goal of bridging theory and practice. The
hope is that, on the one hand, furthering theory can eventually lead to informing practice in
problems that are currently out of its reach, and on the other hand, a deepened understanding
of theory can simplify and improve (both conceptually and in terms of performance and
implementation) already existing algorithms.

The following algorithms will be discussed here: spectral bisection, shifted QR iteration,
and Lanczos iteration. For each of these algorithms our analysis will have to address the
relevance and effect of randomness in the performance of the algorithm, the consequences of
round-off error on the accuracy of the algorithm (we will not discuss this for the Lanczos
algorithm, where inputs are Hermitian so their eigenvalues are robust to perturbations), and
how the aforementioned phenomena feed into the dynamical system defined by each of these
procedures. We refer the reader to Sections 1.2-1.5 for a detailed overview of the main results
in this dissertation.
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From the theoretical perspective, the scope of the work presented here is ambitious in that
it seeks to provide (for the first time in some instances) close to optimal rigorous algorithmic
guarantees. On the other hand, when it comes to practical matters, it remains humble
and does not seek to be a prescription for practitioners. More experimentation and theory
development would be required to hope to improve the existing (extremely sophisticated)
libraries for diagonalization, which throughout the years have been fine-tuned to enhance
their performance and efficiency.

Bibliographical note. The content presented in Chapter 2 (Spectral Stability Under
Random Perturbations) is joint work with Jess Banks, Archit Kulkarni, and Nikhil Srivastava
[10]. The content in Chapter 3 (Spectral Bisection) is joint work with the same set of authors
in [11]. The content in Chapter 4 (Hessenberg QR Algorithm) is joint work with Jess Banks
and Nikhil Srivastava, and appears in the sequence of papers [12, 13, 14]. The content in
Chapter 5 (The Lanczos Algorithm Under Few Iterations) is joint work with Archit Kulkarni
[71].

Reader’s guide for Chapter 1. The purpose of this chapter is to give a condensed
overview of the main results, motivation, proof techniques, and mathematical tools appearing
in this dissertation. The main theorems from each of the subsequent chapters will be discussed
here, in the corresponding section, where the main ingredients of the corresponding proofs
will be outlined. For example, Chapter 2 will be surveyed in Section 1.2, which starts by
presenting the general random matrix phenomena in question, followed by the main formal
statements that will be proven in Chapter 2, and a rough sketch of the ideas used in the
proofs of these theorems; the standard arguments will be laid out for the convenience of
the reader and the main technical complications that will be addressed in Chapter 2 will be
highlighted.

Sections 1.2 through Section 1.5 have been written in a mostly independent way with the
purpose of allowing the reader to skip those that are not of their interest.

Section 1.1 contains all of the technical preliminaries that are needed for the remainder
of Chapter 1, which I believe are also indispensable tools for any theoretician that seeks to
work in this general research direction.

Finally, in Section 1.6 I have tried to encapsulate the common themes appearing in this
work and to compare the different main mechanisms that are used throughout the dissertation.

In Section 1.7 a short list of open problems is given for the interested reader.
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1.1 Preliminaries

1.1.1 Notation, Definitions, and Conventions

Models of Computation

The three models of computation that are most commonly used when analyzing numerical
algorithms are: exact real arithmetic (i.e., infinite precision), variable precision rational
arithmetic (rationals are stored exactly as numerators and denominators), and finite precision
arithmetic (real numbers are rounded to a fixed number of bits which may depend on the input
size and accuracy) also known as floating point. The first one is used when the quantities
handled by the algorithm in question are numerically stable and it is believed that errors
coming from machine computations do not have a significant impact on the output; in
particular, this is the model that will be used in this dissertation when discussing the Lanczos
algorithm. The last two models are more realistic, and do take into account the unavoidable
limitations of computers when handling real numbers. Therefore, these two models can be
used to obtain actual Boolean complexity bounds 1, and yield concrete accuracy bounds for
the output. Among these two, the finite precision arithmetic model is the one that is used
more often, since it is in line with most implementations, and this will be our model of choice
when analyzing the shifted QR and spectral bisection algorithms2.

Finite precision arithmetic model. We will assume that numbers are stored and manipu-
lated approximately up to some machine precision u := u(δ, n) > 0, which for us will depend
on the instance size n ∈ N and desired accuracy δ > 0. This means every number x ∈ C is
stored as fl(x) = (1 + ∆)x for some adversarially chosen ∆ ∈ C satisfying |∆| ≤ u, and each
arithmetic operation ◦ ∈ {+,−,×,÷} is guaranteed to yield an output satisfying

fl(x ◦ y) = (x ◦ y)(1 + ∆) |∆| ≤ u.

Thus, the outcomes of all operations are adversarially noisy due to roundoff. More generally,
throughout this dissertation, we will take the pedagogical perspective that our algorithms
are games played between the practitioner and an adversary who may additively corrupt
each operation. In particular, we will include explicit error terms (always denoted by E(·)) in
each appropriate step of every algorithm. In many cases we will first analyze a routine in
exact arithmetic—in which case the error terms will all be set to zero—and subsequently
determine the machine precision u necessary so that the errors are small enough to still
guarantee success.

We will also assume that the bit lengths of numbers stored remain fixed at lg(1/u),
where lg denotes the logarithm base 2. The bit complexity of an algorithm is therefore the
number of arithmetic operations times O∗(lg(1/u)), the running time of standard floating
point arithmetic, where the ∗ suppresses lg lg(1/u) factors. We will state all running times

1That is, describing the number of Boolean operations that are required to execute a particular algorithm.
2More specifically, we will use the standard floating point axioms from [85].
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in terms of arithmetic operations accompanied by the required number of bits of precision,
which thereby immediately imply bit complexity bounds. To simplify exposition, as it is
customary, we will ignore overflow and underflow effects.

Linear Algebra

Throughout this dissertation we will use Cn×n to refer to the space of n × n matrix with
complex entries. All vector norms will be ℓ2-norms, and given A ∈ Cn×n we will use ∥A∥ to
denote the ℓ2-operator norm of A, and ∥A∥F to denote the Frobenius norm of A.

Oftentimes, if z ∈ C, A ∈ Cn×n, and In is the identity matrix, to lighten notation, we will
write z − A instead of zIn − A.

Eigenpairs. Given a matrix A ∈ Cn×n, a vector v ∈ Cn, and a complex number λ ∈ C
we will say that (v, λ) is a right (resp. left) eigenpair of A if Av = λv (resp. v∗A = λv∗).
When ∥v∥ = 1 we will say that v is normalized, or that (v, λ) is a normalized eigenpair. The
collection of eigenvalues of A will be referred to as the spectrum of A and will be denoted by
Spec(A).

Diagonalization and spectral decomposition. Amatrix A ∈ Cn×n is said to be diagonalizable
if one can find a collection of (say) right eigenpairs (λ1, v1), . . . , (λn, vn) for which {v1, . . . , vn}
forms a basis for Cn. This is equivalent to the existence of an invertible matrix V ∈ Cn×n

and a diagonal matrix D ∈ Cn×n such that

A = V DV −1.

Such representation is referred to as a diagonalization of A. Observe that diagonalizations
are unique up to multiplying by a scalars the columns of V , and that given a diagonalization,
the columns of V , say {v1, . . . , vn} and the rows of V −1, say {w1, . . . , wn}, are respectively
left and right eigenvectors for A, from which one can form the spectral decomposition

A =
n∑
i=1

λiviw
∗
i , (1.1)

where the λi are the eigenvalues of A (which also happen to be the diagonal entries of D).
Note that with the above setup the vi and wi form a dual basis, that is

w∗
i vi = 1 and w∗

i vj = 0,

for i ̸= j. In the particular case in which A is normal, if one normalizes the vi one gets that
vi = wi and that V is a unitary matrix.

Spectral Projectors. For an arbitrary A ∈ Cn×n we say that a matrix P is a spectral
projector for A if AP = PA and P 2 = P . For instance, when A is diagonalizable, each
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of the terms viw
∗
i appearing in the spectral decomposition (1.1) is a spectral projector, as

Aviw
∗
i = λiviw

∗
i = viw

∗
iA and w∗

i vi = 1.
More in general, if P is a spectral projector of A, observe that since it commutes with

A, its range agrees exactly with an invariant subspace of A, which will be generated by
the generalized eigenvectors associated to a subset of Spec(A). Conversely, every subset of
Spec(A) has an associated spectral projector of A.

Schur Form. Any matrix A ∈ Cn×n admits a Schur decomposition, that is, it can be
written in the form

A = UTU∗,

where U ∈ Cn×n is unitary and T ∈ Cn×n is an upper triangular matrix. In this case, the
eigenvalues of A will be the diagonal elements of T , and when A is diagonalizable, the
eigenvector matrix V can be recovered from U and T .

Labeling of Eigenvalues and Singular Values. Given a matrix A ∈ Cn×n we will denote
(and order) its singular values by

σ1(A) ≥ · · · ≥ σn(A).

Sometimes we will use the notation σmin(A) := σn(A) to emphasize that we are referring to
the smallest singular value of A. Similarly, when A is Hermitian, its eigenvalues will be real
and will be denoted by

λ1(A) ≥ · · · ≥ λn(A),

and we will occasionally use λmin(A) := λn(A) and λmax(A) = λ1(A). In this case, vi(A) will
denote the normalized eigenvector of A corresponding to λi(A).

Ramdom matrix theory. Throughout this dissertation we will assume that the reader is
familiar with basic concepts and arguments in probability and random matrix theory. For
the most part, our probabilistic arguments will not utilize anything beyond the notions of
independence, conditioning, concentration and anti-concentration. Similarly, the arguments
specific to random matrix theory appearing here are not technical and are common in the
non-asymptotic literature.

Finally, we introduce some important notation. If n is a positive integer, we will use [n]
to denote the set {1, . . . , n}. For z ∈ C and r > 0, we will use D(z, r) to denote the open
disk in C with center at z and radius r.

A normalized complex (resp. real) Ginibre matrix Gn is an n× n random matrix with
independent complex (resp. real) Gaussian entries of variance 1

n
. This normalization is chosen

so that E∥Gn∥ = O(1) as n goes to infinity.

1.1.2 The Eigenvalue Problem

When working within the finite precision arithmetic model one can only hope to obtain
approximations of the eigenvalues and eigenvectors of a matrix, up to a desired accuracy
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δ > 0. In the numerical analysis literature there are two standard notions of approximation,
which we define below.

Forward approximation. Let A ∈ Cn×n, δ > 0 and (λ, v) be an eigenpair (left or right) of
A. We say that (λ′, v′) is δ-forward approximation of (λ, v) if

|λ− λ′| ≤ δ and ∥v − v′∥ ≤ δ. (1.2)

It makes sense to use the above definition in contexts where the exact solution is meaningful;
e.g. the matrix is of theoretical/mathematical origin (as opposed to being constructed
e.g. from approximate data), and unstable (in the entries) quantities such as eigenvalue
multiplicity, or the eigenvalues themselves, can have a significant meaning.

The δ in (1.2) quantifies in absolute terms the accuracy of the approximations λ′ and
v′. However, when talking about eigenvalues sometimes we will be interested in notions of
relative accuracy. In these cases we will compare the size of the error |λ − λ′| to ∥A∥,3 or
alternatively use the notion of forward approximation defined above and assume (without
loss of generality) that ∥A∥ ≤ 1.

Backward Approximation. Using the same notation as above, we say that (λ′, v′) is a
δ-backward eigenpair of A if it is the true eigenpair of some matrix A′ with

∥A− A′∥ ≤ δ.

Again, sometimes we will be interested in relative (as opposed to absolute) accuracy, in which
case we will either assume that ∥A∥ ≤ 1 and pursue finding backward approximations in the
above sense, or not assume anything about the norm of A and look for an exact eigenpair of
a matrix A′ satisfying ∥A− A′∥ ≤ δ∥A∥.

The notion of backward approximation is the appropriate and standard notion in scientific
computing, where the matrix is of physical or empirical origin and is not assumed to be
known exactly (and even if it were, roundoff error when storing the matrix would destroy
this exactness).

Approximate Diagonalization. Given an input matrix A ∈ Cn×n, since diagonalizable
matrices are dense in Cn×n, one can hope to always find a complete set of eigenpairs for some
nearby A′ = V DV −1, yielding an approximate diagonalization of A. To be precise, we will be
aiming to solve the following (backward) version of the eigenvalue problem.

Definition 1.1.1 (The backward eigenvalue problem). Given an input matrix A ∈ Cn×n

and an accuracy parameter δ > 0, find an invertible matrix V ∈ Cn×n and a diagonal matrix
D ∈ Cn×n such that

∥A− V DV −1∥ ≤ δ∥A∥. (1.3)

3Oftentimes, when discussing relative accuracy the size of the error |λ− λ′| is compared to |λ|. We will
not be using this notion here, since we will only discuss accuracy in the context of algorithms that yield full
eigendecompositions, and their performance will depend on global properties of the spectrum (and not on the
value of individual eigenvalues).
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Remark 1.1.2 (Finding the approximate Schur form). When the eigenvectors of A are known
to be highly unstable (in a sense that will be made precise below), instead of solving the
above formulation of the eigenvalue problem, it makes more sense to compute the approximate
Schur form of the matrix A. That is, finding a unitary matrix U ∈ Cn×n and a triangular
matrix T ∈ Cn×n such that

∥A− UTU∗∥ ≤ δ∥A∥.

Note that a backward solution to the eigenvalue problem in the above sense is also a
forward solution but for a worse (sometimes meaningless) accuracy parameter. The two
notions of approximation can be related precisely if one has quantitative knowledge of the
level of sensitivity of the eigenvalues and eigenvectors of the matrix. To this end it is useful
to define the following condition numbers for the eigenvalue problem.

Condition numbers. For diagonalizable A, the eigenvector condition number of A, denoted
κV (A), is defined as:

κV (A) := inf
V :A=V DV −1

∥V ∥∥V −1∥.

The eigenvalue gaps and minimum eigenvalue gap of A are defined as

gapi(A) := min
j:j ̸=i
|λi − λj| and gap(A) := min

i∈[n]
gapi(A),

where the λi are the eigenvalues of A (with multiplicity). And we define the condition number
of the eigenproblem to be4:

κeig(A) :=
κV (A)

gap(A)
∈ (0,∞].

It then follows from the proposition below (whose proof we defer to Section 1.1.3) that a
δ-backward approximate solution to the eigenproblem is a 6nκeig(A)δ-forward approximate
solution.5

Proposition 1.1.3. If ∥A∥, ∥A′∥ ≤ 1, ∥A − A′∥ ≤ δ, and {(vi, λi)}i≤n, {(v′i, λ′i)}i≤n are

normalized eigenpairs of A,A′ with distinct eigenvalues, and δ < gap(A)
8κV (A)

, then

∥v′i − vi∥ ≤ 2nκeig(A)δ and |λ′i − λi| ≤ κV (A)δ ≤ 2κeig(A)δ ∀i = 1, . . . , n, (1.4)

after possibly multiplying the vi by phases.

Note that κeig =∞ if and only if A has a multiple eigenvalue; in this case, a relation like
(1.4) is not possible since different infinitesimal changes to A can produce macroscopically
different eigenpairs.

4This quantity is inspired by but not identical to the “reciprocal of the distance to ill-posedness” for
the eigenproblem considered by Demmel [57], to which it is polynomially related. See also [162] for another
natural definition of eigenvector condition number similar in spirit to that of Demmel.

5In fact, it can be shown that κeig(A) is related by a poly(n) factor to the smallest constant for which
(1.4) holds for all sufficiently small δ > 0.
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Accuracy vs. Precision and the Meaning of Stability. The gold standard of backward
stability in numerical analysis defines algorithms as backward stable, if when ran in a computer
with machine precision u, on an input of size n, they output a δ-backward approximation to
the correct answer where

log(1/u) = log(1/δ) + c log(n)

for some moderate constant c. That is, according to the gold standard, for an algorithm to
be considered backward stable, its accuracy should have only a few (depending on the size of
the problem) bits less than the precision used. The relaxed notion of “logarithmic stability”
introduced in [54] expands the notion of stable algorithms, to those satisfying

log(1/u) = log(1/δ) +O(logc(n) log(κ))

for some constant c, where κ is an appropriate condition number for the problem in question.
In this work we relax this notion even further, and consider an algorithm to be backward
stable if u is polylogarithmic in 1/δ and n (for some moderate polynomial, without any
reference to a condition number). The reason for this, is that if a fast algorithm (i.e. one
that executes few arithmetic operations) is backward stable in the latter sense, then it can
be implemented in a computer with high enough precision to guarantee its accuracy, and
theoretically (if hardware considerations are ignored) the precision required will still be low
enough so that this implementation remains fast (since the number of bit operations that
will be performed will be nearly as many, i.e. a polylogarithmic multiple, as the arithmetic
operations used by the algorithm).

1.1.3 Tools for Analyzing Nonnormal Matrices

The Holomorphic Functional Calculus

When a matrix A ∈ Cn×n is nonnormal the notion of spectral measure is no longer available.
However, one can still make sense of functions applied to A. When A = V DV −1 is diagonal-
izable, for any function f : Spec(A)→ C we can simply define f(A) := V f(D)V −1, where
f(D) means applying f to the diagonal entries of D (note that f(A) is independent of the
choice of V ). And when A is non-diagonalizable we can recur to the well-known holomorphic
functional calculus.

Proposition 1.1.4 (Holomorphic Functional Calculus). Let A ∈ Cn×n, B ⊃ Spec(A) be an
open neighborhood of its spectrum (not necessarily connected), and Γ1, ...,Γk be simple closed
positively oriented rectifiable curves in B whose interiors together contain all of Spec(A).
Then if f is holomorphic on B, the definition

f(A) :=
1

2πi

k∑
j=1

∮
Γj

f(z)(z − A)−1dz (1.5)
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determines a unital algebra homomorphism from the space of holomorphic functions on B to
the algebra of n× n matrices. Moreover, when A = V DV −1 is diagonalizable, this definition
of f(A) coincides with the definition f(A) = V f(D)V −1.

One can use the holomorphic functional calculus to extract spectral projectors of A by
taking a function f whose restriction to Spec(A) is an indicator function (equivalently, by
integrating f(z)(z − A)−1 for the constant function f ≡ 1 over a single contour that encloses
a subset of the relevant eigenvalues of Spec(A)). In particular, if λi is a simple eigenvalue
of A with associated spectral projector Pi, and if Γi is a simple closed positively oriented
rectifiable curve in the complex plane separating λi from the rest of the spectrum, then it
not hard to show that

Pi =
1

2πi

∮
Γi

(z − A)−1dz, (1.6)

by taking the Jordan normal form of the the resolvent (z − A)−1 and applying Cauchy’s
integral formula. More in general, if we integrate the resolvent over some region of the
complex plane bounded by a simple closed positively oriented rectifiable curve Γ, we will be
obtaining the spectral projector onto the invariant subspace spanned by those eigenvectors
whose eigenvalues lie inside Γ.

Finally, we emphasize that the holomorphic functional calculus is instrumental even when
dealing with diagonalizable matrices, since it allows to turn bounds on the operator norm of
the resolvent of a matrix into bounds on the norm of functions applied to the matrix, which
is a crucial technique in perturbation theory. In this context, although obvious, the resolvent
identity

(z − A)−1 − (z − A′)−1 = (z − A)−1(A− A′)(z − A′)−1

proves to be extremely useful.

Perturbation Theory

The Hermitian Case. The perturbation theory for spectral quantities of a Hermitian matrix
is quite simple. The eigenvalue displacement under a Hermitian perturbation of a Hermitian
matrix can be controlled via Weyl’s inequality [89, Theorem 4.3.1], while the eigenvector
displacements can be controlled using the Davis-Kahan theorem [46].

Lemma 1.1.5 (Weyl’s inequality). If A,E ∈ Cn×n are Hermitian, then for all 1 ≤ i ≤ n

|λi(A+ E)− λi(A)| ≤ ∥E∥.

Lemma 1.1.6 (Davis-Kahan). If A,E ∈ Cn×n are Hermitian and λi(A) has multiplicity one,
then

sin∠(vi(A), vi(A+ E)) ≤ 2∥E∥
gapi(A)

where ∠(vi(A), vi(A+ E)) ∈ [0, π/2] denotes the angle between vi(A) and vi(A+ E).
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Note that the above two lemmas are the Hermitian version of Proposition 1.1.3, where no
constraints on the size of the perturbation E are needed and for the eigenvector displacement
bound the dimension dependence can be removed. For nonnormal matrices the perturbation
theory for spectral quantities is much more delicate, and other concepts and definitions are
required for a detailed understanding.

Eigenvalue Condition Numbers. If A ∈ Cn×n has distinct eigenvalues λ1, . . . , λn and
spectral decomposition as in (1.1), we define the eigenvalue condition number of λi to be

κ(λi) := ∥viw∗
i ∥ = ∥vi∥∥wi∥.

These quantities can be used to provide local (nonnormal) versions of Lemmas 1.1.5 and
1.1.6. To be precise, consider a smooth trajectory A(t) in Cn×n for which A(t) has distinct
eigenvalues at all times t. One can show (see [80] for details) that there exist smooth
trajectories wi(t), vi(t) ∈ Cn and λi(t) ∈ C with wi(t)

∗vi(t) = 1 such that the spectral
decomposition of A(t) is given by

∑n
i=1 λi(t)vi(t)wi(t)

∗. Then, one can control the rate of
change of the eigenvalues and eigenvectors along the trajectory using the following inequalities

|λ̇i(t)| ≤ κ(λi(t))∥Ȧ(t)∥ and
∥v̇i(t)∥
∥vi(t)∥

≤ κV (A(t))∥Ȧ(t)∥
gapi(A(t))

, (1.7)

which can be easily proven from explicit formulas for λ̇i(t) and v̇i(t) derived in [80, Theorems
1 and 2].

Moreover, for an arbitrary diagonalizable matrix A = V DV −1 with eigenvalues λ1, . . . , λn,
if one takes V to have columns of norm one, the following useful relationship can be derived

max
i∈[n]

κ(λi) ≤ κV (A) ≤ ∥V ∥∥V −1∥ ≤ ∥V ∥F∥V −1∥F ≤

√√√√n ·
n∑
i=1

κ(λi)2. (1.8)

Therefore, to a first order, the rates of change of the eigenvalues and eigenvectors under a
perturbation can be controlled purely in terms of the eigenvalue condition numbers and the
eigenvalue gaps. However, oftentimes, when one seeks to provide rigorous guarantees for an
algorithm in the finite precision arithmetic model, it is often necessary to deal with macroscopic
perturbations and provide an explicit ball around a matrix where a given inequality will hold
(just like in Proposition 1.1.3). For this endeavour the notion of pseudospectrum becomes
crucial.

The ϵ-pseudospectrum. Given A ∈ Cn×n and ϵ ≥ 0 we define the ϵ-pseudospectrum of A
as the set

Λϵ(A) := {λ ∈ C : ∥(λ− A)−1∥ ≥ 1/ϵ}. (1.9)

In particular Spec(A) ⊂ Λϵ(A) for every ϵ > 0 and Spec(A) = Λ0(A). Moreover, one can
show (see [158, Theorem 2.1]) that

Λϵ(A) = {λ ∈ C : λ ∈ Spec(A+ E) for some ∥E∥ ≤ ϵ},

and as direct consequence derive the following two standard properties.
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Lemma 1.1.7. For any A,E, U ∈ Cn×n with ∥E∥ ≤ ϵ and U unitary, the following hold

i) Λϵ(UAU
∗) = Λϵ(A).

ii) Λϵ−∥E∥(A+ E) ⊂ Λϵ(A).

We refer the reader to the book [158] for an elegant and comprehensive treatment on the
notion of pseudospectrum. Here, we will only need the following basic lemmas.

Lemma 1.1.8 ([158], Theorem 4.3). For any A ∈ Cn×n and any ϵ > 0, every connected
component of Λϵ(A) has a non-empty intersection with Spec(A).

Lemma 1.1.9 ([158], Theorems 2.2 and 2.3). For every A ∈ Cn×n with eigenvalues λ1, . . . , λn,

n⋃
i=1

D(λi, ϵ) ⊂ Λϵ(A) ⊂
n⋃
i=1

D(λi, ϵκV (A)). (1.10)

Where for z ∈ C and r > 0, D(z, r) is used to denote the circle of radius r centered at z.

Note that as ϵ→ 0, (1.10) can be refined by invoking (1.7) so that the radius of the i-th
disk solely depends on the stability of λi, that is

Λϵ(A) ⊂
n⋃
i=1

D(λi, ϵκ(λi) +O(ϵ2)).

In fact, when the eigenvalues of A are distinct, it turns out that as ϵ → 0 the set Λϵ(A)
asymptotically looks like a disjoint union of disks of radius ϵκ(λi), in the following sense.

Lemma 1.1.10 ([15], Lemma 3.2). Let A ∈ Cn×n with distinct eigenvalues λ1, . . . , λn and
B ⊂ C be an open set. Then

lim
ϵ→0+

Area(Λϵ(A) ∩ B)
πϵ2

=
∑
i:λi∈B

κ(λi)
2.

Perturbation of Spectral Projectors. Importantly, the results discussed above can be used
to obtain bounds on the displacement of spectral projections under perturbations of their
matrix. Although the proof is trivial, given its importance, we record the bound below as a
lemma.

Lemma 1.1.11 (Stability of spectral projectors). Let A ∈ Cn×n be arbitrary, λi be one of its
simple eigenvalues and ϵ > 0. Let Γi be a contour in the complex plane separating λi from
the rest of the spectrum of A, and assume Λϵ(A) ∩ Γi = ∅. Then, for any A′ ∈ Cn×n with
∥A− A′∥ < η < ϵ we have that A′ has a unique eigenvalue, say λ′i, in the region enclosed by
Γi, and that

∥Pi − P ′
i∥ ≤

ℓ(Γi)η

2πϵ(ϵ− η)
.

where Pi and P
′∗
i are the spectral projectors of A and A′ corresponding to λi and λ

′
i respectively.
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Proof. Combining Lemmas 1.1.7 ii) and 1.1.8 we get that Λϵ−η(A
′) ∩ Γi = ∅ and that A′ has

a unique eigenvalue λ′i in the region enclosed by Γi. Therefore

∥Pi − P ′
i∥ =

1

2π

∥∥∥∥∮
Γi

(z − A)−1 − (z − A′)−1dz

∥∥∥∥
=

1

2π

∥∥∥∥∮
Γi

(z − A′)−1(A′ − A)(z − A)−1dz

∥∥∥∥
≤ 1

2π

∮
Γi

∥(z − A′)−1∥∥A′ − A∥∥(z − A)−1∥dz

≤ ℓ(Γi)

2π

1

ϵ− η
· η · 1

ϵ

Where in the last inequality we used the assumption Λ(A) ∩ Γi = ∅ and Λϵ−η(A
′) ∩ Γi = ∅ to

upper bound the norms of the respective resolvents.

We are now ready to prove Proposition 1.1.3.

Proof of Proposition 1.1.3. For t ∈ [0, 1] define A(t) = (1− t)A+ tA′. Since δ < gap(A)
8κV (A)

the

Bauer-Fike theorem (which follows from (1.10)) implies that A(t) has distinct eigenvalues for

all t, and in fact gap(A(t)) ≥ 3gap(A)
4

. Standard results in perturbation theory (for instance
[80, Theorem 1] or any of the references therein) imply that for every i = 1, . . . , n, A(t) has a
unique eigenvalue λi(t) such that λi(t) is a differentiable trajectory, λi(0) = λi and λi(1) = λ′i.
Let Pi(t) be the associated spectral projector of λi(t) and write Pi = Pi(0).

Let Γi be the positively oriented contour forming the boundary of the closed disk centered
at λi with radius gap(A)/2, and define ϵ = gap(A)

2κV (A)
. Lemma 1.1.9 implies Λϵ(A) is contained in

the union of these disks over all i ∈ [n], and for fixed t ∈ [0, 1], since ∥A− A(t)∥ < tδ ≤ ϵ/4,
Lemma 1.1.6 ii) gives the same containment for Λ3ϵ/4(A(t)). Since these disks intersect only
in their boundaries (if they do at all), ∥(z − A)−1∥ ≤ 1/ϵ and ∥(z − A(t))−1∥ ≤ 4/3ϵ for
z ∈ Γi. So, from the definition of eigenvector condition number and Lemma 1.1.11 we have

|κ(λi)− κ(λi(t))| ≤ ∥Pi(t)− Pi∥ ≤
ℓ(Γi)

2π
· 1
ϵ
· 4
3ϵ
· ϵ
4
=

gap(A)

2

2κV (A)

3gap(A)
=
κV (A)

3

and hence κ(λi(t)) ≤ κ(λi) + κV (A)/3 ≤ 4κV (A)/3. Combining this with (1.8) we obtain

κV (A(t)) ≤ 2

√
n ·
∑
i

κ(λi)2 < 4nκV (A)/3.

There exist smooth functions vi(t) satisfying vi(0) = vi and A(t)vi(t) = λi(t)vi(t) for all i ∈ [n]
and t ∈ [0, 1] (see [80]), which furthermore admit the bound given in (1.7). However, these
vi(t) need not in general be unit vectors (see [80, Section 3.4] and references for discussion of
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various normalizations). Therefore set v̂i(t) = ∥vi(t)∥−1vi(t), and note that by an application
of the chain rule,

∥ ˙̂vi(t)∥ ≤
δκV (A(t))

gap(A(t))
.

It then follows that the vectors v′i = v̂i(1) for i ∈ [n] satisfy the conclusion of the theorem,

by bounding κV (A(t)) ≤ 4nκV (A)/3 and gap(A(t)) ≥ 3gap(A)
4

, and integrating the resulting

upper bound ∥ ˙̂vi(t)∥ ≤ 16nδκV (A)
9gap(A)

from t = 0 to t = 1.

Eigenvalues vs Singular Values

When working with nonnormal matrices, specially random nonnormal matrices, it will be
useful to understand the relation between the singular values and eigenvalues of the matrix
in question. For this, the log-majorization property (see [90, Theorem 3.3.2]) is often useful.

Lemma 1.1.12 (Log-majorization). For any A ∈ Cn×n and any 1 ≤ k ≤ n,

k∏
i=1

|λi(A)| ≤
k∏
i=1

σi(A).

where |λn(A)| ≤ · · · ≤ |λ1(A)| denote the eigenvalues of A ordered by their size. Moreover,
because

∏n
i=1 σi(A) = | det(A)| =

∏n
i=1 |λi(A)| the above inequality can be rewritten as

k∏
i=1

σn−i+1(A) ≤
k∏
i=1

|λn−i+1(A)|.

The above shows how to compare the modulus of an aggregate of eigenvalues with their
corresponding singular values. If one is willing to lose a factor of κV (A) it is possible to do a
one by one comparison (with upper and lower bounds) as the following lemma shows.

Lemma 1.1.13. Let A ∈ Cn×n and |λn(A)| ≤ · · · ≤ |λ1(A)| be the eigenvalues of A. Then,
for any k ∈ [n]

κV (A)
−1|λk(A)| ≤ σk(A) ≤ κV (A)|λk(A)|.

Proof. Write A = V DV −1 for V attaining ∥V ∥∥V −1∥ = κV (A). Using the Courant-Fischer
min-max formulas we get:

σk(A) = min
S:dim(S)=n−k+1

max
x∈S\{0}

∥V DV −1x∥
∥x∥

= min
S:dim(S)=n−k+1

max
y∈V (S)\{0}

∥V Dy∥
∥V y∥

setting y = V x

= min
S:dim(S)=n−k+1

max
y∈S\{0}

∥V Dy∥
∥V y∥

since V is invertible
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≤ min
S:dim(S)=n−k+1

max
y∈S\{0}

∥V ∥∥Dy∥
σn(V )∥y∥

= κV (M)σk(D).

Since D = diag(λ1(A), . . . , λn(A)) we have σk(D) = |λk(A)|. Similarly, reusing the above
equations we have that

σk(A) = min
S:dim(S)=n−k+1

max
y∈S\{0}

∥V Dy∥
∥V y∥

≥ min
S:dim(S)=n−k+1

max
y∈S\{0}

σn(V )∥Dy∥
∥V ∥∥y∥

= κV (A)
−1σk(D).

1.2 Chapter 2: Spectral Stability Under Random

Perturbations

In this dissertation randomness plays an instrumental role when establishing general algorithm
performance guarantees that hold on arbitrary inputs. In regards to the eigenvalue problem
(in the spirit of smoothed analysis [144] and as suggested by Davies in [45]) we study and
exploit a random matrix phenomenon: if one adds independent random variables of small
variance to the entries of an arbitrary matrix A ∈ Cn×n, with high probability, the resulting
matrix A′ will have (relatively) stable eigenvenvalues and eigenvectors. Moreover, by taking
the distribution of the entries of the random perturbation to have fast decaying tails (e.g.
taking Gaussian or bounded entries), with high probability, A′ will be close to A, and
therefore it will still be possible to find a valid solution to the backward eigenvalue problem
(see Definition 1.1.1) by running the algorithm of our choice on A′. Concretely, here we will
discuss statements of the following form.

Proto-Statement 1.2.1. Let Mn be a random matrix with independent entries of variance
one. Then, for any A ∈ Cn×n and γ > 0, under certain assumptions about the distributions
of the entries of Mn, for any t ∈ (0, 1) it holds that

P
[
κV (A+ γMn) ≥

1

t

]
≤ poly1(∥A∥, γ−1, t, n) (1.11)

and
P [gap(A+ γMn) ≤ t] ≤ poly2(γ

−1, t, n) (1.12)

where poly1 and poly2 are certain explicit multivariate polynomials that converge to 0 as
t→ 0 if the other parameters remain fixed.
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Remark 1.2.2. Note that by putting (1.11) and (1.12) together one gets that κeig is controlled
with high probability, which by Proposition 1.1.3 ensures a certain degree of stability for the
eigenvalues and eigenvectors of the resulting matrix.

Formulas for the expectation of certain condition numbers of A+γMn in the case whenMn

is a complex Ginibre were derived in [3], and from those formulas one can obtain inequalities
of the form (1.11) and (1.12) when Mn is a complex Ginibre (see Appendix A for a detailed
discussion). However, this approach breaks down when the entries of Mn are not complex
Gaussians, posing the question of if this phenomenon is still present when the entries of Mn

are distributed differently.
In [15] a different approach for controlling κV (A+ γMn) was introduced (see below for

details), and it is not hard to see that the results from this paper can be applied easily to
derive an inequality of the form (1.11) in the particular case when Mn is a complex Ginibre
matrix (see Appendix A). Moreover, by complementing the arguments from [15] with standard
random matrix techniques one can obtain an inequality of the form (1.11) in the more general
case when Mn has entries whose distributions are absolutely continuous with respect to the
Lebesgue measure on C. However, this approach breaks down once absolutely continuity over
C is removed (e.g. it is not possible to derive from those ideas a tail bound when Mn is a
real Ginibre matirx), posing the question of independent interest in random matrix theory of
if stability of eigenvectors and eigenvalues can also be ensured when using real perturbations.
Note that this question also has certain relevance in the context of numerical analysis, since
often times it is convenient to maintain all computations within the real numbers if the input
is real. So, in [10] we studied the following random matrix model.

Assumption 1.2.3. Let Mn be an n × n random matrix. We will assume that Mn has
independent real entries, each with density on R upper bounded almost everywhere by√
nK > 0, for some constant K.

Remark 1.2.4. The
√
n term in the upper bound on the density of the entries of Mn is

accounting for the fact that Mn may be a normalized random matrix (i.e. E∥Mn∥ is upper
bounded by a universal constant, independent of n). For example, if Mn is a normalized real
Ginibre matrix, then the density of its entries will be upper bounded by

√
n/2π, that is, in

this case K = 1/
√
2π. Our aim will be to provide inequalities of the form (1.11) and (1.12)

where the coefficients of poly1 and poly2 will a function of K.
We warn the reader that depending on the entry distributions ofMn, the

√
n in Assumption

1.2.3 need not be the appropriate normalization so that E∥Mn∥ = O(1). However, this holds
in the case when the entries of Mn have bounded fourth moment, and we include this explicit
scaling for easier comparison to the Gaussian case.

We will find it useful to state our results in terms of the Lp-norms

BMn,p := E [∥Mn∥p]1/p , (1.13)

which are uniformly bounded (over n for fixed p) when the entries of Mn have rapid decay.
For example, BMn,p ≤ 9 for all p ≤ 2n when Mn is a normalized real Ginibre matrix.
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Theorem 1.2.5 (Minimum Eigenvalue Gap). Let n ≥ 16, A ∈ Rn×n be deterministic, andMn

be a random matrix satisfying Assumption 1.2.3 with parameter K > 0. For any 0 < γ < K
and r < 1 < R:

P [gap(A+ γMn) ≤ r]

≤C1.2.5R
2 (γBMn,8 + ∥A∥+R) (K/γ)5/2n4r2/7 + P [∥A+ γMn∥ ≥ R] , (1.14)

where C1.2.5 is an explicitly computable (moderate) universal constant.

Theorem 1.2.6 (Eigenvector condition number). Let n ≥ 9. Let A ∈ Rn×n be deterministic,
and let Mn satisfy Assumption 1.2.3 with parameter K > 0. Let 0 < γ < Kmin{1, ∥A∥+R}
and R > E∥γMn∥. Then for any ϵ1, ϵ2 > 0, with probability at most

2ϵ1 +O

(
R(R + ∥A∥)3/5K8/5n14/5ϵ

3/5
2

γ8/5

)
+ 2P[γ∥Mn∥ > R],

we have

κV (A+ γMn) ≤ ϵ−1
1

√
log(1/ϵ2)C1.2.6K

3/2n3 · (∥A∥+R)3/2

γ3/2
.

where C1.2.6 is a universal constant.

In Chapter 2 we will also present upper bounds for the tails of the (random) eigenvalue
condition numbers of A+ γMn, where it will be crucial to distinguishing between the real
and truly complex eigenvalues. Very similar results, using essentially different methods, were
obtained by other authors in the independent and concurrent work [93]. We refer the reader
to Chapter 2 for a comparison between the two works and more in general for a detailed
discussion of the relevant literature. For now, we give a brief overview of the proof techniques
used to prove Theorems 1.2.5 and Theorem 1.2.6.

Proof techniques: Hermitization

First note that Assumption 1.2.3 is not imposing any constraints on the mean of the entries
of Mn or on the size of K, so, to simplify notation, when working with A + γMn we can
“absorb” A and γ into Mn, and just focus on proving results about Mn for general K.

Now, when dealing with the spectrum of nonnormal random matrices, such as Mn, it is a
common trick (that goes back at least to Girko [74]) to reduce the problem to understanding
the singular values of z−Mn for all z ∈ C. Since with this, one turns the problem of studying
the eigenvalues of a nonnormal matrix into analyzing the eigenvalues of a family of Hermitian
random matrices, this technique is often referred to as Hermitization.

Hermitization for minimum eigenvalue gaps. Here we will summarize our approach from
Chapter 2, which was inspired by the work of Ge [73], although it is significantly simpler.
The main observation is the following.
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Lemma 1.2.7. Let A ∈ Cn×n, z ∈ C and r > 0. If A has two eigenvalues in D(z, r), then

σn(z − A)σn−1(z − A) ≤ r2.

Proof. Applying Lemma 1.1.12 to z − A, we get

σn(z − A)σn−1(z − A) ≤ |λn(z − A)||λn−1(z − A)| ≤ r2.

The above result tells us that if Mn has two eigenvalues λi and λj that are close to each
other, this will manifest in the product σn(z−Mn)σn−1(z−Mn) being small for any z close to
λi and λj . So, the idea is that given r > 0 one can judiciously choose ϵ > 0 and an ϵ-covering6

N on the relevant region of C, so that the event {gap(Mn) ≤ r} is contained in the event
{σn(z −Mn)σn−1(z −Mn) ≤ r2 : for some z ∈ N}, and using a union bound one can obtain

P[gap(Mn) ≤ r] ≤
∑
z∈N

P[σn(z −Mn)σn−1(z −Mn) ≤ r2]. (1.15)

On the other hand, by separately controlling the left tails

P[σn(z −Mn) ≤ r1] and P[σn−1(z −Mn) ≤ r2] (1.16)

for any z, one can obtain easily obtain a bound on each of the terms appearing on the
right-hand side of (1.15), ultimately yielding an upper bound on P[gap(Mn) ≤ r]. Certainly,
for this bound to be meaningful, the control on the tails in (1.16) should be strong enough to
subdue the size of the net N , which will be O(1/ϵ2), which in turn is a function of r (since
ϵ itself is a function of r). In Chapter 2 we will show that balancing these parameters to
obtain a meaningful bound is possible if Mn satisfies Assumption 1.2.3. For now, to give
the reader some idea on what bounds on tails of singular values will look like, we recall the
case when Mn = A+ γGn for A ∈ Cn×n deterministic, γ > 0, and Gn a normalized complex
Ginibre matrix. In this particular case, a combination of the results in [147] and [143] (see
[15, Section 2] for details) yields

P[σn−k+1(z − A− γGn) ≤ r] ≤
(
Cnr

γk

)2k2

(1.17)

for some universal constant C and for all k ≤ n (for this discussion only k = 1, 2 are relevant).

Remark 1.2.8 (Overcrowding estimates). Note that the same argument can be repeated
looking at the k smallest singular values (instead of just the smallest two) to prove results
about clusters of k eigenvalues in the spectrum of Mn, such as the ones appearing in [115].

6Given a region Ω ⊂ C and ϵ > 0, an ϵ-covering of Ω is a (usually finite) set of points N in Ω for which
Ω ⊂

⋃
z∈N D(z, ϵ).
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Hermitization for eigenvalue condition numbers. In [15] Banks, Kulkarni, Mukherjee and
Srivastava used (1.17) (in the particular case of k = 1) to show the following.

Theorem 1.2.9 (Theorem 1.5 in [15]). Let A ∈ Cn×n, γ ∈ (0, ∥A∥), and Gn be a complex
normalized Ginibre matrix. If λ1, . . . , λn ∈ C are the random eigenvalues of A + γGn, for
every measurable open set B ⊂ C

E
[∑
λi∈B

κ(λi)
2

]
≤ n2

πγ2
Area(B).

From a statement like the one above one can easily derive a bound of the form (1.11).
The idea is that if one takes B to be, say, D(0, ∥A∥ + 4γ), then with exponentially high
probability all of the eigenvalues of A+ γGn will be contained in B, so one can use Theorem
1.2.9 and Markov’s inequality to obtain a tail bound on

∑n
i=1 κ(λi)

2 which in turn, by (1.8),
implies a tail bound for κV (A+ γGn).

We now present the arguments in [15] for the proof of Theorem 1.2.9, after which we
discuss where exactly the assumption of complex Gaussian entries is used and what would
one need to prove a more general result.

Proof of Theorem 1.2.9. Start by controlling the expected area of the ϵ-pseudospectrum of
A+ γGn. To do this observe that

Λϵ(A+ γGn) = {z ∈ C : ∥(z − A− γGn)
−1∥ ≥ 1/ϵ} = {z ∈ C : σmin(z − A− γGn) ≤ ϵ}.

Hence

E [Area(Λϵ(A+ γGn) ∩ B)] = E
[∫

B
1 {σn(z − A− γGn) ≤ ϵ} dz

]
=

∫
B
P[σn(z − A− γGn) ≤ ϵ]dz by Fubini

≤
∫
B

Cn2ϵ2

γ2
dz by (1.17)

=
Cn2ϵ2

γ2
Area(B).

Moreover, in [62, Section 5] it was shown that (1.17) holds for C = 1 when k = 1, A = 0
and γ = 0, and combining this with the results from [143], one gets that (1.17) holds for
C = 1 when k = 1 and for arbitrary A and γ. Therefore, if we divide by πϵ2 the first and
last expression in the above chain of inequalities we get

E
[
Area(Λϵ(A+ γGn) ∩ B)

πϵ2

]
≤ n2Area(B)

πγ2

The proof is then concluded by taking ϵ→ 0 and applying Lemma 1.1.10.
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Observe that in the above proof it was crucial that the ϵ-dependence in the upper bound
on P[σn(z−A−γGn) ≤ ϵ] was of the form O(ϵ2). As it will be discussed below, this is typical
of random matrix models Mn whose entries are absolutely continuous with respect to the
Lebesgue measure on C, however when the entries of Mn are real one should expect that the
left tail of σn(Mn) decays as O(ϵ), rendering the above approach incomplete.

Proof techniques: Invertibility via Distance

The literature on tails of least singular values of random matrices is immense (see [154] for a
recent survey). However, the vast majority of the papers in the subject have as a common
starting point (some form of) the by now well known invertibility via distance argument : let
Mn be a random matrix with independent entries and z ∈ C. Let R1, . . . , Rn be the rows of
Mn, let C1, . . . , Cn be the columns of (z −Mn)

−1, and let Vi := Span{Rj : j ∈ [n] \ i}. Then
basic linear algebra yields that ∥Ci∥ = dist(Ri, Vi)

−1 and therefore

∥(z −Mn)
−1∥2 ≤

n∑
i=1

σi(z −Mn)
−2 = ∥(z −Mn)

−1∥2F =
n∑
i=1

∥Ci∥2 =
n∑
i=1

dist(Ri, Vi)
−2.

Using the above inequality and a union bound we obtain

P[σn(z −Mn) ≤ r] = P[∥(z −Mn)
−1∥2 ≥ 1/r2] ≤

n∑
i=1

P[dist(Ri, Vi) ≤ r]. (1.18)

To conclude the argument, note that if Ni is a unit vector orthogonal to Vi, then

dist(Ri, Vi) = |R∗
iNi|. (1.19)

Moreover, because the entries of Mn are independent, Ni will be independent of Ri, so
to upper bound P[dist(Ri, Vi) ≤ r] it is sufficient to upper bound P[|R∗

iX| ≤ r] for every
deterministic unit vector X. Now note that, again because the entries of Mn are independent,
R∗
iX is a sum of n independent random variables, so if the distribution of each of them has a

density on C upper bounded say by
√
nK, R∗

iX will have a density on C, and it is not hard
to show (e.g. see the proof of Lemma 4.12 in [29]) that in fact this density will be upper
bounded by nK (regardless of the choice of X, as long as ∥X∥ = 1). Therefore we obtain the
anticoncentration bound

P[|R∗
iX| ≤ r] ≤ nπKr2.

Combining this with (1.18) one gets

P[σn(z −Mn) ≤ r] ≤ n2πKr2.

And since this bound has r-dependence O(r2) one can easily adapt the proof of Theorem
1.2.9 to show an inequality of the form (1.11) in the case where the entries of Mn have a
bounded density on C.
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However, in the case when the entries of Mn are real, the situation is not straight forward
and anti-concentration bounds for |R∗

iX| heavily depend on the imaginary part of the vector
X. As a consequence, Im(z) plays an important role in determining the kind of distribution
that (1.19) has on C and hence on the kind of bound one can obtain on σn(z −Mn). In this
regard, from the work of Ge [73] it follows that if Mn satisfies Assumption 1.2.3 one has

P[σn(z −Mn) ≤ r and ∥Mn∥ ≤ R] ≤ Cn2r2

Im(z)
+ e−cn

for some universal constants c, C and R. However, since the right-hand side of the above upper
bounds does not go to zero as r → 0, it is still not clear how to complete the Hermitization
argument for the eigenvalue condition numbers of Mn with a bound of this sort. Moreover,
the Hermitization argument for the eigenvalue gaps of Mn also requires control of the left
tails of σn−1(z −Mn). With this in mind, in [10] we showed the following results (which were
instrumental in proving Theorems 1.2.5 and 1.2.6 discussed above).

Theorem 1.2.10 (Singular Values of Complex Shifts). Let z ∈ C \ R and A ∈ Rn×n be
deterministic, and let Mn satisfy Assumption 1.2.3 with parameter K > 0. Then, for every
k ≤
√
n− 2,

P [σn−k+1 (z − (A+Mn)) ≤ ϵ]

≤(1 + k2)

(
n

k

)2(
C1.2.10k

2(nK)3
(
(BMn,2k2 + ∥A∥+ |Re z|)

2 + | Im z|2
) ϵ2

| Im z|

)k2
,

where C1.2.10 = 8
√
3(eπ)3/2.

The main technical tools for the proof of the above theorem will be developed in Sections
2.3 and 2.4. One of these ingredients will be a restricted invertibility lemma that will play
the role of the inequality ∥(z −Mn)

−1∥ ≤
∑n

n=1 dist(Ri, Vi)
−2 in the more general context

of controlling the tail of the k-th smallest singular value. The other ingredient will be an
anticoncentration result for random quadratic forms which will provide tail bounds for the
quantities that will replace the expressions (1.19) appearing above. These two ingredients
will be combined via a delicate analysis of the interaction between the real and imaginary
parts of the resolvent (z −Mn)

−1.

1.3 Chapter 3: Spectral Bisection

A myriad of papers have been written on different aspects of the eigenvalue problem, both in
the computer science and numerical analysis communities. While there are provably fast and
accurate algorithms in the Hermitian case and a large body of work for various structured
matrices (see, e.g., [27]), the general case is not nearly as well-understood, and in 1997
Demmel remarked in his well-known textbook [55]: “. . . the problem of devising an algorithm
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[for the non-Hermitian eigenproblem] that is numerically stable and globally (and quickly!)
convergent remains open.”

Demmel’s question remained entirely open until 2015, when it was answered in the
following sense by Armentano, Beltrán, Bürgisser, Cucker, and Shub in the remarkable paper
[3]. They exhibited an algorithm (see their Theorem 2.28) which given any A ∈ Cn×n with
∥A∥ ≤ 1 and σ > 0 produces in O(n9/σ2) expected arithmetic operations the diagonalization
of the nearby random perturbation A+ σGn where Gn is an unnormalized complex Ginibre
matrix. By setting σ sufficiently small, this may be viewed as a solution to the backward
eigenvalue problem – in particular, by setting σ = δ/

√
n and noting that ∥Gn∥ = O(

√
n)

with very high probability, their result implies an expected running time of O(n10/δ2) for an
output of backward accuracy δ in our setting.

The main goal of Chapter 3 will be to show that a variant of the well-known spectral
bisection algorithm of Beavers and Denman [23], combined with a pre-prosessing step that
consists of adding a random perturbation to the input matrix (as discussed in Section 1.2),
can be implemented in a backward stable way (in the relaxed sense of stability defined in
Section 1.1.2) using only a polylogarithmic number of calls to a given matrix-multiplication
oracle. From the complexity theory perspective, this is a significant improvement to the
result of Armentano et al. and shows that the complexity of the (randomized) eigenvalue
problem (defined as in Definition 1.1.1) is nearly that of matrix-multiplication. To be precise,
we will show the following.

Theorem 1.3.1 (Backward Approximation Algorithm). There is a randomized algorithm
EIG which on any input matrix A ∈ Cn×n with ∥A∥ ≤ 1 and a desired accuracy parameter
δ > 0 outputs a diagonal D and invertible V such that

∥A− V DV −1∥ ≤ δ and ∥V ∥∥V −1∥ ≤ 32n2.5/δ

in
O
(
TMM(n) log

2 n

δ

)
arithmetic operations on a floating point machine with

O(log4(n/δ) log n)

bits of precision, with probability at least 1− 14/n. Here TMM(n) refers to the running time
of a numerically stable matrix multiplication algorithm (detailed in Chapter 3).

Of course, in view of Proposition 1.1.3 the above result also guarantees the existence of
an algorithm that can give forward approximations, that is, by invoking EIG with specified
accuracy δ

6nκeig
one can obtain the following guarantee.

Corollary 1.3.2 (Forward Approximation Algorithm). There is a randomized algorithm
which on any input matrix A ∈ Cn×n with ∥A∥ ≤ 1, desired accuracy parameter δ > 0, and
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an estimate K ≥ κeig(A) outputs a δ−forward approximate solution to the eigenproblem for
A in

O

(
TMM(n) log

2 nK

δ

)
arithmetic operations on a floating point machine with

O(log4(nK/δ) log n)

bits of precision, with probability at least 1− 1/n− 12/n2.

Below we outline the main ingredients that will be used to show Theorem 1.3.1.

Computing the Matrix Sign Function

As we will see later, computing the sign function of a matrix is the key subroutine of the
spectral bisection algorithm.

The matrix sign function. The sign function of a number z ∈ C with Re(z) ̸= 0 is defined
as +1 if Re(z) > 0 and −1 if Re(z) < 0. The matrix sign function of a matrix A with Jordan
normal form

A = V

[
N

P

]
V −1,

where N (resp. P ) has eigenvalues with strictly negative (resp. positive) real part, is defined
as

sgn(A) = V

[
−IN

IP

]
V −1,

where IP denotes the identity of the same size as P . The sign function is undefined for
matrices with eigenvalues on the imaginary axis. Quantifying this discontinuity, Bai and
Demmel [6] defined the following condition number for the sign function:

κsign(M) := inf
{
1/ϵ2 : Λϵ(M) does not intersect the imaginary axis

}
, (1.20)

and gave perturbation bounds for sgn(M) depending on κsign.

Roberts’ Newton Iteration. Roberts [131] showed that the simple iteration defined by

A0 = A and Ak+1 =
Ak + A−1

k

2
(1.21)

converges globally and quadratically to sgn(A) in exact arithmetic, but his proof relied on
the fact that all iterates of the algorithm are simultaneously diagonalizable (see below for
more details), a property which is destroyed in finite arithmetic since inversions can only be
done approximately.7 In Section 3.4 we show that this iteration is indeed convergent when
implemented in finite arithmetic for matrices with small κsign, given a numerically stable
matrix inversion algorithm. Our main result in this direction will be the following.

7Doing the inversions exactly in rational arithmetic could require numbers of bit length nk for k iterations,
which will typically not even be polynomial.
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Theorem 1.3.3 (Sign Function Algorithm). There is a deterministic algorithm SGN which
on input an n × n matrix A with ∥A∥ ≤ 1, a number K with K ≥ κsign(A), and a desired
accuracy β ∈ (0, 1/12), outputs an approximation SGN(A) with

∥SGN(A)− sgn(A)∥ ≤ β,

in
O((logK + log log(1/β))TINV(n)) (1.22)

arithmetic operations on a floating point machine with

lg(1/u) = O(log n log3K(logK + log(1/β)))

bits of precision, where TINV(n) denotes the number of arithmetic operations used by a
numerically stable matrix inversion algorithm (satisfying Definition 3.2.3).

Proof Technique and Complications. The idea of Roberts’ proof in exact arithmetic is that
when A = V DV −1 is diagonalizable one can recursively show that each Ak can be written as
V DkV

−1 for some diagonal matrix Dk, by recursively writing

Ak+1 =
Ak + A−1

k

2
=
V DkV

−1 + V DkV
−1

2
= V

(
Dk +D−1

k

2

)
V −1,

which moreover provides the recursion Dk+1 =
1
2
(Dk +D−1

k ). Once this has been observed
it is clear that the role of V is immaterial and that one can view Roberts’ iteration as a
dynamic over diagonal matrices. Moreover, because there is no interaction between the
distinct diagonal entries of these matrices, one can further reduce the problem to studying

the dynamics on C defined by the recursion zk+1 =
zk+z

−1
k

2
. It is then not hard to show that

for any z ∈ C with Re(z) ̸= 0, if z0 = z then zk converges quadratically to sgn(z) as k →∞.
Now, as mentioned above, when working in finite arithmetic, because inversion is not

exact, the computed Ãk+1 will be a perturbation of what Ak+1 would be if all computations
were executed in exact arithmetic. Therefore, the Ãk will not be simultaneously diagonalizable
anymore, and moreover, if such matrices have unstable eigenvalues the spectrum of Ãk can
be quite far from the spectrum of Ak, and therefore the eigenvector matrices now play an
important role in the dynamics. For these reasons, analyzing Roberts iteration in finite
arithmetic is significantly harder than the exact arithmetic case.

The main new idea in the proof of Theorem 1.3.3 is to view the iteration as a dynamic on
the pseudospectrum of the matrices in sequence (rather than a dynamic on their spectrum).
This allows for more robust arguments that are resilient to inexact computations. To be more
precise we control the evolution of the pseudospectra Λϵk(Ãk) with appropriately decreasing
(in k) parameters ϵk, using a sequence of carefully chosen shrinking contour integrals in
the complex plane. The pseudospectrum provides a richer induction hypothesis than scalar
quantities such as condition numbers, and allows one to control all quantities of interest using
the holomorphic functional calculus. This technique will be introduced in Sections 3.4.1 and
3.4.2, and carried out in finite arithmetic in Section 3.4.3, yielding Theorem 1.3.3.
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Spectral Bisection and Pseudospectral Shattering

Diagonalization by Spectral Bisection. Given an algorithm for computing the sign function,
there is a natural and well-known approach to the eigenvalue problem pioneered in [23]. The
main observation is that the matrices P± := 1

2
(I ± sgn(A)) are the spectral projectors onto the

invariant subspaces corresponding to the eigenvalues of A in the left and right open half planes
of C. To exploit this, note that this implies that for r ∈ R, P±(r) := 1

2
(I ± sgn(A− r))

are the spectral projectors corresponding to the half planes {z ∈ C : Re(z) > r} and
{z ∈ C : Re(z) < r}. So if the shifted matrix A − r has roughly the same number of
eigenvalues on the left and right sides of the complex plane then P+(r) and P−(r) can be
used to compress A into two smaller subproblems (each of which will be roughly of the same
size) appropriate for recursion. Note that when no such r exists one can compute the sign
function on matrices of the form iA− r, which corresponds to trying to find a horizontal line
in C that roughly evenly splits Spec(A), and that for any configuration of Spec(A) there is
either a horizontal or vertical line that will work well for this purpose.

Grid Implementation. The way we will implement this algorithm is by initially choosing
a grid g that divides C into small squares. Then, we will choose (in a way that will be
made precise in Chapter 3) a line in g that splits the spectrum of the matrix in a somewhat
balanced way, and as explained above this line will be used to reduce the problem to two
subproblems, each with their spectra contained in one of the two sides of g. By recursively
continuing this procedure, in each step only retaining the part of g that is relevant to each
subproblem, one will end up computing the spectral projectors for invariant subspaces whose
corresponding eigenvalues are all contained in a common square of g. Moreover, if g is taken
so that there is at most one eigenvalue of the input matrix A per square, then the computed
spectral projectors will be rank one and can be used to compute the eigenvectors of A;
moreover, any point in the corresponding square can be used as a forward approximation for
the eigenvalue corresponding to the computed eigenvector (and hence the resolution of the
grid will determine the accuracy of the final output).

Difficulties. The difficulties in carrying out the above approach are: (a) finding a balanced
splitting along an axis that is well-separated from the spectrum (this requires taking the initial
grid with lines well-separated from the spectrum) (b) efficiently and accurately computing the
sign function (c) ensuring that solving the subproblems obtained after compression (which
have been corrupted by machine errors) would yield an accurate solution for the original
problem. Note that (a) and (b) are nontrivial even in exact arithmetic, since the iteration
(1.21) converges slowly if (a) is not satisfied, even without roundoff error. Moreover, for
(b) and (c) to be carried out in finite arithmetic one has to make sure that throughout the
algorithm the matrices that one works with have reasonable spectral stability properties. To
this end, the initial prepossessing step with a random perturbation will be crucial.

Pseudospectral Shattering for a Grid. The results discussed in Section 1.2 imply that
random matrices of the form A + γMn, with A deterministic and Mn random satisfying
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Assumption 1.2.3, have with high probability relatively small eigenvalue condition numbers
and relatively large eigenvalue gaps.
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Figure 1.1: T is a sample of an upper triangular 10×10 Toeplitz matrix with zeros on the diagonal
and an independent standard real Gaussian repeated along each diagonal above the main diagonal.
G is a sample of a 10× 10 complex Ginibre matrix with unit variance entries. Using the MATLAB
package EigTool [176], the boundaries of the ϵ-pseudospectrum of T (left) and T +10−6G (right) for
ϵ = 10−6 are plotted along with the spectra. The latter pseudospectrum is shattered with respect
to the pictured grid.

So, given the relation between the pseudospectrum and the eigenvalue condition numbers
(e.g. see Lemma 1.1.9 and the discussion around it), this means that the pseudospectrum of
A+ γMn is shattered into small pieces with high probability. In particular, in the context of
the spectral bisection algorithm, to address the difficulties mentioned above we will want this
small pseudospectral pieces to lie inside the chosen grid g (see Figure 1.1), and show that
this property is maintained throughout the algorithm.

Definition 1.3.4 (Grid Pseudospectral Shattering). Let A ∈ Cn×n and ϵ > 0. The pseu-
dospectrum Λϵ(A) is shattered with respect to a grid g if:

1. Every square of g has at most one eigenvalue of A.

2. Λϵ(A) ∩ g = ∅.

The above property will not only be used to ensure that the eigenvalues of the matrix are
far from the bisecting line whenever the subroutine for computing the sign function is called,
but it will also be used to deduce spectral stability of the matrix via Lemma 1.1.11.

In Section 3.3 we will translate tail bounds for the minimum eigenvalue gaps and eigenvalue
condition numbers of A+ γMn into high probability pseudospectral shattering guarantees
with respect to a randomized grid g. To simplify our analyze we will limit the discussion to
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the case when Mn is a complex Ginibre matrix, but as discussed in Section 1.2 this could be
done more generally for a larger class of random perturbations.

1.4 Chapter 4: Hessenberg QR Algorithm

The Hessenberg Shifted QR Algorithm, discovered in the late 1950’s independently by Francis
[68, 69] and Kublanovskaya [99], has been for several decades the most widely used method
for approximately computing all of the eigenvalues of a dense matrix, and moreover finding
its approximate Schur form8. It is implemented in all of the major software packages for
numerical linear algebra and was listed as one of the “Top 10 algorithms of the twentieth
century,” along with the Metropolis algorithm and the Simplex algorithm [59, 123]. The
algorithm is specified by a shifting strategy, which is an efficiently computable function

Sh : Hn×n → Pk,

where Hn×n is the set of n × n complex Hessenberg9 matrices and Pk is the set of monic
complex univariate polynomials of degree k, for some k = k(n) typically much smaller than
n. The word “shift” comes from the fact that when k = 1 we have pt(Ht) = Ht − stI for
some st ∈ C. The algorithm then consists of the following discrete-time isospectral nonlinear
dynamical system on Hn×n, given an initial condition H0:

QtRt = pt(Ht) where pt = Sh(Ht) whenever pt(Ht) is invertible, (1.23)

Ht+1 = Q∗
tHtQt, t = 0, 1, 2, . . . .

The first step in (1.23) is a QR decomposition so that Qt is unitary. It is not hard to see that
each iteration preserves the Hessenberg structure; we ignore the case when pt(Ht) is singular
in this overview (see Chapter 4 for a discussion of the singular case).

The relevance of this iteration to the eigenvalue problem stems from two facts. First, every
matrix A ∈ Cn×n is unitarily similar to a Hessenberg matrix H0, and in exact arithmetic
such a similarity can be computed exactly in O(n3) operations. Second, it was shown in
[68, 99] that for the trivial “unshifted” strategy p(z) = z, the iterates Ht under some mild
genericity conditions always converge to an upper triangular matrix H∞; this is because
the unshifted QR iteration can be precisely related to the (inverse) power iteration (see e.g.
[157]). Combining the unitary similarities accumulated during the iteration, these two facts
yield a Schur factorization A = Q∗H∞Q of the original matrix, from which the eigenvalues of
A can be read off. The unshifted QR iteration does not give an efficient algorithm, however,
as it is easy to see that convergence can be arbitrarily slow if the ratios of the magnitudes of
the eigenvalues of H0 are close to 1. The role of the shifting strategy is to adaptively improve

8In the sense of backward error, see Definition 1.1.1 and Remark 1.1.2.
9A matrix H is (upper) Hessenberg if H(i, j) = 0 whenever i > j + 1. Such matrices are “almost” upper

triangular.



CHAPTER 1. INTRODUCTION 27

these ratios and thereby accelerate convergence. The challenge is that this must be done
efficiently without prior knowledge of the eigenvalues.

We quantify the rate of convergence of a sequence of iterates of (1.23) in terms of its
δ-decoupling time decδ(H0), which is defined as the smallest t at which some subdiagonal
entry of Ht satisfies

|Ht(i+ 1, i)| ≤ δ∥Ht∥.

In this context, “rapid” convergence means that decδ(H0) is a very slowly growing function
of n and 1/δ, ideally logarithmic or polylogarithmic.

Remark 1.4.1 (Arithmetic Complexity from Decoupling Time). The motivation for the
particular measure of convergence above is that there is a procedure called deflation which
zeroes out the smallest subdiagonal entry of a δ-decoupled Hessenberg matrix and obtains a
nearby block upper triangular matrix, which allows one to pass to subproblems of smaller size
incurring a backward error of δ∥H0∥. Repeating this procedure n times (and exploiting the
special structure of Hessenberg matrices to compute the Qt efficiently) yields an algorithm
for computing a triangular T and unitary Q such that ∥H0 −Q∗TQ∥ ≤ nδ∥H0∥ in a total of
O(n3decδ(H0)) arithmetic operations [170]. Thus, the interesting regime is to take δ ≪ 1/n.

In a celebrated work, Wilkinson [174] proved global convergence10 of shifted QR on all
real symmetric tridiagonal11 matrices using the shifting strategy that now carries his name.
The linear convergence bound decδ(H0) ≤ O(log(1/δ)) for this shifting strategy was then
obtained by Dekker and Traub [52] (in the more general setting of Hermitian matrices), and
reproven by Hoffman and Parlett [88] using different arguments. Other than these results for
Hermitian matrices, there is no known bound on the worst-case decoupling time of shifted
QR for any large class of matrices or any other shifting strategy.12 Shifted QR is nonetheless
the most commonly used algorithm in practice for the nonsymmetric eigenproblem on dense
matrices. The strategies implemented in standard software libraries heuristically converge
very rapidly on “typical” inputs, but occasionally examples of nonconvergence are found [47,
109] and dealt with in ad hoc ways.

Accordingly, the main theoretical question concerning shifted QR, which has remained
open since the 1960s, is:

Question D. Is there a shifting strategy for which the Hessenberg shifted QR iteration
provably and rapidly decouples on nonsymmetric matrices?

Question D was asked in various forms e.g. by Parlett [121, 124], Moler [110, 109], Demmel
[55, Ch. 4], Higham [84, p. IV.10], and Smale [141] (who referred to it as a “great challenge”).

10i.e., from any initial condition H0.
11i.e., arising as the Hessenberg form of symmetric matrices.
12For nonnormal matrices, it is not even known if there is a shifting strategy which yields global convergence

regardless of an effective bound on the decoupling time. A thorough discussion of related work will be given
in Chapter 4.
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Chapter 4 will be devoted a positive answer to Question D which is quantified in terms
of the degree of nonnormality of the input matrix H0. Moreover, we show, within the finite
precision arithmetic model, that the shifted QR algorithm can be used to efficiently solve the
backward eigenvalue problem. We do this in three steps:

1. Decoupling in Exact Arithmetic. Let Hn×n
B be the set of diagonalizable complex

Hessenberg matrices H0 with eigenvector condition number κV (H0) ≤ B. In Section 4.1
we will exhibit a two parameter family of deterministic shifting strategies Shk,B indexed
by a degree parameter k = 2, 4, 8 . . . and a nonnormality parameter B ≥ 1 such that:

(i) The strategy Shk,B satisfies decδ(H0) ≤ O(log(1/δ)) for every H0 ∈ Hn×n
B and

δ > 0.

(ii) Shk,B has degree k and can be computed in roughly O((log k +B
log k
k )kn2) arith-

metic operations, which is simply O(n2k log k) for the judicious setting k =
Ω(logB log logB).

Thus, the computational cost of the shifting strategy required for convergence blows
up as the input matrix becomes more and more nonnormal, but the dependence on
nonnormality is very mild.

We remark that such a result was not previously known even in the case B = 1 of
normal matrices. Further, in the spirit of smoothed analysis and the discussion from
Section 1.2, a tiny random perturbation of any H0 ∈ Hn×n is likely to be an element
of Hn×n

B for small B (not depending on H0). Thus, while our theorem does not give
a single shifting strategy which works for all matrices, it does give a strategy which
works for a tiny random perturbation of every matrix (with high probability, where
“tiny” and “small” must be quantified appropriately).

2. Numerical Stability. With the analysis of the dynamics in exact arithmetic in hand,
in Section 4.2 we will show that both the correctness and rapid convergence of these
strategies continue to hold in finite arithmetic with an appropriate implementation, and
prove a bound on the number of bits of precision needed, for matrices with controlled
condition number κeig. To do so, we develop some general tools enabling rigorous finite
arithmetic analysis of the shifted QR iteration with any shifting strategy which uses
Ritz values as shifts, of which Shk,B (which will be used to denote the finite arithmetic
implementation of Shk,B) is a special case.

The main challenge here is the forward instability of QR steps as the Ritz values start
to converge towards the eigenvalues of the input matrix. This phenomenon heavily
complicates the dynamics analysis in the finite arithmetic model, since it becomes hard
to reason about the computed iterates when decoupling is close to taking place. To solve
this, inspired by the work of Parlett and Le [126] and in the spirit of aggressive early
deflation [31, 32], we show a dichotomy: either each QR step of our shifting strategy
is (forward) stable enough for our analysis to be valid or the information provided by
Ritz values in such step can be used to decouple the problem immediately.
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3. Ritz Value Finder with Provable Guarantees. The Ritz values of order k of an upper
Hessenberg matrix H are equal to the eigenvalues of its bottom right k × k corner
H(k); they are also defined variationally as the zeros of the monic degree k polynomial
pk minimizing ∥e∗npk(H)∥, where en is an elementary basis vector. All of the higher
order shifting strategies we are aware of are defined in terms of these Ritz values.
However, we are not aware of any theoretical analysis of how to compute the Ritz values
(approximately) in the case of nonsymmetric H(k), nor a theoretical treatment of which
notion of approximation is appropriate for their use in the shifted QR iteration.13 In
Section 4.3 we will give a method, based on inverse iteration, for provably computing
the eigenvalues of any small matrix.

Below we detail our main technical results regarding each of the steps discussed above.
Comprehensive discussions about proof techniques, difficulties, and related literature will be
deferred to Chapter 4.

Decoupling in Exact Arithmetic

Since computing eigenvalues exactly is impossible when k ≥ 5, even when working in the
framework of exact arithmetic, we only assume access to a method for computing approximate
Ritz values, in the sense encapsulated in the following definition.

Definition 1.4.2 (θ-Optimal Ritz values and Ritz value finders). Let θ ≥ 1. We call
R = {r1, . . . , rk} ⊂ C a set of θ-optimal Ritz values of a Hessenberg matrix H if∥∥∥∥∥e∗n∏

i≤k

(H − ri)

∥∥∥∥∥
1/k

≤ θmin
p∈Pk

∥e∗np(H)∥1/k. (1.24)

A Ritz value finder is an algorithm OptRitz(H, k, θ) that takes as inputs a Hessenberg
matrix H ∈ Cn×n, a positive integer k and an accuracy parameter θ > 1, and outputs a
set R = {r1, . . . , rk} of θ-optimal Ritz values of H whenever the right hand side of (1.24)
is nonzero. Let TOptRitz(k, θ, δ) be the maximum number of arithmetic operations used by
OptRitz(H, k, θ) over all inputs H such that the right hand side of (1.24) satisfies14

min
p∈Pk

∥e∗np(H)∥1/k ≥ δ∥H∥.

A Ritz value finder satisfying Definition 1.4.2 can be efficiently instantiated using poly-
nomial root finders (e.g. [119]) or other provable eigenvalue computation algorithms (e.g.
[11, 14]) with guarantees of type TOptRitz(θ, k, δ) = O(kc log( 1

δ(θ−1)
)). We defer a detailed

13In practice, and in the current version of LAPACK, the prescription is to run the shifted QR algorithm
itself on H(k), but there are no proven guarantees for this approach.

14Such a lower bound is needed, since otherwise we could use OptRitz to compute the eigenvalues of H(k)

to arbitrary accuracy in finite time.
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discussion of numerical issues surrounding this implementation to Sections 4.2 and 4.3. The
subtlety of not being able to compute Ritz values exactly is secondary to the dynamical
phenomena which are the focus of our first step of the analysis of the QR algorithm. So on
first reading of Section 4.1 it is recommended to assume θ = 1 (i.e., Ritz values are computed
exactly), even though this is unrealistic when k > 4. The theorem below is stated with θ = 2,
which is also the parameter setting that will be used in Section 4.2.

Our main theorem regarding the dynamics of the algorithm is the following.15

Theorem 1.4.3. There is a family of deterministic shifting strategies Shk,B (described in
Section 4.1.6) parameterized by degree k = 2, 4, 8, . . . and nonnormality bound B ≥ 1 with the
following properties.

1. (Rapid Decoupling) If H0 ∈ Hn×n
B , then, assuming exact arithmetic, for every δ > 0,

the QR iteration with strategy Shk,B satisfies

decδ(H0) ≤ 4 lg(1/δ). (1.25)

2. (Cost Per Iteration Before Decoupling) Given a Ritz value finder OptRitz(H, k, θ) with
complexity TOptRitz(k, θ, δ), an accuracy parameter δ > 0, and a Hessenberg matrix
Ht ∈ Hn×n

B , computing Ht+1 given Ht has a cost per iteration of at most(
lg k +Nnet

(
0.002B− 8 lg k+4

k−1

))
· TIQR(k, n) + TOptRitz(k, 2, δ) + lg k (1.26)

arithmetic operations for all iterations before (1.25) is satisfied, where Nnet(ϵ) = O(ϵ−2)
is number of points in an efficiently computable ϵ-net of the unit disk and TIQR(k, n) ≤
7kn2 is an upper bound on the arithmetic cost of a degree k implicit QR step (see
Section 4.1.3).

The term involving Nnet captures the the cost of performing certain “exceptional shifts”
(see Section 4.1.8) used in the strategy. The tradeoff between the nonnormality of the input
matrix and the efficiency of the shifting strategy appears in the cost of the exceptional shift,
where it is seen that setting

k = Ω(logB log logB) (1.27)

yields a total running time of O(n2k log k) operations per iteration. Note that the bound
B ≥ κV (H0) must be known in advance in order to determine how large a k is needed to make
the cost of the exceptional shift small. One may also take k to be a constant independent of
B, but this causes the arithmetic complexity of each iteration to depend polynomially on B
rather than logarithmically. Note that for normal matrices one may take k = 2 and B = 1.

Remark 1.4.4 (Higher Degree Shifts). A QR step with a degree k shift

p(z) = (z − r1) . . . (z − rk)
15All logarithms are base 2.
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is identical to a sequence of k steps with degree 1 shifts (z− r1), (z− r2), . . . , (z− rk) (see e.g.
[170] for a proof), so any degree k strategy can be simulated by a degree 1 strategy while
increasing the iteration count by a factor of k.16 We choose to present our strategy as higher
degree for conceptual clarity. The efficiency of using degrees as high as k = 180 has been
tested in the past [31, Section 3] and k = 50 is often used in practice [96].

Numerical Stability

Theorem 1.4.3 above (which assumes exact arithmetic) only gives a description of the algorithm
up to when decoupling takes place, but this is not sufficient (even in exact arithmetic) to
obtain running times and accuracy guarantees when the full eigendecomposition of the input
matrix is desired. This due to our assumption of an upper bound B on the eigenvector
condition number of the input matrix, which does not necessarily bound the eigenvector
condition number of the submatrices that appear in the recursion after deflation.

In Section 4.2 we will take into consideration numerical errors, and factor into our analysis
the deflation step. To do this, we will assume access to a black box algorithm SmallEig, which
will be called upon when approximate Ritz values are needed, with the following guarantee on
a matrix A of dimension k or smaller. (The notion of forward error here is absolute, instead
of relative — this will simplify some of the analysis later on).

Definition 1.4.5. A small eigenvalue solver SmallEig(A, β, ϕ) takes as input a matrix A

of size at most k × k, and with probability at least 1− ϕ, outputs λ̃1, ..., λ̃k ∈ C such that
|λ̃i − λi| ≤ β for each of λ1, ..., λk ∈ Spec(A).

Our main result in this direction will be the following.

Theorem 1.4.6. Let H be an n × n upper Hessenberg matrix and B ≥ 2κV (H) and
Γ ≤ gap(H)/2 upper and lowerbounds on its eigenvector condition number and minimum
eigenvalue gap. For a certain k = O(logB log logB) — which will be specified in Section 4.2 —
the shifting strategy Shk,B can be implemented in finite arithmetic to give a randomized shifted
QR algorithm, ShiftedQR, with the following guarantee: for any δ > 0 ShiftedQR(H, δ, ϕ)
produces the eigenvalues of a matrix H ′ with ∥H − H ′∥ ≤ δ∥H∥, with probability at least
1− ϕ, using

• O
(
n3
(
log nB

δΓ
· k log k + k2

))
arithmetic operations on a floating point machine with

O
(
k log nB

δΓϕ

)
bits of precision; and

• O(n log nB
δΓ
) calls to SmallEig with accuracy Ω( δ2Γ2

n4B4Σ
) and failure probability tolerance

Ω
(

ϕ

n2 log nB
δΓ

)
16This also has some important advantages with regards to numerical stability, which are discussed in [13].
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Remark 1.4.7 (Constants). The constants on arithmetic operations and precision hidden in
the asymptotic notation above are modest and can be read off by unpacking the expressions
for TShiftedQR in equation (4.55) and uShiftedQR in equation (4.54), respectively.

Remark 1.4.8 (Computing Eigenvalues of an Arbitrary Matrix). The algorithm ShiftedQR
can be used to compute backward approximations of the eigenvalues of an arbitrary matrix
A ∈ Cn×n with a backward error of δ∥A∥ as follows:

1. Add a random complex Gaussian perturbation of norm δ∥A∥/2 to the input matrix,
which yields log(B/Γ) = O(log(n/δ)) with high probability (this follows from the
discussion in Section 1.2).

2. Put the resulting matrix in Hessenberg form using Householder reflectors. This step
is backward stable when performed in finite arithmetic [155], and thus approximately
preserves the bounds on B,Γ by the results that will be proven in Section 4.2.

3. Apply Theorem 1.4.6 with accuracy δ/2, noting that the bound on log(B/Γ) from step
1 implies that k = O(log(n/δ) log log(n/δ)) is sufficient.

Remark 1.4.9 (Hermitian Matrices). For the important case of Hermitian tridiagonal
matrices there is no difficulty in maintaining κV (H) = 1, so we may take k = 2 and
B = 1. A minimum eigenvalue gap of Γ ≥ (δ/n)c may be guaranteed by adding a diagonal
Gaussian perturbation of size δ/2 [2] to the matrix (or by adding a GUE perturbation
and then tridiagonalizing the matrix). The Ritz values in this case can be computed to
sufficient accuracy using the quadratic formula. The amount of precision required by Theorem
1.4.6 is consequently simply O(log(n/δ)) and the number of arithmetic operations used is
O(n3 + n2 log(n/δ)), which is asymptotically the same as in the exact arithmetic analysis of
tridiagonal QR with Wilkinson shift.

Ritz Values via Inverse Shifted Iteration

In Section 4.3 we will provide an algorithm SmallEig based on shifted inverse iteration. For
this algorithm we will show the following.

Theorem 1.4.10. Given A ∈ Ck×k with ∥A∥ ≤ Σ, there is an algorithm, SmallEig, which
solves the forward eigenvalue problem in the sense of Definition 1.4.5, using at most

O
(
k5 log(kΣ/βϕ)2 + k2 log(kΣ/βϕ)2 log(k log(kΣ/βϕ))

)
arithmetic operations on a floating point machine with O(k2 log(kΣ/βϕ)2) bits of precision.

Note that the algorithm SmallEig uses higher precision than we require anywhere else
in this analysis, but because it is called infrequently and on k × k matrices only, the total
Boolean operations are still subdominant.
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Remark 1.4.11 (Final running times). This yields a total worst-case complexity bound of
O(n3 log2(n/δ)(log log(n/δ))2) arithmetic operations with O(log2(n/δ) log log(n/δ)) bits of
precision plusO(n log(n/δ)·log7(n/δ) log log(n/δ)5) operations withO(log4(n/δ)(log log(n/δ)2))
bits of precision for the calls to SmallEig. The Boolean cost of calls to SmallEig is subdominant
whenever n ≥ log7/2(n/δ)(log log(n/δ))2.

While this asymptotic complexity guaranteed by Remark 1.4.11 is significantly higher
than the nearly matrix multiplication time spectral bisection algorithm discussed in Chapter
3, that algorithm uses O(log4(n/δ) log(n)) bits of precision, moreover with a larger hidden
constant. On the other hand, the algorithm of [3] uses O(n10/δ2) arithmetic operations but
with only O(log(n/δ)) bits of precision (as is stated but not formally proven in [3]).

1.5 Chapter 5: The Lanczos Algorithm Under Few

Iterations

The Lancozs algorithm is one of the most widely used numerical methods for solving problems
pertaining to large Hermitian matrices. In particular, it is invoked in applications that
only require knowing specific features of the spectrum of a very large Hermitian matrix
A ∈ Cn×n, and where computing the full eigendecomposition of A would be wasteful and in
occasions prohibitively expensive (both in terms of storage and running time). Although
it can be viewed as an iterative method for approximating the eigenvalues of a matrix,
the Lanczos algorithm is fundamentally different than the two algorithms discussed above
(spectral bisection and QR iteration), and in the context of this dissertation it may be better
thought of as a dimensional reduction technique.

The Lanczos Algorithm. We will think of the Lanczos algorithm as an algorithm that
receives three inputs: a matrix A ∈ Cn×n, a vector u ∈ Cn, and an integer k ∈ [n]. Given
these inputs, the procedure runs for k iterations, each of which utilizes only matrix-vector
and vector-vector multiplications, and when terminated outputs a k× k tridiagonal matrix J
called the Jacobi matrix 17, we refer the reader to Section 5.1 for details.

The nontrivial entries of the the Jacobi matrix are called the Jacobi coefficients of the
matrix; the diagonal ones will be denoted by αi and the off-diagonal ones by βi (sometimes
αi(u) and βi(u) when it is important to emphasize the u-dependence), its eigenvalues are
known as the k Ritz values of A, which we denote by ri (similarly sometimes we will use
ri(u)), and its eigenvectors can be used to compute the so called Ritz vectors, but we will
only treat the latter in passing.

If k is set to k = n the Jacobi matrix will be unitarily similar to the input A and therefore
the Ritz values will be precisely the eigenvalues of A. However, the use case for this algorithm

17Technically speaking this k × k matrix is in fact the k × k corner of the actual Jacobi matrix of the
spectral measure of A associated to u, but for simplicity, when k is fixed we will refer to J as the Jacobi
matrix.
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is when n is large and k ≪ n, and therefore computing the full eigendecomposition of the
Jacobi matrix18 (i.e. computing the Ritz values and Ritz vectors) can be done quickly and
accurately.

Approximating outlying eigenvalues using Ritz values. The success of the Lanczos algorithm
resides to some extent in its ability to find (by looking at the Ritz values) the outliers of the
spectrum of the matrix A using very few iterations. By outliers, we mean the eigenvalues
distant from the region in which the majority of the spectrum accumulates (the bulk). As the
reader may be well aware of, there are several applications, both in science and engineering,
where the value of these outlying eigenvalues is extremely informative.

Understanding the bulk of the spectrum using Jacobi coefficients. Lanczos-type methods
can also be used to approximate the global spectral density of large matrices, also known as
density of states; for a survey of techniques see [103]. In applied mathematics, large matrices
can arise as discretizations of infinite-dimensional operators such as the Laplacian or as
finite-dimensional representations of an infinite-dimensional Hamiltonian. Computing the
eigenvalues and Jacobi coefficients of the finite-dimensional operator then yields information
about the infinite-dimensional operator and the underlying continuous system. For an
example, see [138], or Section 7 of [161] for numerical experiments and bounds for the Lanczos
algorithm applied to an explicit discretized Laplace operator.

In the setting described above, the Jacobi coefficients contain all the information of
the spectral density of the infinite-dimensional operator in question and even the first few
coefficients are of use. To give an example, in [83] the Haydock method (as it is termed
today) was introduced. This method exploits the fact the resolvent of an operator admits a
continued fraction expansion where the coefficients are precisely the Jacobi coefficients, and
hence knowing these quantities is fundamental to understanding the spectral density of the
operator—see [103, Section 3.2.2] for a summary of the Haydock method.

Using a slightly different perspective, note that from the k×k Jacobi matrix of an operator
one can obtain the [k− 1, k] Padé approximation of its resolvent [160]. In particular, knowing
the k× k Jacobi matrix is enough to compute the first 2k− 1 moments of the spectral density
of the infinite-dimensional operator.

Main results

Often times, the initial vector u ∈ Cn that is fed into the Lanczos algorithm as an input is
taken uniformly at random from the sphere Sn−1. In this case, when the algorithm is run for
k ≪ n iterations, there are two non-trivial fundamental questions that arise:

1. How much does the (random) output vary?

2. How many iterations are necessary and sufficient to obtain a satisfactory approximation
for the problem in question?

18This is usually done by running the QR iteration with Wilkinson’s shift on the Jacobi matrix.
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Regarding the first question, one should note that two independent vectors drawn from
Sn−1 might be quite different (and in fact will be close to orthogonal if n is large), and
therefore when run more than once on the same matrix, the Lanczos algorithm could (a priori)
output two very distinct outputs. This inherent feature of randomness hurts reproducibility
and poses a concern when safety relies on the accuracy and consistency of the algorithm.
To mitigate this potential issue, sometimes practitioners run the Lanczos algorithm several
times (with independent initial vectors) on the same matrix, and report as final output the
average of these preliminary outputs. In this regard, the first question is also relevant to
efficiency, since it can inform practice when deciding how many samples are needed to ensure
reproducibility.

The second question is relevant to large scale problems, where each extra iteration is
significantly costly and one wants to find the minimum k for which k iterations will suffice to
solve the problem in hand.

Assumptions and complications. One of the main complications that arises when addressing
the questions posed above, is that the behavior of the Jacobi coefficients and Ritz values
varies substantially according to the properties of the spectrum of the input matrix A. It
is therefore challenging to show general results about arbitrary inputs A, and such results
most necessarily be quantified, to some extent, in terms of certain features of the spectrum
of the input matrix. For example, in the influential paper of Saad [135], many of the results
about rates of convergence for the Ritz values were stated in terms of the (not very explicit)
quantities

t
(k)
i = min

p∈P(i)
k−1

max
j:j ̸=i
|p(λj)|,

where λ1 ≥ · · · ≥ λn are the eigenvalues of A and P(i)
k−1 denotes the set of all polynomials

of degree not exceeding k − 1 and satisfying p(λi) = 1. In the present work we use a more
geometric notion about the spectrum to state our results.

Definition 1.5.1 (Equidistribution). Let Λ be any finite set of n real numbers. Let δ and ω be
positive real numbers and let j be a natural number. We say that Λ is (δ, ω, j)-equidistributed
if for any finite set T of at most j real numbers it holds that∣∣∣∣∣

{
λ ∈ Λ :

1

|T |
∑
t∈T

log |λ− t| ≥ logω

}∣∣∣∣∣ ≥ δn.

Intuitively, the spectrum of the input matrix A is equidistributed if it is not grouped in
a small number of tight clusters (see Examples 1.5.2 and 1.5.3 below). As we will show in
Section 5.3.1, the family of well equidistributed point sets includes, but is not limited to,
those sets obtained by discretizing an absolutely continuous distribution.

Example 1.5.2. Let Λ be the set of n equally spaced points from 1/n to 1, inclusive. This
represents a discretization of the uniform measure µ = Unif([0, 1]). In Section 5.3.1 we will
show that for j ≤ n

16
, the set Λ is (δ, ω, j)-equidistributed for δ = 1/4 and ω = 4e−2.
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Example 1.5.3. Now consider a set (or multiset) Λ of n > 0 points grouped in m equally
spaced small clusters. To make this precise, fix two parameters ε, g > 0 and consider
−1 = a1 ≤ b1 < a2 ≤ b2 < · · · < am ≤ bm = 1 such that for every i = 1, . . . ,m we have
bi − ai = ε and ai+1 − bi = g. We think of ε as small with respect to g and of m as small
with respect to n. If Λ ⊂

⋃m
i=1[ai, bi] with |Λ ∩ [ai, bi]| ≥ ⌊ nm⌋ for every i = 1, . . . ,m, then Λ

is (m−j
m
, g, j)-equidistributed and g ≈ 2/m.

Note that in this case we have good equidistribution parameters unless j ≈ m. In Section
4 we give a generalization of this assertion in Observation 5.3.9.

Finally, since there are no numerical stability concerns for the questions we will be
addressing, throughout the discussion of this work we will assume exact arithmetic.

Concentration of the output. In Chapter 5 we will show that when the spectrum of the
input matrix A ∈ Cn×n is reasonably equidistributed, and the Lanczos algorithm is run for a
few iterations, the output is exponentially concentrated (see Figure 1.2). To be more precise,
in this direction our main result will be the following.

Theorem 1.5.4 (Concentration of Jacobi coefficients after i iterations). Assume the initial
vector u is sampled uniformly at random from Sn−1, and assume the spectrum of A is
(δ, ω, i)-equidistributed for some δ, ω > 0 and i ∈ N. Let α̃i and β̃i denote the medians of
the Jacobi coefficients αi(u) and βi(u), respectively. Then for all t > 0, the probabilities
P[|αi(u)− α̃i| > t∥A∥] and P[|βi(u)− β̃i| > t∥A∥] are both bounded above by

2 exp

{
−min{δ, 1/50}2

32
n

}
+ 2 exp

{
− 1

64

(
ω

4∥A∥

)2i

δ2t2n

}
. (1.28)

Remark 1.5.5. The equidistribution parameters δ, ω appearing in the above theorem are
typically quite moderate in magnitude and are easy to compute if one can obtain explicit
bounds for certain integrals with respect to the spectral distribution of A. Note that ω ≤ ∥A∥
(by taking T = {0} in Definition 1.5.1) and that ω scales linearly with A. As a result, ω/∥A∥
is typically of constant size independent of n in applications. Since ω/∥A∥ < 1, Theorem
1.5.4 yields concentration for i at most logarithmic in n.

Remark 1.5.6 (Ritz values). Using Weyl’s inequality and the Davis-Kahan theorem (see
Lemmas 1.1.5 and 1.1.6 above) Theorem 1.5.4 can be used to easily obtain concentration
results for the Ritz values and Ritz eigenvectors. We defer this discussion to Sections 5.3.3
and 5.3.4.
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Figure 1.2: Here A is a fixed n× n matrix drawn from the Gaussian orthogonal ensemble (GOE)
with n = 5000. Since the empirical spectral distribution of A will be close to the semicircular law it
is expected that the Jacobi coefficients βi of A will be approximately 1. The above histograms show
the values β0, β10, and β20 obtained by running the Lanczos algorithm 400 times on the input A.
Note that in each of these cases, βi appears to be concentrated.

To the best of our knowledge, there is no previous work studying the concentration
properties of the output of the Lanczos algorithm when the initial vector is taken at random.

Undetected outliers. In Section 5.4 we will show that if k is a certain fraction of log n, the
Ritz values obtained after k iterations are contained in a small blow-up of the convex hull of
the bulk of the spectrum of A, and hence Lanczos fails to detect outlying eigenvalues if only
k iterations are performed. This complements classical guarantees which show that for some
other multiple of log n, say k′, the Lanczos algorithm approximates with high accuracy the
outliers of the spectrum of A when k′ iterations are performed.

Theorem 1.5.7. Suppose the spectrum of A is (δ, ω, j)-equidistributed for some δ, ω > 0
and j ∈ N. Let M be the diameter of the spectrum of A. Let R be a real number and let
0 < c < 1/2, and suppose there are at most m ≤ min{0.02n, 2nα} “outliers,” eigenvalues of
A lying above R, for some α < 1− c. Let g = max1≤i≤n{λi −R} and let κ > 0. Then for up
to

k = min

{
j,

1

2 log M
ω

(
c log n+ log

κδ

2mg

)}
iterations, the probability that the top Ritz value exceeds R + κ is at most

2 exp

{
−min{δ, 1/50}2

32
n

}
+ 2 exp

{
− 1

16
n1−2c

}
for n > e

1
1−c−α .

The strength of the above result might be obscured by the appearance of several unintuitive
parameters. For the reader’s convenience we include Example 1.5.8 below (see also an
asymptotic version of the above result, proven in Section 5.4).



CHAPTER 1. INTRODUCTION 38

0 0.2 0.4 0.6 0.8 1 1.2
0

50

100

150

0 0.2 0.4 0.6 0.8 1 1.2
0

50

100

150

200

Figure 1.3: A is a 2000×2000 diagonal matrix with entries {0, 1/2000, 2/2000, . . . , 1999/2000, 1.1}.
This represents a discretization of Unif([0, 1]) plus an outlier at 1.1. Plotted is a histogram of the
Ritz values output by Lanczos after k = 5 iterations (above) and after k = 10 iterations (below).
To generate the histogram the procedure was run 200 times. Notice that to find the outlier with
a decent probability, 10 iterations suffice (but 5 do not). However, even in the regime of k = 5
iterations the output appears to be concentrated.

Example 1.5.8. Let n > 0 and let A be a matrix whose spectrum consists of n− 1 equally
spaced points from 2/n to 1 inclusive, together with an outlier of value 1.1 (compare with
Figure 1.3). In Section 5.3.1 we will show that for j ≤ n/16 the spectrum of A is (1/4, 4e−2, j)-
equidistributed. In order to apply Theorem 1.5.7, we also note that in this case M = 1.08,
m = 1, and g = 10−1. Take κ = 10−4. Then, for any 0 < c < 1/2, the Ritz values of the
Lanczos algorithm on A after ⌊ 7c

10
log n − 7/2⌋ iterations will be contained in the interval

[2/n, 1 + 10−4] with overwhelming probability.

To put Theorem 1.5.7 into context, we note that a lot has been written on the location
of Ritz values (as a function of the input vector and input matrix). However, most of this
literature is devoted to providing an upper bound on the number of iterations required to
obtain an accurate approximation of outlying eigenvalues (see [94, 118, 135]). Roughly
speaking, previous literature provides inequalities that state that k ≥ C log n iterations suffice
for the Lanczos algorithm to approximate the true extreme eigenvalues of the input matrix
A ∈ Cn×n very well, making the use of O(log n) iterations common in practice (see [100]
or [161] for examples of inequalities that give this bound). The constant C in the results
mentioned above is determined by features of the spectrum of A; typically, these features are
the diameter of the spectrum and the gaps between the outliers and the bulk. In recent years,
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more refined arguments have yielded inequalities in which other features of the spectrum are
considered, see [177] for an example or [24] for a survey.

Regarding negative results, i.e. lower bounds on the number of iterations needed to
detect outliers, the only work we are aware of is [140], where a query complexity bound was
proven for any algorithm that is allowed to make queries of matrix-vector products, which in
particular applies to the Lanczos algorithm.

Asymptotic location of the output. For this discussion the notion of empirical spectral
distribution will be relevant. Given A ∈ Cn×n with eigenvalues λ1, . . . , λn, the empirical
spectral distribution of A is defined to be the probability measure

µ =
1

n

n∑
i=1

δλi .

We will work in the following setting: we consider a probability measure µ and a sequence
of matrices An whose empirical spectral distributions µn converge to µ, and give a result
about the locations of the Ritz values and Jacobi coefficients when at most d

√
log n iterations

are performed, with d depending only on µ and the speed of convergence of the sequence
µn. Essentially, we show that in this regime the Jacobi matrix after k iterations is sharply
concentrated around the kth Jacobi matrix of the measure µ.

Theorem 1.5.9 (Location of Jacobi coefficients). Let (An)
∞
n=1 be a sequence of n × n

Hermitian matrices with uniformly bounded operator norm. Assume their empirical spectral
distributions µn converge in distribution to a measure µ with nontrivial absolutely continuous
part, and further assume Kol(µn, µ) = O(n−c) for some c > 0.19

Then there is a constant d > 0 dependent on µ and c, such that for any sequence of
integers 1 ≤ kn ≤ d

√
log n we have

∥Jkn(u)− Jkn(µ)∥ −→P 0,

where Jkn(u) denotes the Jacobi matrix output by the Lanczos algorithm applied to An under
the input u ∼ Unif(Sn−1)20 after kn iterations, Jkn(µ) is the kn-th Jacobi matrix of the
measure µ, and −→P denotes convergence in probability.

Note that Theorem 1.5.9 may be of particular relevance in applications where an infinite-
dimensional operator is discretized with the goal of computing its density. In essence, Theorem
1.5.9 states that, in this situation, the first iterations of the Lanczos algorithm are an accurate
approximation of the true Jacobi coefficients of the measure µ, and hence the procedure gives
valuable information to recover the limiting measure.

From the above proposition, a standard application of the Weyl eigenvalue perturbation
inequality yields the following proposition (see Figure 1.4).

19Hereafter, for two probability measures ν1 and ν2, we will use Kol(ν1, ν2) to denote the Kolmogorov-
Smirnov distance between the two measures.

20From now on we will use u ∼ Unif(Sn−1) to denote that u is chosen uniformly at random from Sn−1.
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Figure 1.4: A is a fixed n×n matrix drawn from the GOE with n = 2000. Plotted is the histogram
of the Ritz values after 200 repetitions of the Lanczos algorithm with k = 10 iterations. Also plotted
are the roots of the 10th orthogonal polynomial with respect to the (suitably rescaled) semicircle
law, which is the limit of the distribution of eigenvalues for GOE as n→∞.

Proposition 1.5.10 (Location of the Ritz values). Using the same notation as in Theorem
1.5.9, let r⃗kn(u) = (r1(u), . . . , rkn(u)), where r1(u) ≥ · · · ≥ rkn(u) are the random Ritz values
of the Lanczos algorithm after kn iterations are performed. Then under the assumptions in
Theorem 1.5.9, we have that

∥r⃗kn(u)− r⃗kn(µ)∥L∞(Rkn ) −→P 0,

where r⃗kn(µ) is the vector whose entries are the roots of the kn-th orthogonal polynomial with
respect to µ in decreasing order.

Proof techniques

The main tool for showing Theorem 1.5.4 is Levy’s concentration lemma, which roughly
speaking states that if f : Sn−1 → R is a Lipschitz function and u ∼ Unif(Sn−1), then f(u)
is exponentially (in n) concentrated around its median. In view of this, to prove Theorem
1.5.4 it would be enough to show that, on a fixed input matrix A, the Jacobi coefficients
are Lipschitz when viewed as the functions u 7→ αi(u) and u 7→ βi(u) on Sn−1. However,
the functions αi(·) and βi(·) can have singularity points close to which their modulus of
continuity blows up, and therefore this naive approach has no chance of succeeding. Instead,
we will have to recur to the following refinement of Levy’s lemma, which allows one to obtain
concentration results by arguing that the function in question has a controlled Lipschitz
constant on “most” of the sphere.

Lemma 1.5.11 (Local Lévy lemma). Let Ω ⊂ Sn−1 be a subset of measure larger than 3/4.
Let f : Sn−1 → R be a function such that the restriction of f to Ω is Lipschitz with constant L
(with respect to the geodesic metric on the sphere). Then, for every ε > 0,

P[|f(u)− f̃ | > ε] ≤ P[u ∈ Sn−1 \ Ω] + 2 exp{−4nε2/L2},

where f̃ is the median of f(u) and where u ∼ Unif(Sn−1).
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With this lemma in hand, our proof uses elements from the theory of orthogonal poly-
nomials to control the local Lipschitz constant of the functions αi(·) and βi(·) at any given
point in Sn−1. Then, by appealing to basic probability theory arguments, we argue that the
set of “bad points” in Sn−1 (i.e. the points for which the Jacobi coefficients have a large local
Lipschitz constant) have small measure, and by studying the geometry of this bad region we
then argue that locally controlling the Lipschitz constant is enough to ensure a global control
of the Lipschitz constant on the full “good region”.

The techniques from the theory of orthogonal polynomials mentioned above turn out to
be powerful enough that they also allow to understand the locations of the (medians) of the
Jacobi coefficients and Ritz values, and therefore allow us to also prove Theorems 1.5.7 and
1.5.9.

1.6 Overview: Mechanisms and Key Phenomena

From a technical perspective, the proofs of the main results in this dissertation are relatively
sophisticated, and in some cases (specially when dealing with round off errors) they are also
intricate. However, the underlying mechanisms and techniques are conceptually simple and
insightful, so we thought worth it to highlight them in an abstracted explicit manner.

1.6.1 Spectral Measures and the Functional Calculus

In noncommutative probability (which was inspired by quantum mechanics) it is common
to regard linear operators T on a Hilbert space H as (noncommutative) random variables.
In the particular case when T is bounded and normal, and u ∈ H with ∥u∥ = 1, classical
machinery from functional analysis allows one to define a probability distribution supported
on Spec(T ), which we will denote by µT,u, and refer to as the spectral measure of T associated
to u. Moreover, one can define, via the functional calculus, a bounded normal operator f(T )
for any continuous function f : Spec(T )→ C, which satisfies (among other things)

⟨u, f(T )u⟩ =
∫
C
f(x)dµT,u(x),

where ⟨·, ·⟩ denotes the inner product of H. Therefore, once u is chosen, one can identify T
with a (classical) random variable XT distributed as µT,u, and rewrite the above as

E[f(XT )] = ⟨u, f(T )u⟩.

When H is finite dimensional these notions are very concrete: if A ∈ Cn×n is normal with
spectral decomposition A =

∑n
i=1 λiviv

∗
i and u ∈ C with ∥u∥ = 1 then

µA,u(λi) = |u∗vi|2
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is clearly a probability measure (since u has unit norm and the vi are orthogonal), and one
can easily see that

u∗f(A)u =
n∑
i=1

f(λi)|u∗vi|2 =
∫
C
f(x)dµA,u(x),

for any f : Spec(A)→ C.
Now, for bounded nonnormal operators T one no longer has the notion of spectral measure,

but as explained in Section 1.1 there is still the notion of holomorphic functional calculus. In
some instances this will suffice for our algorithm analysis, and in some others we will need to
find a replacement for the notion of spectral measure.

The Lanczos algorithm and orthogonal polynomials. In Chapter 5, to analyze the Lanczos
algorithm on the input matrix A ∈ Cn×n and starting vector u ∈ Cn, we adopt the above
perspective and consider the spectral measure µA,u. It is a well-known fact that the Jacobi
coefficients αi(u) and βi(u) generated by the Lanczos algorithm are the terms appearing
in the three-term recursion (cf. Favard’s theorem) that defines the sequence of orthogonal
polynomials πu0 (x), π

u
1 (x), . . . , π

u
n(x) with respect to µA,u. Moreover, the roots of πuk (x) are

precisely the Ritz values obtained after k iterations of the Lanczos algorithm. In Chapter
5 we exploit these connections in the case when u ∼ Unif(Sn−1) is random, to analyze the
(random) output of the Lanczos algorithm in terms of features of the (random) measure µA,u.

Spectral measures of normal Hessenberg matrices. Given that we have just discussed the
Lanczos algorithm (which assumes the input to be Hermitian) in the context of orthogonal
polynomials, let us extend this discussion to normal matrices, since this is relevant to our
analysis of the QR algorithm. As mentioned in Section 1.5, when the Lanczos algorithm is run
on a self-adjoint matrix A ∈ Cn×n and starting vector u ∈ Cn for n iterations, one obtains the
n× n Jacobi matrix J , which is a symmetric tridiagonal matrix that is unitarily equivalent
to A. Furthermore, it is not hard to see that µJ,en = µA,u, where en = (0, . . . , 0, 1)21. In the
case when A is normal (but not self-adjoint), and one uses the Arnoldi algorithm22 instead,
the output after n iterations will now be an upper Hessenberg matrix H that is unitarily
equivalent to A. Once again, the entries of H will correspond to the recursion coefficients
for the orthogonal polynomials πk(z) with respect to µA,u (the recurrence is no longer a
three-term recurrence), and µA,u = µH,en . Moreover, the quantity

ψk(H) := |hn−k,n−k−1 · · ·hn,n−1|1/k

which we will use to measure progress in the shifted Hessenberg QR algorithm, can be
expressed as ψk(H) = ∥πk(z)∥1/kL2(µH,en )

. Note that from this perspective, it is natural to turn

21Depending on the implementation one either has that µA,u = µJ,e1 or µA,u = µJ,en . Here we have
in mind the implementation that produces the matrix J from bottom to top (i.e. J(n, n) = α0 and
β1 = J(n, n− 1) = J(n− 1, n)) and this corresponds to µA,u = µJ,en .

22The non-Hermitian version of the Lanczos algorithm.
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to ψk(H) as a measure of progress whenever the shifting strategy uses Ritz values, since when
ψk(H) = 0 we get that dµH,en is supported on k eigenvalues of H, which can be seen (from
∥πk(z)∥L2(µH,en )

= 0) to also be the roots of πk(z), i.e. the Ritz values of H obtained after k
iterations of the Arnoldi procedure.

The nonnormal Hessemberg QR algorithm and the approximate functional calculus. Even
if the notion of spectral measure is not defined for nonnormal matrices, one can use the
following substitute motivated by the above discussion. For H ∈ Cn×n a diagonalizable upper
Hessenberg matrix, write H = V DV −1 with V chosen23 so that ∥V ∥ = ∥V −1∥ =

√
κV (H)

and D to be a diagonal matrix with Di,i = λi being the i-th eigenvalue of H. Then let ZH
be the random variable supported on Spec(H), with distribution

P[ZH = λi] =
|e∗nV ei|2

∥e∗nV ∥2

so that P[ZH = λi] = 1 exactly when e∗n is a left eigenvector with eigenvalue λi. From the
above, note that when H is normal, the distribution of ZH is the spectral measure of H
associated to en, and by the functional calculus we have ∥e∗nf(H)∥ = E[|f(ZH)|2]

1
2 . Moreover,

when H is nonnormal, we will still have an approximate version of this identity (see Lemma
4.1.5 and its proof), namely:

∥e∗nf(H)∥
κV (H)

≤ E
[
|f(ZH)|2

] 1
2 ≤ κV (H)∥e∗nf(H)∥.

We will refer to this statement as the approximate functional calculus. The key observation
here, is that when k ≫ log κV (H), then κV (H)1/k ≈ 1, and hence quantities such as the
ψk(H) defined above, which can be represented in the form ∥e∗np(H)∥1/k (for some polynomial
of degree k), admit an approximate analytic representation, namely E[|p(ZH)|2]1/2k.

Spectral bisection and the holomorphic functional calculus. When working with the spectral
bisection algorithm we were able to avoid the use of any measure on the spectrum of the
(nonnormal) matrix in question, but we still heavily relied on the holomorphic functional
calculus as it has been explained above.

1.6.2 The Effect of κV and gap on Convergence and Deflation

As explained in Section 1.1, for A ∈ Cn×n, κV (A) can be used to quantify “how nonnormal
A is” and as an upper bound for the sensitivity of the eigenvalues of A. On the other hand,
to control the sensitivity of the eigenvectors of A, a lower bound on gap(A) is also required.
So it is to be expected that these quantities will appear in some form in the finite arithmetic
analysis of any diagonalization algorithm.

23In the event that there are multiple such choices of V it does not matter which we choose, only that it
remains fixed throughout the analysis.
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Interestingly, when it comes to our analysis of the spectral bisection and the Hessenberg
QR algorithm, κV and gap play an important role even if exact arithmetic is assumed. In
short, κV affects the number of iterations needed for convergence to take place (it follows
that to guarantee quick convergence an upper bound on κV will be required). On the other
hand gap becomes relevant in the deflation step: eigenvalues need to be well separated for a
successful reduction of the problem to take place.

The effect of κV on convergence. Let us start by discussing the spectral bisection algorithm.
As explained in Section 1.3, a key subroutine of this algorithm is Robert’s Newton iteration,
which on an input matrix A produces a sequence of matrices A0 = A,A1, A2, . . . that converge
(in exact arithmetic) to sgn(A). In Chapter 3, to prove convergence in finite arithmetic we
will show that for some suitably chosen decreasing sequence of positive numbers ϵN , the set
ΛϵN (AN) converges (for any reasonable definition of convergence for sets) to the two-point
set {−1, 1}. Importantly, the speed of this convergence is not affected by the size of κV (A),
however, the size of the ϵN is determined by κV (A) and in turn this dependence makes an
appearance on the upper bound on ∥AN − sgn(A)∥ that one can infer as a result of ΛϵN (A)
clustering around {−1, 1} (see Proposition 3.4.8).

In the case of the shifted Hessenberg QR algorithm, the dependence on κV (H) in our
analysis comes from the use of the approximate functional calculus, which as explained above
becomes effective only when applied to polynomials of degree k ≫ κV (H). This forces the
use of high order k polynomial shifts, each of which can be viewed as k steps of degree 1
shifts. Therefore, if speed of convergence is measured in terms of the number of degree 1
QR steps that it takes for decoupling to occur, in our analysis the speed of convergence will
depend (at least logarithmically) on κV .

The effect of gap on deflation. In the case of the spectral bisection algorithm it is apparent
why a lower bound on gap(A) is needed to ensure deflation: if two or more eigenvalues of
the input matrix A lie in the same square grid when it terminates, the spectral bisection
algorithm will only be able to compute the spectral projector corresponding to the span of
the eigenvectors associated to such eigenvalues, and will fail to compute each of the individual
eigenvectors. On the other hand, when the position of the grid is randomized, in order to
have that with high probability no two eigenvalues lie in the same square grid, it is necessary
for gap(A) to be bigger than the resolution of the grid (which ultimately determines the
accuracy of the solution).

When it comes to the QR algorithm, the relevance of gap(H) is more subtle. To
understand this recall what occurs during deflation. If H is a δ-decoupled Hessenberg matrix,
i.e. |hj,j−1| < δ for some j = 2, . . . , n, then H is deflated by setting hj,j−1 to be 0, turning
the matrix into an block upper triangular matrix H ′ from where we can extract the smaller
subproblems H(1) (a j × j Hessenberg matrix) and H(2) (an (n − j) × (n − j) Hessenberg
matrix). Now, as explained above, in order to ensure fast convergence (i.e. rapid decoupling)
for each of the subproblems, we will need an upper bound on κV (H

(1)) and κV (H
(2)), which

will be inherited from an upper bound on κV (H
′). However, the initial assumption is only
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a bound on κV (H), which we would like to translate into a bound on κV (H
′) by exploiting

that ∥H −H ′∥ < δ, and, in view of Proposition 1.1.3 this is possible provided that δ is small
compared to gap(H), which enforces a lower bound on gap(H). Alternatively one can think
of gap(H) as a given quantity, and δ a parameter to be chosen, in which case a smaller gap
eigenvalue gap results in a smaller setting of δ, which in turn forces the algorithm to run
for longer (since the decoupling requirement is stronger) and the required computational
precision to be higher to still obtain meaningful answers at such small scales24.

1.6.3 The Role of Randomness

All of the algorithms analyzed in this dissertation heavily rely on randomness. However, the
goals of randomness and the mechanism behind achieving these goals vary from case to case.

Psedospectral shattering. As it has been discussed already, in the case of the spectral
bisection and the QR algorithms, the eigenvalue condition number and the minimum eigenvalue
gap of the input matrix determine (1) the number of bits of precision required to guarantee
an accurate solution and (2) the speed of convergence of the algorithm and the scale at
which deflation should be performed (which in turn also affects the overall running time of
the algorithm). In order to obtain uniform running time bounds that are satisfied under
general precision requirements independent of the input matrix A ∈ Cn×n, as explained in
Section 1.2, a small random perturbation γMn (of scale γ) is added to A. This guarantees,
with high probability, a polynomial in n and γ−1 upper bound on κV (henceforth denoted as
poly(n, γ−1)) and a poly(1/n, γ) lower bound on gap(A); translating into a polylog(n, γ−1)
upper bound for the number of bits of precision that are required to obtain an accurate output
(both in the spectral bisection and in the QR case), and a polylog(n, γ−1) number of calls to
a matrix-multiplication algorithm (in the case of spectral bisection) or a n · polylog(n, γ−1)
number of calls to an implicit QR algorithm (in the case of the Hessenberg QR algorithm)
for the execution of these algorithms.

Randomized grid and Ritz value perturbation. The number of iterations needed for Robert’s
Newton iteration to converge on the input matrix A depends logarithmically on α−1 for
α(A) := minλ∈Spec(A) |Re(λ)|. As mentioned above, in the implementation of the spectral
bisection algorithm suggested in this dissertation, the position of the grid used to perform
the bisection is randomized in an absolutely continuous way (say by shifting it by a random
complex number taken uniformly in a small disk). The purpose of this is to ensure (by
anti-concentration) that the distance of the grid to the eigenvalues of A is at least η > 0,
with probability 1− O(η/ω) where ω is the length of the side of any of the squares in the
grid. In this way, when the sign function is called as a subroutine of the spectral bisection
algorithm on some matrix A′, we are guaranteed a high probability quantitative lower bound

24Note that the analog of this phenomenon in the case of the spectral bisection algorithm would be to make
the squares in the initial grid smaller, which again would result in slower convergence of the sign function
and a higher required precision.
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on α(A′). This is not only relevant in terms of convergence, but also in terms of numerical
stability (cf. the condition number of the sign function defined in Section 1.3).

Randomness is used in an analogous way in our suggested implementation of the shifted
QR algorithm, where approximate Ritz values (in the sense of Definition 1.4.2) r1, . . . , rk are
used to define the polynomial shifts in the iteration. Here, instead of working directly with
the ri, we will work with r1 + w1, . . . , rk + wk where the wi are random complex numbers
drawn uniformly from a small disk around zero (where the scale of the disk is suitably chosen).
With this, one can guarantee (again by anti-concentration) that with high probability, the
ri +wi will be η away (for some suitable parameter η > 0) from any eigenvalue of the matrix
in question H. The point being, that the condition number of the QR decomposition of a
matrix A is proportional to ∥A−1∥ (see Lemma B.2.8), so to guarantee that the implicit QR
algorithm run on H − s, for a given s ∈ C, will be forward stable one needs some control on
∥(H − s)−1∥; for our main shifting strategy s will be of the form s = ri + wi.

Concentration. In contrast with the use of randomness discussed above, which relies
on anti-concentration, the randomness present in the Lanczos algorithm solely relies on
concentration. Conceptually, the phenomenon that we are exploiting in this case, is that if
A ∈ Cn×n is the input matrix and u ∼ Unif(Sn−1), then µA,u will concentrate around the
empirical spectral distribution of A, so it is to be expected that its Jacobi concentrate as well.

1.7 Future Directions

Regarding the use of a random perturbation of the input matrix to ensure spectral stability,
which was discussed in Section 1.2, there are many natural follow-up (open) random matrix
questions (see [10, Section 7], [40, Conjecture 2.4], [11, Conjecture D.6]). However, perhaps
the one that is most relevant to numerical linear algebra, is if the same pseudospectral
shattering phenomenon is achieved when the random perturbation preserves the structure of
the input matrix. Here we state some concrete questions in this direction.

Problem 1 (Structured random perturbations). Let A ∈ Cn×n be deterministic, γ > 0 and
Mn random. Can one obtain tail bounds on κV (A+ γMn) and gap(A+ γMn) like the ones
given in Proto-Statement 1.2.1 when:

• A is sparse and Mn = Gn ◦ Bn,
25 where Gn is a normalized complex Ginibre matrix

and Bn is an independent matrix of i.i.d. Bernoulli random variables of parameter pn
(determined by the level of sparsity of A)?

• A is an upper Hessenberg matrix and Mn = Gn ◦H, where Gn is a normalized complex
Ginibre matrix and H is a deterministic all-ones upper Hessenberg matrix (i.e. hij = 1
whenever i ≤ j + 1 and hij = 0 otherwise)?

25Where ◦ denotes the Hadamard product.
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• When A is a Toeplitz matrix and Mn is a random Toeplitz matrix with independent
(modulo the Toeplitz structure) complex Gaussian entries of variance 1/n?

Provided that one can find a solution to any of the above questions, do the proof techniques
extend to distributions that are not complex Gaussian?

Recall, from Section 1.3, that our algorithm analysis of the spectral bisection algorithm
shows that the eigenvalue problem can be solved in nearly matrix-multiplication time. This
raises the natural (to the best of our knowledge open) question of if this is a nearly optimal
upper bound on the running time.

Problem 2 (Complexity of diagonalization). Is the bit complexity of the eigenvalue problem
(in the sense of Definition 1.1.1) lower bounded by that of stable matrix-multiplication?

As discussed in Section 1.4, our analysis of the shifted QR algorithm, which produces a
sequence of Hessenberg matrices H0, H1, H2, . . . , requires reasoning about the subdiagonal
entries of Hn+1 in terms of Hn, which in turn requires having forward stability guarantees for
each (degree k) implicit QR step. The latter forces one to use higher precision computations,
resulting in the Ω(log2(n/(δϕ)) log log(n/(δϕ))) bits of precision required to obtain a solution
to the eigevalue problem with accuracy δ and probability of success 1−ϕ. This motivates the
following question, whose solution would presumably require an essentially different approach.

Problem 3 (Optimal precision for the QR algorithm). Is there a shifting strategy for
the QR algorithm, for which one can prove the same guarantees as above assuming only
O(log(n/(δϕ))) bits of precision?

Finally, we bring to the attention of the reader the block Lanczos algorithm [159, 78, 135],
which is a commonly used extension of the Lanczos algorithm. Interestingly, for this block
version there is a connection with matrix-valued orthogonal (with respect to a matrix-valued
measure) polynomials on the real line. Given this connection, the techniques presented in
Chapter 5 suggest an approach for analyzing the block Lanczos algorithm, although new
ideas and additional substantial work would be needed to extend those techniques to the
matrix-valued case.

Problem 4 (Block Lanczos). Can analogous results to those discussed in Section 1.5 be
obtained in the analysis of the block Lanczos algorithm?
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Chapter 2

Spectral Stability Under Random
Perturbations

In this chapter we will prove the results discussed in Section 1.2. Throughout the chapter Mn

will be an n× n real random matrix satisfying Assumption 1.2.3. And, for the sake of clarity,
we will use boldface to denote random quantities and distinguish them from deterministic
ones.

Before delving into details we remind the reader that, although R has Lebesgue measure
zero inside C, non-normal real random matrices can have real eigenvalues (in fact many) with
high probability (see [63]). Moreover, we will see that the behavior of the real eigenvalues will
differ from that of the truly complex ones, and we will have to handle them separately. In
particular, to prove Theorem 1.2.6 mentioned above, will the following separate tail bounds
for the eigenvalue condition numbers of real and complex eigenvalues.

Theorem 2.0.1 (Eigenvalue and Eigenvector Condition Numbers). Let n ≥ 9. Let A ∈ Rn×n

be deterministic, and let Mn satisfy Assumption 1.2.3 with parameter K > 0. Let 0 < γ <
Kmin{1, ∥A∥+R}, and write λ1, ...,λn for the eigenvalues of A+ γMn. Let R > E∥γMn∥.
Then for any ϵ1, ϵ2 > 0, with probability at least

1− 2ϵ1 −O

(
R(R + ∥A∥)3/5K8/5n14/5ϵ

3/5
2

γ8/5

)
− 2P[γ∥Mn∥ > R],

we have ∑
λi∈R

κ(λi) ≤ ϵ−1
1 C2.0.1Kn

2∥A∥+R

γ
,

∑
λi∈C\R

κ(λi)
2 ≤ ϵ−1

1 log(1/ϵ2)C2.0.1K
3n5 · (∥A∥+R)3

γ3
, and

κV (A+ γMn) ≤ ϵ−1
1

√
log(1/ϵ2)C2.0.1K

3/2n3 · (∥A∥+R)3/2

γ3/2
,



CHAPTER 2. SPECTRAL STABILITY UNDER RANDOM PERTURBATIONS 49

Similarly, it will not be enough to have the upper bound given in Theorem 1.2.10 for the
tails of the smallest singular values of complex shifts z−Mn, but we will also have to handle
real shifts separately. To this end we will also show the following.

Theorem 2.0.2 (Singular Values of Mn). Let Mn ∈ Rn×n be a random matrix satisfying
Assumption 1.2.3 with parameter K > 0. Then

P [σn−k+1(Mn) ≤ ϵ] ≤
(
n

k

)(√
2Kϵ

√
kn(n− k + 1)

)k2
≤ nk

2+kk
1
2
k2(
√
2K)k

2

ϵk
2

.

Note that Theorem 2.0.2 includes as a special case matrices of type z − (A+ γMn) for
real z and A, as such matrices themselves satisfy Assumption 1.

2.1 Related Work

2.1.1 Eigenvalue condition numbers

In the physics literature, the eigenvalue condition numbers of some diagonalizable A ∈ Cn×n

are referred to as the (diagonal) overlaps of A. More in general, the n× n overlap matrix of

A =
n∑
i=1

λiviw
∗
i ,

is defined as O(A)i,j = v∗j viw
∗
jwi, so that O(A)i,i = κ(λi)

2.
For complex Ginibre matrices, much is known about diagonal overlaps and off-diagonal

overlaps. In the seminal work of Chalker and Mehlig [38] explicit formulas were given for
the limiting expected overlaps as n→∞, conditioned on the locations of the participating
eigenvalues. Since then there has been significant progress; here we mention a few recent
milestones. In [30], a formula for the limiting distribution of the diagonal overlaps was proved,
as well as asymptotic formulas for the expected value of all overlaps, and for correlations
between overlaps. Using a different approach, in [70], an explicit nonasymptotic formula for
the joint density of an eigenvalue and its diagonal overlap was proved.

For the real Ginibre ensemble, results are more limited. The same paper [70] gives an
analogous joint density formula for real Ginibre matrices, but only for real eigenvalues.1

Compared to a joint density formula, our Theorem 2.0.1 (a polynomial upper bound with
high probability) is rather coarse, but our theorem holds for general random matrices with
absolutely continuous entries. More recent work [40] gave an optimal bound for the tails of
the diagonal overlaps of the complex eigenvalues of a real Ginibre matrix.

As mentioned in Section 1.2, in [15] tail bounds for the diagonal overlaps of Mn = A+γGn

where obtained in the case where Gn is a complex Ginibre matrix. And similar results can

1Fyodorov [70] writes: “The approach suggested in the present paper can be certainly adjusted for
addressing overlaps of left/right eigenvectors corresponding to complex eigenvalues of the real Ginibre
ensemble, although in this way one encounters a few challenging technical problems not yet fully resolved.”



CHAPTER 2. SPECTRAL STABILITY UNDER RANDOM PERTURBATIONS 50

be obtained from the integration formulas provided in [4]. Finally, we discuss the concurrent
work of Jain, Sah and Sawhney [93]:

Concurrent and Independent Work. After completing [10], we learned of the independent
work [92] which obtains results similar to ours regarding the eigenvector condition number
and minimum eigenvalue gap. Their bound on κV improves Theorem 1.2.6 by a factor of
O(n/(

√
γ log(n/γ))), thus almost matching the dependence on γ in Davies’ conjecture [45];

their bound on the minimum eigenvalue gap is also better than that supplied by Theorem
1.2.5 by a poly(n/γ) factor. They do not obtain specific control on the κ(λi) for real and
complex λi separately, and our bound for the sum of the real κ(λi) in Theorem 2.0.1 implies
a bound for the maximum which is slightly better than their κV bound alone.

The techniques used by both papers focus on deriving tail bounds for the least singular
value with the correct scaling in ϵ, but the proofs are essentially different. In particular, our
proof relies on studying the entries of the resolvent, whereas theirs is more geometric. We
obtain bounds on the kth smallest singular values of real and complex shifts (Theorems 2.0.2
and 1.2.10) with the correct ϵk

2
and ϵ2k

2
scaling, whereas they derive bounds for k = 1, 2,

but with better dependence on n.
They do not take the limit as ϵ→ 0 to derive bounds on κV (Mn), relying instead on a

bootstrapping scheme, while we do.

2.1.2 Singular Values of Real Matrices with Complex Shifts.

As already discussed in Section 1.2, in the Ph.D. thesis of Ge [73] it was shown that when
Mn is a real matrix with i.i.d. entries of mean zero and variance 1/n satisfying a standard
anticoncentration condition, one has

P [σn(Mn − z) ≤ ϵ and ∥Mn∥ ≤ R] ≤ Cn2ϵ2

| Im(z)|
+ e−cn (2.1)

for all z, where R,C and c are universal constants, independent of n. It is important to
remark here, that the additional exponential term is an essential feature of the proof technique
of considering “compressible” and “incompressible” vectors in a net argument, and does not
go away if one additionally assumes that the entries are absolutely continuous.

In the case of real Ginibre matrices, the following finer result was obtained by Cipolloni,
Erdös and Schröder in [42]:

P [σn(Gn − z) ≤ ϵ] ≤ C(n2(1 + | log ϵ|)ϵ2 + nϵe−
1
2
n(Im z)2) (2.2)

for |z| ≤ 1 +O(1/
√
n), with an improved n-dependence at the edge |z − 1| = O(1/

√
n). In

later work [41], the same authors showed that when Mn has real i.i.d. entries with unit
variance and | Im z| ∼ 1, the statistics of the small singular values z −Mn agree with those
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Result Bound Setting

[62] P[σn(Mn) < ϵ] ≤ nϵ real Ginibre
[133] P[σn(Mn) < ϵ] ≤ Cnϵ+ e−cn real i.i.d. subgaussian
[150] P[σn(Mn) < ϵ] ≤ nϵ+O(n−c) real i.i.d., finite moment assumption
[137] P[σn(A+Mn) < ϵ] ≤ Cnϵ real Ginibre, A real
[153] P[σn(A+Mn) < ϵ] ≤ Cnϵ real ind. rows with log-concave law, A real
[15] P[σn(A+Mn) < ϵ] ≤ nϵ real Ginibre, A real

Table 2.1: Some bounds on σn for real Mn and A. Entries of Mn have variance 1/n.

of the complex Ginibre ensemble.2 And in more recent work [40] they improved the bound
given in (2.2).

As remarked in Section 1.2, the key feature of our bounds is that we obtain a strict ϵ2

dependence for nonreal z, without any additive terms. Our approach is essentially different
from the above two approaches, and relies on exploiting a certain conditional independence
(Observation 2.5.2) between submatrices of the real and imaginary parts of the resolvent.

2.1.3 Singular Values of Real Matrices with Real Shifts.

In the more general non-Gaussian case, there are a number of recent results in the literature.
The most relevant recent result is that of Nguyen [116], who proves a tail bound for all singular
values for non-centered ensembles with potentially discrete entries. In the particular case
of continuous entries, Nguyen shows that if Mn satisfies Assumption 1.2.3 with parameter
K > 0,

P [σn−k+1(Mn) ≤ ϵ] ≤ nk(k−1)(CkKϵ)(k−1)2 , (2.3)

in addition to a bound greatly improving the dependence in k at the expense of the dependence
on ϵ and n, as well as results for symmetric Wigner matrices and perturbations thereof.

The exponent of ϵ in (2.3) is suboptimal, which renders (2.3) incompatible with the
approach outlined in Section 1.2. Below, in Theorem 2.0.2 we will obtain the optimal
exponent of ϵ, namely k2, in exchange for a worse exponent of n. The key ingredient in doing
this is a simple “restricted invertibility” type estimate (Lemma 2.4.1) tailored to our setting.

For bounds on the least singular value alone, there is a substantial literature; see Table
2.1 for a non-exhaustive summary.

2They further write, “It is expected that the same result holds for all (possibly n-dependent) z as long
as | Im(z)| ≫ n−1/2, while in the opposite regime | Im(z)| ≪ n−1/2 the local statistics of the real Ginibre
prevails with an interpolating family of new statistics which emerges for | Im(z)| ∼ n−1/2.”
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2.1.4 Minimum Eigenvalue Gap

Bounds on the minimum eigenvalue gap of random non-Hermitian matrices have seen rapid
progress in the last few years. Ge shows in the thesis [73] that when Mn has i.i.d. entries
with zero mean and variance 1/n, satisfying a standard anticoncentration condition,

P[gap(Mn) < s] = O

(
δn2+o(1) +

s2n4+o(1)

δ2

)
+ e−cn + P[∥Mn∥ ≥ R]

for every C > 0 and every δ > s > n−C . In more recent work, Luh and O’Rourke [106] build
on Ge’s result, dropping the mean zero assumption and extending the range of s all the way
down to 0:

P[gap(Mn) ≤ s and ∥Mn∥ ≤M ] ≤ Cs2/3n16/15 + Ce−cn + P[∥Mn∥ ≥M ]. (2.4)

However, (2.4) still requires the entries of Mn to be identically distributed, so, for example,
it does not imply a gap bound for the noncentered Ginibre ensemble A+Gn unless A is a
scalar multiple of the all-ones matrix.

In our work [11] (which will be discussed in Chapter 3), a complex Gaussian perturbation
was crucially used in a preprocessing step in a numerically stable diagonalization algorithm
for non-Hermitian matrices. This paper identified the minimum eigenvalue gap as a key
feature controlling the stability of the algorithm, and proved:

Theorem 2.1.1 ([11, Corollary 3.7]). Suppose A ∈ Cn×n with ∥A∥ ≤ 1, and Gn is a
normalized complex Ginibre matrix. For every δ ∈ (0, 1/2),

P[gap(A+ δGn) < s] ≤ 42(n/γ)16/5s6/5 + 2e−2n.

Each of the gap results above are proved by way of tail bounds on the smallest two
singular values of z −Gn. The only other work we are aware of proving gap bounds for the
case of matrices with i.i.d. entries is [139], which proves an inverse polynomial lower bound
for the complex Ginibre ensemble.

2.2 Probabilistic Preliminaries

Many of our probabilistic arguments hinge on the phenomenon of anticoncentration, whereby
a random vector is unlikely to lie in a small region. An elementary way to extract quantitative
information about such behavior is by controlling the density function of the random vector.
Let x ∈ Rd be a random vector with absolutely continuous distribution with respect to the
Lebesgue on Rd, and let fx be its density. We will denote

δ∞(x) := ∥fx∥∞ (2.5)
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We will repeatedly use two basic observations about the quantity δ∞. First, for any v ∈ Rd,

P [∥x− v∥ ≤ ϵ] ≤ (πϵ2)d/2

Γ(d/2 + 1)
δ∞(x) ≤ 1√

πd

(
2eπϵ2

d

)d/2
δ∞(x), (2.6)

where in the first inequality we use the formula for the volume of a ball in Rd, and in the
second inequality we use Stirling’s approximation for the gamma function. Second, δ∞ is
preserved under convolution:

Observation 2.2.1 (Convolution Bound). Let x,y ∈ Rd be independent random vectors
with absolutely continuous distributions. Then

δ∞(x+ y) ≤ min{δ∞(x), δ∞(y)}.

We will require as well a much more general result of Rudelson and Vershynin quantifying
the deterioration of δ∞ after orthogonal projection.3

Theorem 2.2.2 ([132]). Let x ∈ Rd have independent entries, each with density pointwise
almost surely bounded by K. Let P ∈ Rk×d denote a deterministic orthogonal projection onto
a subspace of dimension k ≤ d. Then there exists a universal constant CRV > 0 such that

δ∞(Px) ≤ (CRVK)k.

In [104], it is shown that Theorem 2.2.2 holds with CRV =
√
2, and that this is sharp.

Moreover, if x has independent standard real Gaussian entries, one may take CRV = 1 and
K = (2π)−1/2.

Many of our results on real random matrices whose independent entries have bounded
density—in other words, matrices satisfying Assumption 1.2.3—can be strengthened for real
Ginibre matrices, mainly via the use of results in [143] and [147]. In this dissertation we
will focus on the general case and refer the reader to [10] for improved bounds of the results
presented here in the particular case when the entries are Gaussian.

2.3 Anticoncentration for Quadratic Forms

In this section we study the anticoncentration properties of certain quadratic functions of
rectangular matrices with independent entries. These will be necessary in Section 3 to extract
singular value tail bounds.

Theorem 2.3.1 (Density of Quadratic Forms). Assume that X,Y ∈ Rn×k are random
matrices with independent entries, each with density on R bounded a.e. by K > 0. Let

3Throughout the chapter, we will refer to a rectangular matrix with orthonormal columns as an “orthogonal
projection” although this is not standard.
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Z ∈ Rn×n, U, V ∈ Rn×k, and W ∈ Rk×k be deterministic, and write q(X,Y ) := X⊺ZY +
X⊺U + V ⊺Y +W . Then

δ∞ (q(X,Y )) ≤ (1 + k2)

(
2K2
√
2eπk min

j>k2+k+1

1√
j − k + 1σj(Z)

)k2
.

Whenever σj(Z) is zero, we interpret 1/σj(Z) =∞; thus the above theorem has content
only when rank(Z) > k2 + k + 1. Before proving the above theorem let us begin with some
observations that we will use in the proof to come.

Lemma 2.3.2. Consider measurable functions f : Rp × Rq → Rr and c : Rq → R≥0. Let
x ∈ Rp and y ∈ Rq be independent random vectors with densities bounded almost everywhere.
Assume that for almost all y ∈ Rr it holds that δ∞ (f(x, y)) ≤ c(y). Then

δ∞ (f(x,y)) ≤ E[c(y)].

Proof. Let LebRr denote the Lebesgue measure on Rr. Note that it is enough to show that
for every measurable set E ⊂ Rr one has

P[f(x,y) ∈ E] ≤ LebRr(E)E[c(y)].

On the other hand, by assumption, we have P[f(x, y) ∈ E] ≤ LebRr(E)c(y) for all y. From
the fact that x and y are independent and have a density it follows that

P[f(x,y) ∈ E] = E[1 {f(x,y) ∈ E}] = E [E [1 {f(x,y) ∈ E} |y]] ≤ E [LebRr(E)c(y)] ,

as we wanted to show.

We will also require the following left tail bound on the smallest singular value of certain
rectangular random matrices, which is a consequence of Theorem 2.2.2.

Lemma 2.3.3. Let Y be a n× k random matrix whose entries are independent and have
density on R bounded a.e. by K > 0. Furthermore, for some k ≤ j ≤ n let V be a j × n
projector. Then

P[σk(V Y ) ≤ s] ≤ k
(
√
2K
√
πks)j−k+1

Γ((j − k + 3)/2)
:= Cj,ks

j−k+1 (2.7)

Proof. Let y1, . . . ,yk be the columns of Y and for every i = 1, . . . , k letW i be the (j−k+1)×j
orthogonal projector onto the subspace orthogonal to the span of {V yl}l ̸=i. Applying the
“negative second moment identity” [151], we have

k

(
min
i∈[k]
∥W iV yi∥

)−2

≥
k∑
i=1

∥W iV yi∥−2 ≥
k∑
i=1

σi(V Y )−2 ≥ kσk(V Y )−2,
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which implies

σk(Y ) ≥ mini ∥W iV yi∥√
k

.

Since W iV is itself an orthogonal projector, and is independent of yi, Theorem 2.2.2 and
Observation 2.3.2 ensure that the density of ∥W iV yi∥ is bounded by (

√
2K)j−k+1. Applying

a union bound and recalling again the formula for a ball,

P[σk(Y ) ≤ s] ≤ P[min
i
∥W iV yi∥ ≤

√
ks] ≤

k∑
i=1

P[∥W iV yi∥ ≤
√
ks] ≤ k

(
√
2K
√
πks)j−k+1

Γ((j − k + 3)/2)
.

With these two tools in hand, we can proceed with the proof of the main result of this section.

Proof of Theorem 2.3.1. For any deterministic Y ∈ Rn×k one has

δ∞(q(X, Y )) = δ∞(XT (ZY + U)),

since δ∞ is agnostic to deterministic translations. By the polar decomposition we can write
ZY + U = V S, where V ∈ Rn×k is a partial isometry and S ⪰ 0. By Theorem 2.2.2, the
density of the random matrix X⊺V in Rk×k is at most (

√
2K)k

2
, and thus the density of

X⊺V S is at most (
√
2K)k

2
(detS)−k; moreover

detS =
k∏
i=1

σi(S) =
k∏
i=1

σi(ZY + U).

Therefore by Lemma 2.3.2,

δ∞(q(X,Y )) ≤ (
√
2K)k

2E

[∏
i∈k

σi(ZY + U)−k

]
. (2.8)

We now compute this expectation.
Choose j ≥ k so that σj(Z) > 0, and write the SVD of Z in the following block form,

Z = P TΣQ =
(
P ⊺
1 P ⊺

2

)(Σ1

Σ2

)(
Q1

Q2

)
, (2.9)

where Σ1 is a diagonal matrix containing the largest j singular values, and P,Q are orthogonal
matrices. This gives

ZY + U =
(
P ⊺
1 P ⊺

2

)(Σ1Q1Y + P1U
Σ2Q2Y + P2U

)
.
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By interlacing of singular values, σi(ZY + U) ≥ σi(Σ1Q1Y + P1U) for each i = 1, ..., k, so
we are free to study

E

∏
i∈[k]

σi(Σ1Q1Y + P1U)
−k

 ≤ σj(Σ1)
−k2E

∏
i∈[k]

σi(Q1Y + Σ−1
1 P1U)

−k

 . (2.10)

Now, since Q1 is a partial isometry, we can select a matrix Ũ so that Q1Ũ = Σ−1
1 P1U ,

and observe that

E
∏
i∈[k]

σi(Σ1Q1Y + P1U)
−k ≤ σj(Z)

−k2σk(Q1(Y + Ũ))−k
2

.

The random matrix Y + Ũ satisfies the conditions of Lemma 2.3.3, so we can apply the tail
formula for expectation to obtain

E
[
σk(Q1(Y + Ũ))−k

2
]
=

∫ ∞

0

P
[
σk(Q1(Y + Ũ))−k

2 ≥ t
]
dt

≤ λ+ Cj,k

∫ ∞

λ

t−
j−k+1

k2 dt Cj,k from (2.7)

= λ+ Cj,k
k2

j − k2 − k + 1
λ

k2+k−j−1

k2 if j − k + 1 > k2.

Optimizing the above bound in λ, we set λ = C
k2

j−k+1

j,k and evaluate Cj,k to find

E
[
σk(Q1(Y + Ũ))−k

2
]

≤

(
k(
√
2K
√
πk)j−k+1

Γ((j − k + 3)/2)

) k2

j−k+1 (
1 +

k2

j − k2 − k + 1

)

≤(
√
2K
√
πk)k

2

(
k

Γ((j − k + 3)/2)

) k2

j−k+1

(1 + k2) j − k + 1 > k2

≤(
√
2K
√
πk)k

2

(
k√

π(j − k + 1)

) k2

j−k+1
( √

2e√
j − k + 1

)k2

(1 + k2) Stirling

≤

(√
2K
√
2eπk√

j − k + 1

)k2

(1 + k2) j − k + 1 > k2

where we have repeatedly used that j − k + 1 > k2, as well as Stirling’s approximation,
Γ(z + 1) ≥

√
2πz(z/e)z, valid for real z ≥ 2. To complete the proof, we combine the above

with equation (2.8).
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To end this section, we offer an improvement of the above result for the case k = 1.

Corollary 2.3.4. In the case k = 1, the conclusion of Theorem 2.3.1 may be improved to

δ∞ (q(X,Y )) ≤ 2(CRVK)2
√
2eπmin

j≥2

1√
j
∏

i∈[j] σi(Z)
1/j
.

Where CRV =
√
2.

Proof. The discussion between equations (2.8) and (2.10) in this case tells us

δ∞((q(X,Y )) ≤
√
2KE

[
∥Σ1Q1Y + P1U∥−1

]
.

The random vector Σ1Q1Y +P1U has density on Rj bounded by (
√
2K)j detΣ−1

1 , so we have
the tail bound

P [∥Σ1Q1Y + P1U∥ ≤ s] ≤ detΣ−1
1

(
√
2K
√
πs)j

Γ(j/2 + 1)
= detΣ−1

1 · Cj,1sj.

Replacing in the remainder of the proof Cj,k with detΣ−1
1 Cj,1, and recalling detΣ1 =

σ1(Z) · · ·σj(Z), will give

δ∞ (q(X,Y )) ≤
√
2KE

[
∥Σ1Q1Y + P1U∥−1

]
≤ 2

(
√
2K)2

√
2eπ√

j
∏

i∈[j] σi(Z)
1/j

whenever j ≥ 2.

We believe that Theorem 2.3.1 should hold, for every k, with the jth singular value of Z
exchanged for the geometric mean of the top j. The main obstacle in showing this seems to
be that Theorem 2.2.2 cannot tightly bound the density of Ay, where y ∈ Rn is a random
vector with independent entries and bounded density, and A ∈ Rn×k is an arbitrary matrix.

2.4 Singular Value Bounds for Non-Centered Real

Matrices

In this section, we discuss singular value tail bounds for real matrices with independent
absolutely continuous entries. In particular, our study of minimum eigenvalue gap and
eigenvalue condition numbers will require tail bounds on the least two singular values for
shifted random matrices of the form z − (A + Mn), where z ∈ R and A ∈ Rn×n are
deterministic, and Mn satisfies Assumption 1.2.3.

For matrices with i.i.d. subgaussian entries, results similar to the tail bounds in (1.17)
are known, but they are accompanied by additive error terms of the form e−cn and therefore
do not yield useful results in the limit as the tail parameter ϵ goes to zero. The closest result
to ours appears in a paper of Nguyen [116]; it excises the additive error terms, but contains a
sub-optimal exponent on ϵ. We will add one key insight to Nguyen’s proof that allows one to
obtain the correct ϵ-dependence.
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2.4.1 A Restricted Invertibility Lemma

The device we add to Nguyen’s argument, and which we will return to at several points
throughout the chapter, is the following lemma, which shows that the kth largest eigenvalue
of a PSD matrix is approximately witnessed by the smallest eigenvalue of some principal
k×k submatrix. Given a matrix A ∈ Cn×n and S, T ⊂ [n] we use AS,T to denote the |S|× |T |
matrix determined by looking at the intersection of the rows of A with indices in S with the
columns with indices in T .

Lemma 2.4.1 (Principal Submatrix with Large σk). Let X ∈ Cn×n \ {0} be positive semidef-
inite. Then for every 1 ≤ k ≤ n, there exists an k × k principal submatrix XS,S such
that

λk(XS,S) ≥
Tr(X)∑k
i=1 λi(X)

· λk(X)

k(n− k + 1)
. (2.11)

Proof. Examining the coefficient of λk in the characteristic polynomial det(λ−X), we have∑
|S|=k

detXS,S = ek(λ1(X), λ2(X), . . . , λn(X)),

where ek denotes the k-th elementary symmetric function, and the sum runs over subsets of
[n]. We may now have the upper bound:

ek(X) =
∑
|S|=k

det(XS,S)

=
∑
|S|=k

λk(XS,S)λk−1(XS,S) . . . λ1(XS,S)

≤
∑
|S|=k

λk(XS,S)ek−1(XS,S) since λi(XS,S) ≥ 0 by interlacing

≤ max
S

λk(XS,S) ·
∑
|S|=k

∑
T⊂S,|T |=k−1

det(XS′,S′)

= max
S

λk(XS,S) · (n− k + 1)ek−1(X).

It now remains to furnish a complementary lower bound on ek(X) in terms of ek−1(X). Recall
the routine fact that

kek(X) = k
∑
|S|=k

∏
i∈S

λi(X) =
∑

|T |=k−1

∑
j /∈T

λj(X)
∏
i∈T

λi(X).

Now, for each |T | = k − 1,

∑
j∈[k]

λj(X)
∑
ℓ/∈T

λℓ(X) =
∑
j∈[k]

λj(X)

(
e1(X)−

∑
j∈T

λj(X)

)



CHAPTER 2. SPECTRAL STABILITY UNDER RANDOM PERTURBATIONS 59

= λk(X)e1(X) +

 ∑
j∈[k−1]

λj(X)

 e1(X)−

(∑
j∈T

λj(X)

)∑
j∈[k]

λj(X)


≥ λk(X)e1(X),

since
∑

j∈[k−1] λj(X) ≥
∑

j∈T λj(X), and e1(X) ≥
∑

j∈[k] λj(X). Thus

k
∑
j∈[k]

λj(X) · ek(X) ≥
∑

|T |=k−1

λk(X)e1(X)
∏
i∈T

λi(X) = λk(X)e1(X)ek−1(X).

Putting everything together, and recalling e1(X) = TrX,

max
S

λk(XS,S) ≥
ek(X)

(n− k + 1)ek−1(X)
≥ Tr(X)∑

i∈[k] λi(X)

λk(X)

k(n− k + 1)

as desired.

We will employ Lemma 2.4.1 in the form of the corollary below.

Corollary 2.4.2. Let 1 ≤ k ≤ n. For every matrix R ∈ Cn×k, there exists a k× k submatrix
Q of R such that

σk(Q) ≥
σk(R)√

k(n− k + 1)
. (2.12)

Similarly, for every matrix A ∈ Cn×n, there are subsets S, T ⊂ [n] of size k such that

σk(AS,T ) ≥
∥A∥F√∑
i∈[k] σi(A)

2

σk(A)

k(n− k + 1)
≥ σk(A)

k(n− k + 1)
(2.13)

This generalizes the elementary fact that the operator norm of an n× n matrix is bounded
above by n times the maximal entry. Corollary 2.4.2 additionally sits within a much larger
literature on restricted invertibility ; see [114] for a comprehensive introduction. Most notably,
the main result in [75] states that for any R ∈ Cn×k of rank k, there exist a k × k submatrix
Q of R, such that

1∑k
i=1 σi(Q)

−2
≥ 1

(n− k + 1)
∑k

i=1 σi(R)
−2
. (2.14)

Note that neither (2.12) implies (2.14) nor (2.14) implies (2.12). However, from (2.12) one
can derive an inequality very similar to (2.14) that has a slightly weaker dependence on k,
and vice versa. The proof in [75] shares some features with our proof of Lemma 2.3.3, but
differs in that it does not exploit the fact that coefficients of the characteristic polynomial
can be written both in terms of the eigenvalues and in terms of the entries of the matrix.
This allows us to obtain a result for general n× n matrices, namely (2.13), which is not clear
how to obtain from (2.14).
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2.4.2 Proof of Theorem 2.0.2

Finally, we may prove the desired tail bound:

Proof of Theorem 2.0.2. We give a similar argument to that of Nguyen [116], but using
Corollary 2.4.2 where Nguyen uses the restricted invertibility theorem of [114].

Suppose σn−k+1(Mn) ≤ ϵ. By the minimax formula for singular values, there exist
orthogonal unit vectors z1, . . . ,zk ∈ Rn such that ∥Mnzi∥ ≤ ϵ. Letting Z ∈ Rn×k be the
matrix whose columns are z1, . . . ,zk, we can bound ∥MnZ∥F ≤ ϵ

√
k. Since σk(Z) = 1, by

Corollary 2.4.2, there is a k × k submatrix Z1 of Z for which

∥Z−1
1 ∥ ≤

√
k(n− k + 1).

Denote by Z the subset of rows of Z participating in Z1; by permuting if necessary we can
write

Z =

(
Z1

Z2

)
and Mn =

(
M 1 M 2

)
,

observing that

MZZ−1
1 =

(
M 1 M 2

)(Z1

Z2

)
Z−1

1 = M 1 +M 2Z2Z
−1
1 . (2.15)

Denote the columns of Mn by m1, . . . ,mn and let H denote the orthogonal projector
onto the k-dimensional subspace orthogonal to the span of {mi}i ̸∈S, so that HM 2 = 0.
Thus we have∑

i∈S

∥Hmi∥2 = ∥HMZZ−1
1 ∥2F ≤ ∥MnZZ−1

1 ∥2F ≤ ∥MnZ∥2F∥Z−1
1 ∥2 ≤ ϵ2k2(n− k + 1).

Since the entries of Mn are independent, with densities on R bounded by
√
nK, by Theorem

2.2.2 the above event occurs with probability at most

k∏
i=1

P
[
∥Hmi∥ ≤ ϵk

√
n− k + 1

]
<
(√

2K
√
n · ϵ

√
k(n− k + 1)

)k2
.

Performing a union bound over all possibilities for the subset S of rows of Z, we finally
obtain

P [σn−k+1(Mn) ≤ ϵ] ≤
(
n

k

)(√
2Kϵ

√
kn(n− k + 1)

)k2
≤ nk

2+kk
1
2
k2(
√
2K)k

2

ϵk
2

.

Comparing with the tail bounds in (1.17), we conclude that the exponent of ϵ in Theorem
2.0.2 is optimal, and if not for the factor of

(
n
k

)
arising from the union bound, the exponent

of n would be optimal as well. Since we made no requirement that Mn is centered, the
following corollary is immediate:



CHAPTER 2. SPECTRAL STABILITY UNDER RANDOM PERTURBATIONS 61

Corollary 2.4.3. Let z ∈ R and A ∈ Rn×n be deterministic, and Mn satisfy Assumption
1.2.3 with parameter K > 0. Then

P[σn−k+1(z − (A+Mn)) ≤ ϵ] ≤ n
1
2
k2+kk

1
2
k2(
√
2K)k

2

ϵk
2

.

2.5 Singular Value Bounds for Real Matrices with

Complex Shifts

As mentioned above, in order to control the eigenvalue gaps and pseudospectrum of random
real perturbations, we need to understand the smallest singular values of real random matrices
with complex scalar shifts, so our main goal of this section will be to prove Theorem 1.2.10.

As discussed in the introduction, our results will be stated in terms of the quantities

BMn,p := [E∥Mn∥p]1/p ,

and important features of the bounds in our context are (1) the optimal dependence on ϵ
as ϵ→ 0, and (2) the factor 1

| Im z| controlling the necessary deterioration of the bound as z
approaches the real line.

2.5.1 Proof of Theorem 1.2.10

In view of Corollary 2.4.2, we can study the kth smallest singular value of z − (A+Mn) by
examining the smallest singular value of every k×k submatrix of its inverse. In particular, we
will show momentarily that Theorem 1.2.10 may be reduced to the following lemma, which
we will prove in Section 2.5.2.

Lemma 2.5.1 (Tail bound for corner of the resolvent). Let δ ∈ R, let U be a permutation
matrix, and let Mn satisfy Assumption 1.2.3 with parameter K > 0. Denote the upper-left
k × k corner of (δiU −Mn)

−1 by N k. If n ≥ (k + 2)2,

P [σk(N k) ≥ 1/ϵ] ≤ (1 + k2)

(
8
√
3(eπ)3/2K3n

ϵ2

|δ|

)k2
E
[(
∥Mn∥2 + δ2

)k2]
. (2.16)

We now show that Lemma 2.5.1 implies Theorem 1.2.10. The proof of Lemma 2.5.1 is
deferred to Section 2.5.2 and is the main technical work of the proof.

Proof of Theorem 1.2.10 assuming Lemma 2.5.1. Applying Corollary 2.4.2 and a union bound,

P [σn−k+1(z − (A+Mn)) ≤ ϵ]

=P
[
σk
(
(z − (A+Mn))

−1
)
≥ 1/ϵ

]
≤P
[

max
S,T⊂[n],|S|=|T |=k

σk
(
(z − (A+Mn))

−1
S,T

)
≥ 1

k(n− k + 1)ϵ

]
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≤
∑

S,T⊂[n],|S|=|T |=k

P
[
σk
(
(z − (A+Mn))

−1
S,T

)
≥ 1

k(n− k + 1)ϵ

]
. (2.17)

Fixing S, T ⊂ [n] of size k, there are permutation matrices P and Q such that

(z − (A+Mn))
−1
S,T =

(
Q⊺(z − (A+Mn))

−1P
)
[k],[k]

= (PQ⊺i Im z + P (Re z − (A+Mn))Q
⊺)−1

[k],[k] .

As PQ⊺ is a permutation matrix and P (Re z − (A+Mn))Q
⊺ satisfies Assumption 1.2.3 with

parameter K > 0, we can apply Lemma 2.5.1. Defining

C1.2.10 := 8
√
3(eπ)3/2, (2.18)

this gives

P
[
σk
(
(z − (A+Mn))

−1
S,T

)
≥ 1

k(n− k + 1)ϵ

]
=P
[
σk (i Im zPQ⊺ − P (Re z − (A+Mn))Q

⊺)−1
[k],[k] ≥

1

k(n− k + 1)ϵ

]
≤(1 + k2)

(
C1.2.10K

3n
k2(n− k + 1)2ϵ2

| Im z|

)k2
E
[(
∥P (Re z − A+Mn)Q

⊺∥2 + | Im z|2
)k2]

≤(1 + k2)

(
C1.2.10k

2n3K3 ϵ2

| Im z|

)k2
E
[(
∥P (Re z − (A+Mn))Q

⊺∥2 + | Im z|2
)k2]

,

where we have bounded n− k + 1 ≤ n. By Jensen, BM ,s ≤ BM ,t for any random matrix M
and s ≤ t, and thus expanding out with the binomial theorem gives BA+M ,s ≤ BM ,s + ∥A∥
for every deterministic A. Finally,

E
[(
∥P (Re z − (A+Mn))Q

⊺∥2 + | Im z|2
)k2]

= E
[(
∥Re z − (A+Mn)∥2 + | Im z|2

)k2]
=

k2∑
r=0

(
k2

r

)
B2r

Re z−(A+Mn),2r| Im z|2k2−2r

≤ (B2
Re z−(A+Mn),2k2

+ | Im z|2)k2

≤
(
(BMn,2k2 + ∥A∥+ |Re z|)2 + | Im z|2

)k2
.

We finish by combining this with the previous equation, and multiplying by
(
n
k

)2
for the

union bound over pairs of size-k subsets S and T .
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2.5.2 Proof of Lemma 2.5.1

In what follows we use the notation and assumptions of Lemma 2.5.1. In particular, Mn

satisfies Assumption 1.2.3 with parameter K > 0, U is a permutation matrix, and δ ∈ R.
Once again writing N k for the upper left k× k block of (δiU +Mn)

−1, we need to show that
P[∥N−1

k ∥ ≤ ϵ] = O(ϵ2k
2
). One would expect this behavior if the real and imaginary parts of

N−1
k were independent, and each had a density on Rk×k. We will not be quite so lucky, but

we will be able to separate the randomness in its real and imaginary parts, obtaining the
O(ϵ2k

2
) behavior by conditioning on some well-chosen entries of Mn. To make this precise,

we will need some notation.
Let us write Mn and δU in the following block form:

Mn =

(
M 11 M 12

M 21 M 22

)
and δU =

(
U11 U12

U21 U22

)
(2.19)

where M 11 and U11 are k × k matrices. Define as well the (n− k)× (n− k) matrices X and
Y as

X := Re(M 22 + iU22)
−1 and Y := Im(M 22 + iU22)

−1. (2.20)

Applying the Schur complement formula to the block decomposition in (2.19), we get

N−1
k = M 11 + iU11 − (M 12 + iU12)(M 22 + iU22)

−1(M 21 + iU21)

= M 11 + iU11 − (M 12 + iU12)(X + iY )(M 21 + iU21),

meaning that

ReN−1
k = M 11 −M 12XM 21 + U12Y M 21 −M 12Y U21 + U12XU21 (2.21)

ImN−1
k = U11 −M 12Y M 21 −M 12XU21 − U12XM 21 + U12Y U21. (2.22)

Examining these two formulae, and recalling that the entries of Mn are independent and
have a joint density on Rn×n, we arrive at the key observation of this section:

Observation 2.5.2. The imaginary part ImN−1
k is independent of M 11. Moreover, con-

ditional on M 12,M 21 and M 22, the real part ReN−1
k has independent entries, each with

density on R bounded by K
√
n.

Writing this conditioning explicitly,

P [σk(N k) ≥ 1/ϵ]

=P
[
∥N−1

k ∥ ≤ ϵ
]

≤P
[
∥ReN−1

k + i ImN−1
k ∥F ≤ ϵ

√
k
]

≤P
[
∥ReN−1

k ∥F ≤ ϵ
√
k, ∥ ImN−1

k ∥F ≤ ϵ
√
k
]

=EE
[
1

{
∥ReN−1

k ∥F ≤ ϵ
√
k
}
1

{
∥ ImN−1

k ∥F ≤ ϵ
√
k
} ∣∣∣M 12,M 21,M 22

]
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=E
[
1

{
∥ ImN−1

k ∥F ≤ ϵ
√
k
}
E
[
1

{
∥ReN−1

k ∥F ≤ ϵ
√
k
} ∣∣∣M 12,M 21,M 22

]]
. (2.23)

We can bound the inner conditional expectation using Observation 2.5.2:

E
[
1

{
∥ReN−1

k ∥F ≤ ϵ
√
k
} ∣∣∣M 12,M 21,M 22

]
≤ (
√
πknKϵ)k

2

Γ(k2/2 + 1)
≤

(√
2eπnKϵ√

k

)k2

(2.24)

In the final two steps we have used the volume of a Frobenius norm ball in Rk×k, and Stirling’s
approximation. Plugging into (2.23) gives

P [σk(N k) ≥ 1/ϵ] ≤ P
[
∥ ImN−1

k ∥F ≤ ϵ
√
k
](√2eπnKϵ√

k

)k2

,

and we now turn to the more serious task of the requisite small-ball probability estimate for
ImN−1

k . This calculation is facilitated by a second key observation, which is an immediate
consequence of the full expression (2.22) for ImN−1

k .

Observation 2.5.3. Conditional on M 22, the imaginary part ImN−1
k is a quadratic function

in M 12 and M 21, of the type studied in Section 2.3.

In particular, for any deterministic (n− k)× (n− k) matrices Y and X, and j satisfying
n− k ≥ j > k2 + k + 1, Theorem 2.3.1 implies

P
[
∥U12 −M 12YM 21 −M 12XU21 − U12XM 21 + U12Y U21∥F ≤ ϵ

√
k
]

≤ (1 + k2)

(
2K2n

√
2eπk√

j − k + 1σj(Y )

)k2 (√
2eπϵ√
k

)k2

= (1 + k2)

(
4K2n · eπ · ε√
j − k + 1σj(Y )

)k2
, (2.25)

(again using the volume of a Frobenius norm ball). Since Y depends only on the randomness
in M 22, and is thus independent of M 12 and M 21, conditioning and integrating over M 22

gives us

P
[
∥ ImN−1

k ∥ ≤ ϵ
]
≤ (1 + k2)

(
4K2n · eπ · ε√
j − k + 1

)k2
E
[
σj(Y )−k

2
]
. (2.26)

To finish the proof, we now need to bound this remaining expectation for a suitable choice
of j, satisfying n− k ≥ j > k2 + k + 1. In (2.20), we defined Y = Im(M 22 + iU22)

−1, and
we now require a more explicit formula. Using the representation of C(n−1)×(n−1) as a set of
block matrices in R2(n−1)×2(n−1), and again applying the Schur complement formula,(

X −Y
Y X

)
=

(
M 22 −U22

U22 M 22

)−1
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=

(
(M 22 + U22M

−1
22 U22)

−1 (M 22 + U2,2M
−1
22 U22)

−1U22M
−1
22

−(M 22 + U22M
−1
22 U22)

−1U22M
−1
22 (M 2,2 + U22M

−1
22 U22)

−1

)
and hence

Y = −(M 22 + U22M
−1
22 U22)

−1U22M
−1
22 . (2.27)

If we could invert U22, we could rewrite this as −(M 22U
−1
22 M 22 + U22)

−1 and set j = n− k,
giving

σn−k (Y )−k
2

= ∥M 22U22M 22 + U22∥k
2 ≤

(
|δ|−1∥M 22∥2 + |δ|

)k2 ≤ (|δ|−1∥Mn∥2 + |δ|
)k2

.

However, not every principal block of a permutation matrix is invertible, so we will need to
work a bit harder.

Since U is a permutation matrix, and U22 is an (n − k) × (n − k) block of δU , by the
usual interlacing of singular values for submatrices [89, Corollary 7.3.6], we can be sure that
σ1(U22) = · · · = σn−2k(U22) = |δ|. Hence, there exists a matrix E of rank at most 2k such
that Û22 := U22 +E is invertible, with all singular values equal to |δ|. We can therefore write

Y = −(M 22 + U22M
−1
22 U22)

−1U22M
−1
22 = −(M 22 + Û22M

−1
22 U22 +E1)

−1Û22M
−1
22 +E2

where E1 = −EM−1
22 U22 and E2 = −(M 22 − U22M

−1
22 U22)

−1EM−1
22 . Since rank(E2) ≤

rank(E) ≤ 2k, interlacing of singular values upon low-rank updates [152, Theorem 1] ensures

σj(Y ) ≥ σj+2k

(
(M 22 + Û22M

−1
22 U22 +E1)

−1Û22M
−1
22

)
. (2.28)

On the other hand

(M 22 + Û22M
−1
22 U22 +E1)

−1Û22M
−1
22 = (M 22Û

−1
22 M 22 + U22 +M22Û

−1
22 E1)

−1, (2.29)

and since rank(M 22Û
−1
22 E1) ≤ rank(E1) ≤ rank(E) ≤ 2k, a further application of the

low-rank update bound tells us

σj+2k

(
(M 22Û

−1
22 M 22 + U22 +M 22Û

−1
22 E1)

−1
)
≥ σj+4k

(
(M 22Û

−1
22 M 22 + U22)

−1
)
. (2.30)

Putting together (2.28), (2.29), and (2.30), we get

σj(Y ) ≥ σj+4k

(
(M 22Û

−1
22 M 22 + U22)

−1
)
,

and finally, setting j = n−5k, and recalling ∥U2,2∥ = |δ|, ∥Û−1
2,2∥ = |δ|−1, and ∥M 22∥ ≤ ∥Mn∥,

we have

σn−5k(Y )−k
2 ≤

∥∥∥M 22Û
−1
22 M 22 + U22

∥∥∥k2 ≤ (|δ|−1∥Mn∥2 + |δ|
)k2

(2.31)
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We now assemble our work so far:

P [σk(N k) ≥ 1/ϵ]

≤P
[
∥ ImN−1

k ∥ ≤ ϵ
](√2eπnKϵ√

k

)k2

≤(1 + k2)

(
4K2n · eπ · ϵ√
j − k + 1

)k2 (√
2eπnKϵ√

k

)k2

E
[
σj(Y )−k

2
]
∀n− k ≥ j ≥ k2 + k + 1

≤(1 + k2)

(
4
√
2K3(eπn)3/2√
k(n− 6k + 1)

)k2 (
ϵ2

|δ|

)k2
E
(
∥Mn∥+ δ2

)k2
setting j = n− 5k.

For this to go through, we need n ≥ max{6k, (k + 2)2} = (k + 2)2. Finally, we can use
1/(n− 6k + 1) ≤ 6k/n to obtain the final result.

2.6 Lower Bounds on the Minimum Eigenvalue Gap

This section is devoted to several results regarding eigenvalue gaps of real random matrices
with independent entries, and its main goal is to prove Theorem 1.2.5.

As discussed in Section 1.2 the proof strategy for obtaining tail bounds on gap(A+Mn)
is to use an ϵ-net argument to show that in the event that gap(A+Mn) is small, there will
be some z in the net for which σn(z −Mn)σn−1(z −Mn) is small, after which one uses the
tail bounds for σn(z − A−Mn) and σn−1(z − A−Mn) obtained above to argue that this
is an unlikely event. The main complication here is that our tail bounds on the singular
values of z − A−Mn depend on the shift z: on the real line they are governed by Theorem
2.0.2, and away from it by Theorem 1.2.10. To handle this, we will use a combination of nets,
exploiting the fact that real matrices have conjugate-symmetric spectra. Specifically, this
symmetry means that we can think of small gaps as arising in one of three different ways:
gaps in which at least one eigenvalue is real, gaps between a conjugate pair of eigenvalues
with small imaginary part, and gaps between complex eigenvalues away from the real line.
Thus motivated, let us define, for any matrix M ∈ Rn×n and δ > 0,

gapR(M) := min {|λi(M)− λj(M)| : i ̸= j and λi(M) ∈ R} ,
Immin(M) := min {| Imλi(M)| : λi(M) /∈ R} ,

gapIm≥δ(M) := min {|λi(M)− λj(M)| : i ̸= j and | Imλi(M)|, | Imλj(M)| ≥ δ} .

Proof of Theorem 1.2.5 . For most of the proof, let us absorb γ into the constant K—the
condition γ < 1/K will not be relevant until the end.

First observe that if δ > 0,

{gap(A+Mn) ≤ s} (2.32)
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={gapR(A+Mn) ≤ s} ∪ {Immin(A+Mn) ≤ δ} ∪ {gapIm≥δ(A+Mn) ≤ s}.

Now choose a covering of the region D(0, R) ⊂ C with disks, whose centers will form the net,
with the property that any pair of eigenvalues at distance less than s must both lie in at
least one of them. In view of (2.32), we will set up a separate net to union bound each of the
events appearing on the right-hand side: let

N R
η := {jη : j ∈ Z} ∩ [−R,R]

N C
δ,η := {ηj + i(δ + ηk) : j, k ∈ Z} ∩B(0, R).

Then, judiciously choosing the spacing and radii of disks, for any δ > 0 we have:

P [gap(A+Mn) ≤ s] ≤
∑
z∈NR

2s

P [|Spec(A+Mn) ∩D(z, 3s/2)| ≥ 2]

+
∑
z∈NR

δ

P
[
|Spec(A+Mn) ∩D(z,

√
2δ)| ≥ 2

]
+
∑
z∈NC

δ,s

P
[
Spec(A+Mn) ∩D(z,

√
5/4s)| ≥ 2

]
+ P [∥A+Mn∥ ≥ R] .

(2.33)

The first line controls gapR, the second one Immin, the third one gapIm≥δ, and the final one
the event that some eigenvalue lies outside the region covered by our net. One could further
optimize the above in the pursuit of tighter constants, but we optimize for simplicity. The
remainder of the proof consists of bounding these events with Theorems 2.0.2 and 1.2.10—the
constants and exponents become somewhat unwieldy, and on a first reading we recommend
following the argument at a high level to avoid being bogged down in technicalities.

Step 1: Gaps on the Real Line. We first must bound the probability

P [|Spec(A+Mn) ∩D(z, 3s/2)| ≥ 2]

for z ∈ R. To use Lemma 1.2.7, we need tail bounds for the product of the two smallest
singular values of z − (A+Mn), whereas Theorem 2.0.2 concerns individual singular values.
To get around this, note that for every z ∈ R and x > 0,

P
[
σn(z − (A+Mn))σn−1(z − (A+Mn)) ≤ r2

]
≤P [σn(A+Mn) ≤ rx] + P [σn−1(A+Mn) ≤ r/x]

≤2Kn2rx+ 16K4n6r4/x4.

Optimizing in x, we have

P [|Spec(A+Mn) ∩D(z, r)| ≥ 2]
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≤
(
41/5 + 4−4/5

)
(2Kr)8/5 n14/5 ≤ 3n14/5(

√
2Kr)8/5. (2.34)

The rough bound
∣∣N R

2s

∣∣ ≤ (R/s+ 1) ≤ 3R/2s now gives∑
z∈NR

s

P [|Spec(A+Mn) ∩D(z, 3s/2)| ≥ 2] ≤
∣∣N R

s

∣∣ · 3n14/5(3
√
2Ks/2)8/5

≤ 9R(
√
2K)8/5n14/5s3/5. (2.35)

Step 2: Eigenvalues Near the Real Line. Using (2.34) and imitating the remainder of Step 1,∑
z∈NR

δ

P
[
|Spec(A+Mn) ∩D(z,

√
2δ)| ≥ 2

]
≤ 8R(

√
2K)8/5n14/5δ3/5 (2.36)

This directly implies a stand-alone tail bound on Immin, which we record for use in Section
4.2.4,:

P [Immin(A+Mn) ≤ δ] ≤ 8R(
√
2K)8/5n14/5δ3/5 + P[∥Mn∥ ≥ R]. (2.37)

Step 3: Eigenvalues Away from the Real Line. We finally turn to non-real z. As in Step 1,
observe that for any z ∈ C \ R, r > 0, and n ≥ 16, Theorem 1.2.10 implies

P [|∥Spec(A+Mn) ∩D(z, r)| ≥ 2] (2.38)

≤min
x>0
{P [σn(A+Mn) ≤ rx] + P [σn−1(A+Mn) ≤ r/x]}

≤min
x>0

{
2C1.2.10K

3n5
(
(BMn,2 + ∥A∥+ |Re z|)

2 + | Im z|2
) (rx)2

| Im z|

+640C4
1.2.10K

12n14
(
(BMn,8 + ∥A∥+ |Re z|)

2 + | Im z|2
)4 r8

x8| Im z|4

}

≤C(2.39)

(
(BMn,8 + ∥A∥+ |Re z|)

2 + | Im z|2

| Im z|

)8/5

K24/5r16/5n34/5 (2.39)

where we have used BMn,1 ≤ BMn,8 and defined C(2.39) = 11C1.2.10 = 88
√
3(eπ)3/2.

Finally, observing that every z ∈ N C
δ,s has | Im z| > δ and |z| ≤ R, we have∑

z∈NC
δ,s

P
[
|Spec(A+Mn) ∩D(z,

√
5/4s)| ≥ 2

]

≤ 6(R/s)2C(2.39)

(
(BMn,8 + ∥A∥+R)2

δ

)8/5

K24/5(
√
5s/2)16/5n34/5

≤ C(2.40)R
2(BMn,8 + ∥A∥+R)16/5

K24/5s6/5n34/5

δ8/5
(2.40)
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where C(2.40) := 6(5/4)8/5C(2.39) = 528(5/4)8/5
√
3(eπ)3/2.

Step 4: Conclusion. We now put together the three steps above, substituting (2.35), (2.36),
and (2.40) into (2.33), and adding back in the γ scaling. Using the fact that ψδ3/5 +
ϕs6/5δ−8/5 ≤ 2ψ8/11ϕ3/11s18/55, we obtain

P [gap(A+ γMn) ≤ s] (2.41)

≤9R(
√
2K/γ)8/5n14/5s3/5

+ 2
(
C(2.40)R

2(γBMn,8 + ∥A∥+R)2(K/γ)24/5n34/5
)3/11 (

8(
√
2K/γ)8/5n14/5

)8/11
s18/55

+ P [∥A+ γMn∥ ≥ R]

≤C1.2.5R
14/11 (γBMn,8 + ∥A∥+R)6/11 (K/γ)136/55n214/55s18/55 + P [∥A+Mn∥ ≥ R]

≤C1.2.5R
2 (γBMn,8 + ∥A∥+R) (K/γ)5/2n4s2/7 + P [∥A+Mn∥ ≥ R] , (2.42)

where
C1.2.5 := 2C

3/11
(2.40) · 8

8/11
√
2
64/55

+ 9
√
2
8/5

< 250. (2.43)

2.7 Upper Bounds on the Eigenvalue Condition

Numbers

In this section, we follow the Hermitization strategy presented in Section 1.2 to convert
our probabilistic lower bounds on the least singular value into upper bounds on the mean
eigenvalue condition numbers. As mentioned above, this makes use of the relationship between
the eigenvalue condition numbers and the area of the ϵ-pseudospectrum given in Lemma
1.1.10. However, since we will treat separately real and complex eigenvalues, in addition to
Lemma 1.1.10, we will need an easy variant relating pseudospectrum on the real line to the
condition numbers of real eigenvalues.

Lemma 2.7.1 (Limiting Length of Pseudospectrum on Real Line). Let M ∈ Rn×n have n
distinct eigenvalues λ1, ..., λn. Let ℓR denote the Lebesgue measure on R, and let Ω ⊂ R be
an open set. Then

2
∑
λi∈Ω

κ(λi) ≤ lim inf
ϵ→0

ℓR (Λϵ(M) ∩ Ω)

ϵ

Proof. For each z ∈ C and r ≥ 0, let D(z, r) denote the closed disk centered at z of radius r.
In the proof of [15, Lemma 3.2] it is shown that if M has n distinct eigenvalues,

n⋃
i=1

D(λi, κ(λi)ϵ−O(ϵ2)) ⊆ Λϵ(M) ⊆
n⋃
i=1

D(λi, κ(λi)ϵ+O(ϵ2)).
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In particular, each λi ∈ Ω contributes at least 2κ(λ)ϵ − O(ϵ2) to the measure of Λϵ ∩ Ω.
Taking ϵ→ 0 yields the conclusion.

In both Lemma 1.1.10 and Lemma 2.7.1, if the boundary of Ω contains none of the
eigenvalues, one actually has equality, the limit inferior can be replaced by the limit, and Ω
need only be measurable, but we will not need this fact.

2.7.1 Bounds in Expectation

We now come to the first main proposition of this section.

Proposition 2.7.2 (κ(λi) on the real line). Let A ∈ Rn×n be deterministic, and let Mn

satisfy Assumption 1.2.3 with parameter K > 0. Write λ1, ...,λn for the eigenvalues of
A+ γMn. Then for every open set Ω ⊂ R,

E
∑
λi∈Ω

κ(λi) ≤
Kn2

√
2γ
· ℓR(Ω).

Proof. When z is real, z − A is also real, so we may apply the tail bound in Corollary 2.4.3.
In particular, setting k = 1, we obtain the following tail bound for real z:

P[σn((z − A) + γ(−Mn)) ≤ ϵ] <

√
2Kn2ϵ

γ
.

Since the eigenvalues of z − (A+ γMn) are distinct with probability 1, we have

2E
∑
λi∈Ω

κ(λi) ≤ E lim inf
ϵ→0

ϵ−1ℓR (Λϵ(A+ γMn) ∩ Ω) Lemma 2.7.1

≤ lim inf
ϵ→0

ϵ−1E
∫
Ω

1 {z ∈ Λϵ(A+ γMn)} dz Fatou’s lemma

= lim inf
ϵ→0

ϵ−1

∫
Ω

P[z ∈ Λϵ(A+ γMn)] dz Fubini’s theorem

= lim inf
ϵ→0

ϵ−1

∫
Ω

P[σn(z − (A+ γMn)) < ϵ] dz

≤
√
2Kn2

γ
ℓR(Ω). Corollary 2.4.3

We now give the analogous proposition for the nonreal eigenvalues.
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Proposition 2.7.3 (κ(λi) away from real line). Let n ≥ 9. Let A ∈ Rn×n be deterministic.
Let Mn satisfy Assumption 1.2.3 with parameter K > 0. Let γ > 0, and write λ1, ...,λn for
the eigenvalues of A+ γMn. Then for every open set Ω ⊆ C \ R,

E
∑
λi∈Ω

κ(λi)
2 ≤ C1.2.10K

3n5

γ3

∫
Ω

(γE∥Mn∥+ ∥A∥+ |Re z|)2 + | Im z|2

| Im z|
dz.

In the special case where Mn is real Ginibre, one may take n ≥ 7 and replace the term
C1.2.10K

3 with
√
7e

4π
.

Proof. In the proof of Proposition 2.7.2, since Ω ⊆ C \ R we replace Lemma 2.7.1 with
Lemma 1.1.10. Since z is no longer real we must also replace the singular value tail bound in
Corollary 2.4.3 with the one in Theorem 1.2.10.

2.7.2 Bounds with high probability: Proof of Theorem 2.0.1

In the notation of Theorem 2.0.1, R, ∥A∥, K, and γ will be Θ(1) in most applications, so ϵ1
and ϵ2 may be set to 1/nD for sufficiently high D.

Proof of Theorem 2.0.1. From here on out, assume that each of∑
λi∈R

κ(λi) and
∑

λi∈C\R

κ(λi)
2

is at most ϵ−1
1 times its expectation; by Markov’s inequality and a union bound this happens

with probability at least 1− 2ϵ1.
Let δ ∈ (0, R) be a small parameter to be optimized later. Let L := ∥A∥+R, and define

the regions ΩR and ΩC as follows:

ΩR := {x ∈ R : |x| < L}

ΩC := {x+ yi : x ∈ R and δ < |y| < L.}

Write Ebound for the event that γ∥Mn∥ < R and let Estrip denote the event that Immin(A+
γMn) > δ. Then with probability at least 1− 2ϵ1 − P[Ebound]− P[Estrip], all eigenvalues of
A+ γMn are contained in ΩR ∪ ΩC , so∑

λi∈R

κ(λi) =
∑

λi∈ΩR

κ(λi) ≤
Kn2

√
2γ
ℓR(ΩR) ≤

√
2Kn2L

γ

and ∑
λi∈C\R

κ(λi)
2 =

∑
λi∈ΩC

κ(λi)
2
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≤ CK3n5

γ3

∫
ΩC

(γE∥Mn∥+ ∥A∥+ |Re z|)2 + | Im z|2

| Im z|
dz

≤ 2
CK3n5

γ3

∫ L

δ

∫ L

−L

(γE∥Mn∥+ ∥A∥+ |x|)2 + y2

y
dx dy

≤ 2
CK3n5

γ3

∫ L

δ

2L
(2L)2 + L2

y
dy

= 20
CK3n5

γ3
L3(lnL+ ln(1/δ)).

Recall from (2.37) that

P[Estrip] = O(RK8/5n14/5δ3/5/γ8/5) + P[γ∥Mn∥ ≥ R],

so setting δ = Lϵ2 yields the result.

The proof of Theorem 1.2.6 advertised in the introduction is now trivial.

Proof of Theorem 1.2.6. To get a bound on κV invoke inequality (1.8) to obtain

κV (A+ γMn) ≤

√√√√n
n∑
i=1

κ(λi)2 ≤
√
n

√√√√(∑
λi∈R

κi(λi)

)2

+
∑

λi∈C\R

κ(λi)2.

Then apply Theorem 2.0.1.
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Chapter 3

Spectral Bisection

Here we will provide the proofs for Theorems 1.3.1 and 1.3.3 discussed in Section 1.3.
After discussing the related work in Section 3.1, in Section 3.2 we will discuss some finite

arithmetic considerations and define the subroutines that will be used as a black-box when
analyzing the main algorithm. In Section 3.3 we will tailor the smoothed analysis results
on gap and κV to this context. The main technical part of this chapter will be presented in
Section 3.4, where we give rigorous guarantees for computing the sign function via Roberts’
iteration. Finally, in Section 3.5 we will put everything together to provide general guarantees
for the spectral bisection algorithm. The analysis of some of the subroutines will be deferred
to Appendix B.

3.1 Related Work

Smoothed Analysis. The study of numerical algorithms on Gaussian random matrices
(i.e., the case A = 0 of smoothed analysis) dates back to [165, 142, 56, 62]. The powerful
idea of improving the conditioning of a numerical computation by adding a small amount of
Gaussian noise was introduced by Spielman and Teng in [144], in the context of the simplex
algorithm. Sankar, Spielman, and Teng [137] showed that adding real Gaussian noise to any
matrix yields a matrix with polynomially-bounded condition number; [15] can be seen as an
extension of this result to the condition number of the eigenvector matrix, where the proof
crucially requires that the Gaussian perturbation is complex rather than real. The main
difference between our results and most of the results on smoothed analysis (including [3]) is
that our running time depends logarithmically rather than polynomially on the size of the
perturbation.

The broad idea of regularizing the spectral instability of a nonnormal matrix by adding a
random matrix can be traced back to the work of Śniady [143] and Haagerup and Larsen [82]
in the context of Free Probability theory.

Matrix Sign Function. The matrix sign function was introduced by Zolotarev in 1877. It
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became a popular topic in numerical analysis following the work of Beavers and Denman
[22, 23, 58] and Roberts [131], who used it first to solve the algebraic Ricatti and Lyapunov
equations and then as an approach to the eigenproblem; see [95] for a broad survey of its
early history. The numerical stability of Roberts’ Newton iteration was investigated by Byers
[34], who identified some cases where it is and isn’t stable. Malyshev [107], Byers, He, and
Mehrmann [35], Bai, Demmel, and Gu [7], and Bai and Demmel [6] studied the condition
number of the matrix sign function, and showed that if the Newton iteration converges then
it can be used to obtain a high-quality invariant subspace1, but did not prove convergence in
finite arithmetic and left this as an open question.2 The key issue in analyzing the convergence
of the iteration is to bound the condition numbers of the intermediate matrices that appear,
as N. Higham remarks in his 2008 textbook:

Of course, to obtain a complete picture, we also need to understand the effect of
rounding errors on the iteration prior to convergence. This effect is surprisingly
difficult to analyze. . . . Since errors will in general occur on each iteration, the
overall error will be a complicated function of κsign(Xk) and Ek for all k. . . .We
are not aware of any published rounding error analysis for the computation of
sign(A) via the Newton iteration. –[86, Section 5.7]

This is precisely the problem solved by Theorem 1.3.3, which is as far as we know the first
provable algorithm for computing the sign function of an arbitrary matrix which does not
require computing the Jordan form.

In the special case of Hermitian matrices, Higham [87] established efficient reductions
between the sign function and the polar decomposition. Byers and Xu [36] proved backward
stability of a certain scaled version of the Newton iteration for Hermitian matrices, in the
context of computing the polar decomposition. Higham and Nakatsukasa [113] (see also the
improvement [112]) proved backward stability of a different iterative scheme for computing
the polar decomposition, and used it to give backward stable spectral bisection algorithms
for the Hermitian eigenproblem with O(n3)-type complexity.

Non-Hermitian Eigenproblem (Floating Point Arithmetic). As mentioned in Section 1.3,
the work of Armentano, Beltrán, Bürgisser, Cucker, and Shub [3] was the first to provide a way
of solving the eigenvalue problem with provable guarantees, which ensure a running time of
O(n10/δ2), where δ is the final accuracy. Their algorithm is based on homotopy continuation
methods, which they argue informally are numerically stable and can be implemented in
finite precision arithmetic. Our algorithm is similar on a high level in that it adds a Gaussian
perturbation to the input and then obtains a high accuracy forward approximate solution to
the perturbed problem. The difference is that their overall running time depends polynomially
rather than logarithmically on the accuracy δ desired with respect to the original unperturbed
problem.

1This is called an a fortiriori bound in numerical analysis.
2[35] states: “A priori backward and forward error bounds for evaluation of the matrix sign function
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Result Error Arithmetic Ops Boolean Ops

[125] B n3 + n2 log(1/δ) n3 log(n/δ) + n2 log(1/δ) log(n/δ)
[3] B n10/δ2 n10/δ2 · polylog(n/δ)a
[25] B nω+1polylog(n) log(1/δ) nω+1polylog(n) log(1/δ)
Thm. 1.3.1 b B TMM(n) log

2(n/δ) TMM(n) log
6(n/δ) log(n)

Cor. 1.3.2 F TMM(n) log
2(nκeig/δ) TMM(n) log

6(nκeig/δ) log(n)

B=Backward, F=Forward.
a Does not specify a particular bound on precision.
b TMM(n) = O(nω+η) for every η > 0, see Definition 3.2.2 for details.

Table 3.1: Results for finite-precision floating-point arithmetic. The works appearing in
the first and third item only apply to Hermitian matrices.

Result Model Error Arithmetic Ops Boolean Ops

[37] Rat. Fa poly(a, n, log(1/δ))b poly(a, n, log(1/δ))
[120] Rat. F nω + n log log(1/δ) nω+1a+ n2 log(1/δ) log log(1/δ)
[105] Fin.c F nω log(n) log(1/δ) nω log4(n) log2(n/δ)

Rat.=Rational, Fin.=Finite, F=Forward.
a Actually computes the Jordan Normal Form. The degree of the polynomial is not specified,
but is at least 12 in n.

b In the bit operations, a denotes the bit length of the input entries.
c Uses a custom bit representation of intermediate quantities.

Table 3.2: Results for other models of arithmetic. The work in the second item
only addresses how to compute eigenvalues (not eigenvectors), and uses a custom
bit representation for intermediate quantities. The work in the last item applies to
Hermitian matirces only, and it is only about computing λ1.

Non-Hermitian Eigenproblem (Other Models of Computation). If we relax the requirements
further and ask for any provable algorithm in any model of Boolean computation, there is
only one more positive result with a polynomial bound on the number of bit operations: Jin
Yi Cai showed in 1994 [37] that given a rational n× n matrix A with integer entries of bit
length a, one can find an δ-forward approximation to its Jordan Normal Form A = V JV −1

in time poly(n, a, log(1/δ)), where the degree of the polynomial is at least 12. This algorithm
works in the rational arithmetic model of computation, so it does not quite answer Demmel’s
question since it is not a numerically stable algorithm. However, it enjoys the significant
advantage of being able to compute forward approximations to discontinuous quantities such
as the Jordan structure.

remain elusive.”
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As far as we are aware, there are no other published provably polynomial-time algorithms
for the general eigenproblem. The two standard references for diagonalization appearing
most often in theoretical computer science papers do not meet this criterion. In particular,
the widely cited work by Pan and Chen [120] proves that one can compute the eigenvalues
of A in O(nω + n log log(1/δ)) (suppressing logarithmic factors) arithmetic operations by
finding the roots of its characteristic polynomial, which becomes a bound of O(nω+1a +
n2 log(1/δ) log log(1/δ)) bit operations if the characteristic polynomial is computed exactly
in rational arithmetic and the matrix has entries of bit length a. However that paper does
not give any bound for the amount of time taken to find approximate eigenvectors from
approximate eigenvalues, and states this as an open problem.3

Finally, the important work of Demmel, Dumitriu, and Holtz [53] (see also the followup
[8]), which we rely on heavily, does not claim to provably solve the eigenproblem either—it
bounds the running time of one iteration of a specific algorithm, and shows that such an
iteration can be implemented numerically stably, without proving any bound on the number
of iterations required in general.

Hermitian Eigenproblem. For comparison, the eigenproblem for Hermitian matrices is
much better understood. We cannot give a complete bibliography of this huge area, but
mention one relevant landmark result: the work of Wilkinson [174], who exhibited a globally
convergent diagonalization algorithm, and the work of Dekker and Traub [52] who quantified
the rate of convergence of Wilkinson’s algorithm and from which it follows that the Hermitian
eigenproblem can be solved with backward error δ in O(n3+n2 log(1/δ)) arithmetic operations
in exact arithmetic.4. We refer the reader to [125, §8.10] for the simplest and most insightful
proof of this result, due to Hoffman and Parlett [88]

There has also recently been renewed interest in this problem in the theoretical com-
puter science community, with the goal of bringing the runtime close to O(nω): Louis
and Vempala [105] show how to find a δ−approximation of just the largest eigenvalue in
O(nω log4(n) log2(1/δ)) bit operations, and Ben-Or and Eldar [25] give an O(nω+1polylog(n))-
bit-operation algorithm for finding a 1/poly(n)-approximate diagonalization of an n × n
Hermitian matrix normalized to have ∥A∥ ≤ 1.

Remark 3.1.1 (Davies’ Conjecture). The beautiful paper [44] introduced the idea of ap-
proximating a matrix function f(A) for nonnormal A by f(A + E) for some well-chosen
E regularizing the eigenvectors of A. This directly inspired our approach to solving the
eigenproblem via regularization.

3“The remaining nontrivial problems are, of course, the estimation of the above output precision p
[sufficient for finding an approximate eigenvector from an approximate eigenvalue], . . . . We leave these open
problems as a challenge for the reader.” – [120, Section 12].

4We are not aware a published analysis of this algorithm in finite arithmetic, but believe that it can be
carried out with O(log(n/δ)) bits of precision. The only issue that needs to be handled is forward instability
of the QR step when the Wilkinson shift is very close to an eigenvalue of the matrix, which can be resolved
e.g. by a small random perturbation of the Wilkinson shift.
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The existence of an approximate diagonalization (in the sense of Definition 1.3) for every
A with a well-conditioned similarity V (i.e, κ(V ) depending polynomially on δ and n) was
precisely the content of Davies’ conjecture [44], which was recently solved by some of the
authors and Mukherjee in [15]. The existence of such a V is a pre-requisite for proving that
one can always efficiently find an approximate diagonalization in finite arithmetic, since if
∥V ∥∥V −1∥ is very large it may require many bits of precision to represent. Thus, Theorem
1.3.1 can be viewed as an efficient algorithmic answer to Davies’ question.

Remark 3.1.2 (Subsequent work in Random Matrix Theory). Since the first version of [11]
was made public there have been some advances in random matrix theory [10, 93] that prove
analogues of Corollary 3.3.2 in the case where Gn is replaced by a perturbation with random
real independent entries (which have been discussed in detail in Chapter 2).

3.2 Finite Arithmetic Considerations

We start by elaborating on the axioms for floating-point arithmetic given in Section 1.1.
Similar guarantees to the ones appearing in that section for scalar-scalar operations also hold
for operations such as matrix-matrix addition and matrix-scalar multiplication. In particular,
if A is an n× n complex matrix,

fl(A) = A+ A ◦∆ |∆i,j| < u,

where ◦ denotes the Hadamard product. It will be convenient for us to write such errors in
additive, as opposed to multiplicative form. We can convert the above to additive error as
follows. Recall that for any n× n matrix, operator norm (i.e. the ℓ2 → ℓ2 operator norm) is
at most

√
n times the ℓ2 → ℓ1 operator norm, i.e. the maximal norm of a column. Thus we

have
∥A ◦∆∥ ≤

√
nmax

i
∥(A ◦∆)ei∥ ≤

√
nmax

i,j
|∆i,j|max

i
∥Aei∥ ≤ u

√
n∥A∥. (3.1)

For more complicated operations such as matrix-matrix multiplication and matrix inversion,
we use existing error guarantees from the literature.

We will also need to compute the trace of a matrix A ∈ Cn×n, and normalize a vector
x ∈ Cn. Error analysis of these is standard (see for instance the discussion in [85, Chapters
3-4]) and the results in this chapter are highly insensitive to the details. For simplicity, calling
x̂ := x/∥x∥, we will assume that

|fl (TrA)− TrA| ≤ n∥A∥u (3.2)

∥fl(x̂)− x̂∥ ≤ nu. (3.3)

Each of these can be achieved by assuming that un ≤ ϵ for some suitably chosen ϵ, independent
of n, a requirement which will be depreciated shortly by several tighter assumptions on the
machine precision.
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3.2.1 Sampling Gaussians in Finite Precision

For various parts of the algorithm, we will need to sample from normal distributions. For our
model of arithmetic, we assume that the complex normal distribution can be sampled up to
machine precision in O(1) arithmetic operations. To be precise, we assume the existence of
the following sampler:

Definition 3.2.1 (Complex Gaussian Sampling). A cN-stable Gaussian sampler N(σ) takes

as input σ ∈ R≥0 and outputs a sample of a random variable G̃ = N(σ) with the property
that there exists G ∼ NC(0, σ

2) satisfying

|G̃−G| ≤ cNσ · u

with probability one, in at most TN arithmetic operations for some universal constant TN > 0.

Note that, since the Gaussian distribution has unbounded support, one should only expect
the sampler N(σ) to have a relative error guarantee of the sort |G̃−G| ≤ cNσ|G| ·u. However,
as it will become clear below, we only care about realizations of Gaussians satisfying |G| < R,
for a certain prespecified R > 0, and the rare event |G| > R will be accounted for in the
failure probability of the algorithm. So, for the sake of exposition we decided to omit the |G|
in the bound on |G̃−G|.

We will only sample O(n2) Gaussians during the algorithm, so this sampling will not
contribute significantly to the runtime. Here as everywhere in the paper, we will omit issues
of underflow or overflow. Throughout this chapter, to simplify some of our bounds, we will
also assume that cN ≥ 1.

3.2.2 Black-box Error Assumptions for Multiplication, Inversion,
and QR Decomposition

Our algorithm will use matrix-matrix multiplication, matrix inversion, and QR factorization
as primitives. For our analysis, we must therefore assume some bounds on the error and
runtime costs incurred by these subroutines. In this section, we first formally state the kind
of error and runtime bounds we require, and then discuss some implementations known in
the literature that satisfy each of our requirements with modest constants.

Our definitions are inspired by the definition of logarithmic stability introduced in [53].
Roughly speaking, they say that implementing the algorithm with floating point precision u
yields an accuracy which is at most polynomially or quasipolynomially in n worse than u
(possibly also depending on the condition number in the case of inversion). Their definition has
the property that while a logarithmically stable algorithm is not strictly-speaking backward
stable, it can attain the same forward error bound as a backward stable algorithm at the
cost of increasing the bit length by a polylogarithmic factor. See Section 3 of their paper for
a precise definition and a more detailed discussion of how their definition relates to standard
numerical stability notions.
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Definition 3.2.2. A µMM(n)-stable multiplication algorithm MM(·, ·) takes as input A,B ∈
Cn×n and a precision u > 0 and outputs C = MM(A,B) satisfying

∥C − AB∥ ≤ µMM(n) · u∥A∥∥B∥,

on a floating point machine with precision u, in TMM(n) arithmetic operations.

Definition 3.2.3. A (µINV(n), cINV)−stable inversion algorithm INV(·) takes as input A ∈
Cn×n and a precision u and outputs C = INV(A) satisfying

∥C − A−1∥ ≤ µINV(n) · u · κ(A)cINV logn∥A−1∥,

on a floating point machine with precision u, in TINV(n) arithmetic operations.

Definition 3.2.4. A µQR(n)-stable QR factorization algorithm QR(·) takes as input A ∈ Cn×n

and a precision u, and outputs [Q,R] = QR(A) such that

1. R is exactly upper triangular.

2. There is a unitary Q′ and a matrix A′ such that

Q′A′ = R, (3.4)

and
∥Q′ −Q∥ ≤ µQR(n)u, and ∥A′ − A∥ ≤ µQR(n)u∥A∥,

on a floating point machine with precision u. Its running time is TQR(n) arithmetic operations.

Remark 3.2.5. Throughout this chapter, to simplify some of our bounds, we will assume
that

1 ≤ µMM(n), µINV(n), µQR(n), cINV log n.

The above definitions can be instantiated with traditional O(n3)-complexity algorithms
for which µMM, µQR, µINV are all O(n) and cINV = 1 [85]. This yields easily-implementable
practical algorithms with running times depending cubically on n.

In order to achieveO(nω)-type efficiency, we instantiate them with fast-matrix-multiplication-
based algorithms and with µ(n) taken to be a low-degree polynomial [53]. Specifically, the
following parameters are known to be achievable.

Theorem 3.2.6 (Fast and Stable Instantiations of MM, INV,QR).

1. If ω is the exponent of matrix multiplication, then for every η > 0 there is a µMM(n)−stable
multiplication algorithm with µMM(n) = ncη and TMM(n) = O(nω+η), where cη does not
depend on n.
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2. Given an algorithm for matrix multiplication satisfying (1), there is a (µINV(n), cINV)-
stable inversion algorithm with

µINV(n) ≤ O(µMM(n)n
lg(10)), cINV ≤ 8,

and TINV(n) ≤ TMM(3n) = O(TMM(n)).

3. Given an algorithm for matrix multiplication satisfying (1), there is a µQR(n)−stable
QR factorization algorithm with

µQR(n) = O(ncQRµMM(n)),

where cQR is an absolute constant, and TQR(n) = O(TMM(n)).

In particular, all of the running times above are bounded by TMM(n) for an n× n matrix.

Proof. (1) is Theorem 3.3 of [54]. (2) is Theorem 3.3 (see also equation (9) above its statement)
of [53]. The final claim follows by noting that TMM(3n) = O(TMM(n)) by dividing a 3n× 3n
matrix into nine n×n blocks and proceeding blockwise, at the cost of a factor of 9 in µINV(n).
(3) appears in Section 4.1 of [53].

We remark that for specific existing fast matrix multiplication algorithms such as Strassen’s
algorithm, specific small values of µMM(n) are known (see [54] and its references for details),
so these may also be used as a black box, though we will not do this here.

3.3 Pseudospectral Shattering

This section will be devoted to obtaining quantitative pseudospectral shattering results that
are tailored for the analysis of the spectral bisection algorithms.

In Chapter 2 we have obtained separate tail bounds for gap(A+ γMn) and κV (A+ γMn),
for Mn a random matrix satisfying Assumption 1.2.3. In order for this results to be used as
smoothed analysis input guarantees for an algorithm, one needs to combine them to obtain a
probability bound for an event of the form

{gap(A+ γMn) ≥ r, κV (A+ γMn) ≤ t, ∥Mn∥ ≤ C}.

This is straight forward, but because the bounds are stronger and simpler in the case when
Mn is a complex Ginibre, we will limit our attention to this case, where we can prove the
following.

Theorem 3.3.1 (Multiparameter Tail Bound). Let A ∈ Cn×n. Assume ∥A∥ ≤ 1 and γ < 1/2,
and let Mn := A+ γGn where Gn is a complex Ginibre matrix. For every t, r > 0:

P
[
κV (Mn) < t, gap(Mn) > r, ∥Gn∥ < 4

]
≥ 1−

(
144

r2
·4(trn/γ)8+(9n3/γ2t2)+2e−2n

)
. (3.5)
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Proof. Write Spec(Mn) := {λ1, . . . , λn} for the (random) eigenvalues of Mn := A+ γGn, in
increasing order of magnitude (there are no ties almost surely). Let N ⊂ C be a minimal
r/2-net of B := D(0, 3), recalling the standard fact that one exists of size no more than
(3 ·4/r)2 = 144/r2. The most useful feature of such a net is that, by the triangle inequality, for
any a, b ∈ D(0, 3) with distance at most r, there is a point y ∈ N with |y − (a+ b)/2| < r/2
satisfying a, b ∈ D(y, r). In particular, if gap(Mn) < r, then there are two eigenvalues in the
disk of radius r centered at some point y ∈ N .

Therefore, consider the events

Egap := {gap(Mn) < r} ⊂ {∃y ∈ N : |D(y, r) ∩ Spec(Mn)| ≥ 2}
ED := {Spec(Mn) ̸⊆ D(0, 3)} ⊂ {∥Gn∥ ≥ 4} := EG

Eκ := {κV (Mn) > t}
Ey := {σn−1(y −Mn) < rt}, y ∈ N .

Lemma 1.1.13 applied to each y ∈ N with k = n− 1 reveals that

Egap ⊆ ED ∪ Eκ ∪
⋃
y∈N

Ey,

whence
Egap ∪ Eκ ⊆ ED ∪ Eκ ∪

⋃
y∈N

Ey.

By a union bound, we have

P[Egap ∪ Eκ] ≤ P[ED ∪ Eκ] + |N |max
y∈N

P[Ey]. (3.6)

From the tail bound on the operator norm of a Ginibre matrix in [15, Lemma 2.2],

P[ED] ≤ P[EG] ≤ 2e−(4−2
√
2)2n ≤ 2e−2n. (3.7)

Observe that by (1.8), κV (Mn) >

√
n

∑
λi∈D(0,3)

κ(λi)2

 ⊂ ED,

since the inequality in the left hand event must reverse when we sum over all λi ∈ Spec(Mn);
thus

Eκ ⊂ ED ∪

 ∑
λi∈D(0,3)

κ(λi)
2 > t2/n

 .

Theorem 1.2.9 and Markov’s inequality yields

P

 ∑
λi∈D(0,3)

κ(λi)
2 > t2/n

 ≤ E
∑

λi∈D(0,3)

κ(λi)
2 n

t2
≤ 9πn2

πγ2
n

t2
=

9n3

t2γ2
.
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Thus, we have

P[Eκ ∪ ED] ≤
9n3

t2γ2
+ 2e−2n.

The singular values in (1.17) applied to M = −y + A give the bound

P[Ey] ≤ 4

(
trn

γ

)8

,

for each y ∈ N , and plugging these estimates back into (3.6) we have

P[Egap ∪ Eκ ∪ ED] ≤ P[Egap ∪ Eκ ∪ EG] ≤
144

r2
· 4
(
trn

γ

)8

+
9n3

γ2t2
+ 2e−2n,

as desired.

As a corollary we obtain the following.

Corollary 3.3.2 (Smoothed Analysis of gap and κV ). Suppose A ∈ Cn×n with ∥A∥ ≤ 1, and
γ ∈ (0, 1/2). Let Gn be an n × n matrix with i.i.d. complex Gaussian N (0, 1C/n) entries,
and let Mn := A+ γGn. Then

κV (Mn) ≤
n2

γ
, gap(Mn) ≥

γ4

n5
, and ∥Gn∥ ≤ 4, (3.8)

with probability at least 1− 12/n.

Now we use the above result to show that by adding a random perturbation, with high
probability, we can achieve pseudospectral shattering (in the sense of Definition 1.3.4) with
respect to a random grid. First we introduce some notation.

Definition 3.3.3 (Grid). A grid in the complex plane consists of the boundaries of a lattice
of squares with lower edges parallel to the real axis. We will write

grid(z0, ω, s1, s2) ⊂ C

to denote an s1 × s2 grid of ω × ω-sized squares and lower left corner at z0 ∈ C. Write
diam(g) := ω

√
s21 + s22 for the diameter of the grid.

Now, as a warm-up for more sophisticated arguments later on, we give here an easy
consequence of the grid shattering property.

Lemma 3.3.4. If λ1, . . . , λn are the eigenvalues of A, and Λϵ(A) is shattered with respect to
a grid g with side length ω, then every eigenvalue condition number satisfies κ(λi) ≤ 2ω

πϵ
.
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Proof. Let v, w∗ be a right/left eigenvector pair for some eigenvalue λi of A, normalized so
that w∗v = 1. Letting Γ be the positively oriented boundary of the square of g containing λi,
we can extract the projector vw∗ by integrating, and pass norms inside the contour integral
to obtain

κ(λi) = ∥vw∗∥ =
∥∥∥∥ 1

2πi

∮
Γ

(z − A)−1dz

∥∥∥∥ ≤ 1

2π

∮
Γ

∥∥(z − A)−1
∥∥ dz ≤ 2ω

πϵ
. (3.9)

In the final step we have used the fact that Λϵ(A)∩ g = ∅ means ∥(z−A)−1∥ ≤ 1/ϵ on g.

We can now show the following.

Theorem 3.3.5 (Exact Arithmetic Shattering). Let A ∈ Cn×n and Mn := A+ γGn for Gn a
complex Ginibre matrix. Assume ∥A∥ ≤ 1 and 0 < γ < 1/2. Let g := grid(z, ω, ⌈8/ω⌉, ⌈8/ω⌉)
with ω := γ4

4n5 , and z chosen uniformly at random from the square of side ω cornered at
−4− 4i. Then, κV (Mn) ≤ n2/γ, ∥A−Mn∥ ≤ 4γ, and Λϵ(Mn) is shattered with respect to g
for

ϵ :=
γ5

16n9
,

with probability at least 1− 13/n.

Proof. Condition on the event in Corollary 3.3.2, so that

κV (Mn) ≤
n2

γ
, ∥Mn − A∥ ≤ 4γ, and gap(Mn) ≥

γ4

n5
= 4ω.

Consider the random grid g. Since D(0, 3) is contained in the square of side length 8 centered
at the origin, every eigenvalue of Mn is contained in one square of g with probability 1.
Moreover, since gap(Mn) > 4ω, no square can contain two eigenvalues. Let

distg(z) := min
y∈g
|z − y|.

Let λi := λi(Mn). We now have for each λi and every s < ω
2
:

P[distg(λi) > s] =
(ω − 2s)2

ω2
= 1− 4s

ω
+

4s2

ω2
≥ 1− 4s

ω
,

since the distribution of λi inside its square is uniform with respect to Lebesgue measure.
Setting s = ω/4n2, this probability is at least 1− 1/n2, so by a union bound

P[min
i≤n

distg(λi) > ω/4n2] > 1− 1/n, (3.10)

i.e., every eigenvalue is well-separated from g with probability 1− 1/n.
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We now recall from (1.10) that

Λϵ(Mn) ⊂
⋃
i≤n

D(λi, κV (Mn)ϵ).

Thus, on the events (3.8) and (3.10), we see that Λϵ(Mn) is shattered with respect to g as
long as

κV (Mn)ϵ <
ω

4n2
,

which is implied by

ϵ <
γ4

4n5
· 1

4n2
· γ
n2

=
γ5

16n9
.

Thus, the advertised claim holds with probability at least

1− 1

n
− 13

n
= 1− 13

n
,

as desired.

Since, adding a random perturbation to the input matrix will be a subroutine of our
algorithm, we record this as such below, and prove a result similar to the one above but
taking into account numerical errors.

SHATTER

Input: Matrix A ∈ Cn×n, Gaussian perturbation size γ ∈ (0, 1/2).
Requires: ∥A∥ ≤ 1.
Algorithm: (M, g, ϵ) = SHATTER(A, γ)

1. Gij ← N(1/n) for i, j = 1, . . . , n.

2. M ← A+ γG+ E.

3. Let g be a random grid with ω = γ4

4n5 and bottom left corner z chosen as in Theorem 3.3.5.

4. ϵ← 1
2 ·

γ5

16n9

Output: Matrix M ∈ Cn×n, grid g, shattering parameter ϵ > 0.

Ensures: ∥M − A∥ ≤ 4γ, κV (M) ≤ n2/γ, and Λϵ(M) is shattered with respect to g, with

probability at least 1− 13/n.

Theorem 3.3.6 (Finite Arithmetic Shattering). Assume there is a cN-stable Gaussian
sampling algorithm N satisfying the requirements of Definition 3.2.1. Then SHATTER has
the advertised guarantees as long as the machine precision satisfies

u ≤ 1

2

γ5

16n9
· 1

(3 + cN)
√
n
, (3.11)
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and runs in
n2TN + n2 = O(n2)

arithmetic operations.

Proof. The two sources of error in SHATTER are:

1. An additive error of operator norm at most n · cN · (1/
√
n) · u ≤ cN

√
n · u from N, by

Definition 3.2.1.

2. An additive error of norm at most
√
n · ∥M∥ · u ≤ 3

√
nu, with probability at least

1− 1/n, from the roundoff E in step 2.

Thus, as long as the precision satisfies (3.11), we have

∥SHATTER(A, γ)− shatter(A, γ)∥ ≤ 1

2

γ5

16n9
,

where shatter(·) refers to the (exact arithmetic) outcome of Theorem 3.3.5. The correctness
of SHATTER now follows from Lemma 1.1.7. Its running time is bounded by

n2TN + n2

arithmetic operations, as advertised.

3.4 Matrix Sign Function

The algortithmic centerpiece of this chapter is the analysis, in finite arithmetic, of a well-
known iterative method for approximating to the matrix sign function. Recall from Section
1.3 that if A is a matrix whose spectrum avoids the imaginary axis, then

sgn(A) = P+ − P−

where the P+ and P− are the spectral projectors corresponding to eigenvalues in the open
right and left half-planes, respectively. The iterative algorithm we consider approximates the
matrix sign function by repeated application to A of the function

g(z) :=
1

2
(z + z−1). (3.12)

This is simply Newton’s method to find a root of z2 − 1, but one can verify that the function
g fixes the left and right halfplanes, and thus we should expect it to push those eigenvalues
in the former towards −1, and those in the latter towards +1.

We denote the specific finite-arithmetic implementation used in our algorithm by SGN;
the pseudocode is provided below.

In Section 3.4.1 we briefly discuss the specific preliminaries that will be used throughout
this section. In Section 3.4.2 we give a pseudospectral proof of the rapid global convergence
of this iteration when implemented in exact arithmetic. In Section 3.4.2 we show that the
proof provided in Section 3.4.3 is robust enough to handle the finite arithmetic case; a formal
statement of this main result is the content of Theorem 3.4.9.
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SGN

Input: Matrix A ∈ Cn×n, pseudospectral guarantee ϵ, circle parameter α, desired accuracy δ
Requires: Λϵ(A) ⊂ Cα.
Algorithm: S = SGN(A, ϵ, α, δ)

1. N ← ⌈lg(1/(1− α)) + 3 lg lg(1/(1− α)) + lg lg(1/(βϵ)) + 7.59⌉

2. A0 ← A

3. For k = 1, ..., N ,

a) Ak ← 1
2(Ak−1 +A−1

k−1) + Ek

4. S ← AN

Output: Approximate matrix sign function S

Ensures: ∥S − sgn(A)∥ ≤ δ

3.4.1 Circles of Apollonius

It has been known since antiquity that a circle in the plane may be described as the set
of points with a fixed ratio of distances to two focal points. By fixing the focal points
and varying the ratio in question, we get a family of circles named for the Greek geometer
Apollonius of Perga. We will exploit several interesting properties enjoyed by these Circles of
Apollonius in the analysis below.

More precisely, we analyze the Newton iteration map g in terms of the family of Apollonian
circles whose foci are the points ±1 ∈ C. For the remainder of this section set

m(z) :=
1− z
1 + z

to be the Möbius transformation taking the right half-plane to the unit disk, and for each
α ∈ (0, 1) we denote by

C+
α = {z ∈ C : |m(z)| ≤ α} , C−

α = {z ∈ C : |m(z)|−1 ≤ α}

the closed region in the right (respectively left) half-plane bounded by such a circle. Write
∂C+

α and ∂C−
α for their boundaries, and Cα = C+

α ∪ C−
α for their union. See Figure 3.1 for an

illustration.
The region C+

α is a disk centered at 1+α2

1−α2 ∈ R, with radius 2α
1−α2 , and whose intersection

with the real line is the interval (m(α),m(α)−1); C−
α can be obtained by reflecting C+

α with
respect to the imaginary axis. For α > β > 0, we will write

A+
α,β = C+

α \ C+
β

for the Apollonian annulus lying inside C+
α and outside C+

β ; note that the circles are not
concentric so this is not strictly speaking an annulus, and note also that in our notation
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1 2 3 4 5

−3

−2

−1
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2

3

Figure 3.1: Apollonian circles appearing in the analysis of the Newton iteration. Depicted are
∂C+

α2k
for α = 0.8 and k = 0, 1, 2, 3, with smaller circles corresponding to larger k.

this set does not include ∂C+
β . In the same way define A−

α,β for the left half-plane and write

Aα,β = A+
α,β ∪ A−

α,β.

Observation 3.4.1 ([131]). The Newton map g is a two-to-one map from C+
α to C+

α2 , and a
two-to-one map from C−

α to C−
α2 .

Proof. This follows from the fact that for each z in the right half-plane,

|m(g(z))| =
∣∣∣∣1− 1

2
(z + 1/z)

1 + 1
2
(z + 1/z)

∣∣∣∣ = ∣∣∣∣(1− z)2(z + 1)2

∣∣∣∣ = |m(z)|2

and similarly for the left half-plane.

It follows from Observation 3.4.1 that under repeated application of the Newton map g,
any point in the right or left half-plane converges to +1 or −1, respectively.

3.4.2 Exact Arithmetic

In this section, we set A0 := A ∈ Cn×n and Ak+1 := g(Ak) for all k ≥ 0. As explained in
Section 1.3, in the case of exact arithmetic, Observation 3.4.1 implies global convergence of
the Newton iteration when A is diagonalizable. For the convenience of the reader we detail
this argument (due to [131]) below.

Proposition 3.4.2. Assume that A is a diagonalizable matrix and that Spec(A) ⊂ Cα for
some α ∈ (0, 1). Then for every N ∈ N we have the guarantee

∥AN − sgn(A)∥ ≤ 4α2N

α2N+1 + 1
· κV (A).
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Moreover, when A does not have eigenvalues on the imaginary axis the minimum α for which
Spec(A) ⊂ Cα is given by

α2 = max
1≤i≤n

{
1− 4|Re(λi(A))|
|λi(A)− sgn(λi(A))|2

}
Proof. Consider the spectral decomposition A =

∑n
i=1 λiviw

∗
i , and denote by λ

(N)
i the eigen-

values of AN .
By Observation 3.4.1 we have that Spec(AN ) ⊂ Cα2N and sgn(λi) = sgn(λ

(N)
i ). Moreover,

AN and sgn(A) have the same eigenvectors. Hence

∥AN − sgn(A)∥ ≤

∥∥∥∥∥∥
∑

Re(λi)>0

(λ
(N)
i − 1)viw

∗
i

∥∥∥∥∥∥+
∥∥∥∥∥∥
∑

Re(λi)<0

(λ
(N)
i + 1)viw

∗
i

∥∥∥∥∥∥ . (3.13)

Now we will use that for any matrix X we have that ∥X∥ ≤ κV (X)spr(X) where spr(X)
denotes the spectral radius of X. Observe that the spectral radii of the two matrices appearing
on the right hand side of (3.13) are bounded by maxi |λi− sgn(λi)|, which in turn is bounded
by the radius of the circle C+

α2N
, namely 2α2N/(α2N+1

+1). On the other hand, the eigenvector

condition number of these matrices is bounded by κV (A). This concludes the first part of the
statement.

In order to compute α note that if z = x+ iy with x > 0, then

|m(z)|2 = (1− x)2 + y2

(1 + x)2 + y2
= 1− 4x

(1 + x)2 + y2
,

and analogously when x < 0 and we evaluate |m(z)|−2.

The above analysis becomes useless when trying to prove the same statement in the
framework of finite arithmetic. This is due to the fact that at each step of the iteration the
roundoff error can make the eigenvector condition numbers of the Ak grow. In fact, since
κV (Ak) is sensitive to infinitesimal perturbations whenever Ak has a multiple eigenvalue, it
seems difficult to control it against adversarial perturbations as the iteration converges to
sgn(Ak) (which has very high multiplicity eigenvalues). A different approach, also due to
[131], yields a proof of convergence in exact arithmetic even when A is not diagonalizable.
However, that proof relies heavily on the fact that m(AN) is an exact power of m(A0), or
more precisely, it requires the sequence Ak to have the same generalized eigenvectors, which
is again not the case in the finite arithmetic setting.

Therefore, a robust version, tolerant to perturbations, of the above proof is needed. To
this end, instead of simultaneously keeping track of the eigenvector condition number and the
spectrum of the matrices Ak, we will just show that for certain ϵk > 0, the ϵk−pseudospectra
of these matrices are contained in a certain shrinking region dependent on k. This invariant
is inherently robust to perturbations smaller than ϵk, unaffected by clustering of eigenvalues
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due to convergence, and allows us to bound the accuracy and other quantities of interest via
the functional calculus. For example, the following lemma shows how to obtain a bound on
∥AN − sgn(A)∥ solely using information from the pseudospectrum of AN .

Lemma 3.4.3 (Pseudospectral Error Bound). Let A ∈ Cn×n be arbitrary and AN be the N th
iterate of the Newton iteration under exact arithmetic. Assume that ϵN > 0 and αN ∈ (0, 1)
satisfy ΛϵN (AN) ⊂ CαN

. Then we have the guarantee

∥AN − sgn(A)∥ ≤ 8α2
N

(1− αN)2(1 + αN)ϵN
. (3.14)

Proof. Note that sgn(A) = sgn(AN). Using the functional calculus we get

∥AN − sgn(AN)∥

=

∥∥∥∥∥ 1

2πi

∮
∂CαN

z(z − AN)−1 dz − 1

2πi

(∮
∂C+

αN

(z − AN)−1 dz −
∮
∂C−

αN

(z − AN)−1 dz

)∥∥∥∥∥
=

∥∥∥∥∥ 1

2πi

∮
∂C+

αN

z(z − AN)−1 − (z − AN)−1 dz +
1

2πi

∮
∂C−

αN

z(z − AN)−1 + (z − AN)−1 dz

∥∥∥∥∥
≤ 1

2π

∥∥∥∥∥
∮
∂C+

αN

(z − 1)(z − AN)−1 dz

∥∥∥∥∥+ 1

2π

∥∥∥∥∥
∮
∂C−

αN

(z + 1)(z − AN)−1 dz

∥∥∥∥∥
≤2 · 1

2π
ℓ(∂C+

αN
) sup{|z − 1| : z ∈ C+

αN
} 1

ϵN

=
4αN

1− α2
N

(
1 + αN
1− αN

− 1

)
1

ϵN

=
8α2

N

(1− αN)2(1 + αN)ϵN
.

In view of Lemma 3.4.3, we would now like to find sequences αk and ϵk such that

Λϵk(Ak) ⊂ Cαk

and α2
k/ϵk converges rapidly to zero. The dependence of this quantity on the square of αk

turns out to be crucial. As we will see below, we can find such a sequence with ϵk shrinking
roughly at the same rate as αk. This yields quadratic convergence, which will be necessary
for our bound on the required machine precision in the finite arithmetic analysis of Section
3.4.3.

The lemma below is instrumental in determining the sequences αk, ϵk.

Lemma 3.4.4 (Key Lemma). If Λϵ(A) ⊂ Cα, then for every α′ > α2, we have Λϵ′(g(A)) ⊂ Cα′

where

ϵ′ := ϵ
(α′ − α2)(1− α2)

8α
.
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Proof. From the definition of pseudospectrum, our hypothesis implies ∥(z − A)−1∥ < 1/ϵ for
every z outside of Cα. The proof will hinge on the observation that, for each α′ ∈ (α2, α),
this resolvent bound allows us to bound the resolvent of g(A) everywhere in the Appolonian
annulus Aα,α′ .

Let w ∈ Aα,α′ ; see Figure 3.2 for an illustration. We must show that w ̸∈ Λϵ′(g(A)). Since
w ̸∈ Cα2 , Observation 3.4.1 ensures no z ∈ Cα satisfies g(z) = w; in other words, the function
(w − g(z))−1 is holomorphic in z on Cα. As Spec(A) ⊂ Λϵ(A) ⊂ Cα, Observation 3.4.1 also
guarantees that Spec(g(A)) ⊂ Cα2 . Thus for w in the union of the two Appolonian annuli
in question, we can calculate the resolvent of g(A) at w using the holomorphic functional
calculus:

(w − g(A))−1 =
1

2πi

∮
∂Cα

(w − g(z))−1(z − A)−1dz,

where by this we mean to sum the integrals over ∂C+
α and ∂C−

α , both positively oriented.
Taking norms, passing inside the integral, and applying Observation 3.4.1 one final time, we
get: ∥∥(w − g(A))−1

∥∥ ≤ 1

2π

∮
∂Cα

|(w − g(z))−1| · ∥(z − A)−1∥dz

≤
ℓ (∂C+

α ) supy∈C+

α2
|(w − y)−1|+ ℓ (∂C−

α ) supy∈C−
α2
|(w − y)−1|

2πϵ

≤ 1

ϵ

8α

(α′ − α2)(1− α2)
.

In the last step we also use the forthcoming Lemma 3.4.5. Thus, with ϵ′ defined as in the
theorem statement, Aα,α′ contains none of the ϵ′-pseudospectrum of g(A). Since Spec(g(A)) ⊂
Cα2 , Lemma 1.1.8 tells us that there can be no ϵ′-pseudospectrum in the remainder of C \Cα′ ,
as such a connected component would need to contain an eigenvalue of g(A).

1 2

−0.5

0.5

C+
α

C+
α′

C+
α2

w

z

g(z)

Figure 3.2: Illustration of the proof of Lemma 3.4.4
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Lemma 3.4.5. Let 1 > α, β > 0 be given. Then for any x ∈ ∂Cα and y ∈ ∂Cβ, we have
|x− y| ≥ (α− β)/2.

Proof. Without loss of generality x ∈ ∂C+
α and y ∈ ∂C+

β . Then we have

|α− β| = ||m(x)| − |m(y)|| ≤ |m(x)−m(y)| = 2|x− y|
|1 + x||1 + y|

≤ 2|x− y|.

Lemma 3.4.4 will also be useful in bounding the condition numbers of the Ak, which is
necessary for the finite arithmetic analysis.

Corollary 3.4.6 (Condition Number Bound). Using the notation of Lemma 3.4.4, if Λϵ(A) ⊂
Cα, then

∥A−1∥ ≤ 1

ϵ
and ∥A∥ ≤ 4α

(1− α)2ϵ
.

Proof. The bound ∥A−1∥ ≤ 1/ϵ follows from the fact that 0 /∈ Cα ⊃ Λϵ(A). In order to bound
A we use the contour integral bound

∥A∥ =
∥∥∥∥ 1

2πi

∮
∂Cα

z(z − A)−1 dz

∥∥∥∥
≤ ℓ(∂Cα)

2π

(
sup
z∈∂Cα

|z|
)

1

ϵ

=
4α

1− α2

1 + α

1− α
1

ϵ
.

Another direct application of Lemma 3.4.4 yields the following.

Lemma 3.4.7. Let ϵ > 0. If Λϵ(A) ⊂ Cα, and 1/α > D > 1 then for every N we have the
guarantee

ΛϵN (AN) ⊂ CαN
,

for αN = (Dα)2
N
/D and ϵN = αN ϵ

α

(
(D−1)(1−α2)

8D

)N
.

Proof. Define recursively α0 = α, ϵ0 = ϵ, αk+1 = Dα2
k and ϵk+1 =

1
8
ϵkαk(D− 1)(1− α2

0). It is
easy to see by induction that this definition is consistent with the definition of αN and ϵN
given in the statement.

We will now show by induction that Λϵk(Ak) ⊂ Cαk
. Assume the statement is true for

k, so from Lemma 3.4.4 we have that the statement is also true for Ak+1 if we pick the
pseudospectral parameter to be

ϵ′ = ϵk
(αk+1 − α2

k)(1− α2
k)

8αk
=

1

8
ϵkαk(D − 1)(1− α2

k).
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On the other hand

1

8
ϵkαk(D − 1)(1− α2

k) ≥
1

8
ϵkαk(D − 1)(1− α2

0) = ϵk+1,

which concludes the proof of the statement.

We are now ready to prove the main result of this section, a pseudospectral version of
Proposition 3.4.2.

Proposition 3.4.8. Let A ∈ Cn×n be a diagonalizable matrix and assume that Λϵ(A) ⊂ Cα
for some α ∈ (0, 1). Then, for any 1 < D < 1

α
for every N we have the guarantee

∥AN − sgn(A)∥ ≤ (Dα)2
N · πα(1− α

2)2

8ϵ
·
(

8D

(D − 1)(1− α2)

)N+2

.

Proof. Using the choice of αk and ϵk given in the proof of Lemma 3.4.7 and the bound (3.14),
we get that

∥AN − sgn(A)∥ ≤ 8πα2
N

(1− αN)2(1 + αN)ϵN

=
8πα0αN

ϵ0(1− αN)2(1 + αN)

(
8D

(D − 1)(1− α2
0)

)N
= (Dα0)

2N 8D3πα0

(D − (Dα0)2
N )2(D + (Dα0)2

N )ϵ0

(
8D

(D − 1)(1− α2
0)

)N
≤ (Dα0)

2N 8D2πα0

(D − 1)2ϵ0

(
8D

(D − 1)(1− α2
0)

)N
= (Dα0)

2N πα0(1− α2
0)

2

8ϵ0

(
8D

(D − 1)(1− α2
0)

)N+2

,

where the last inequality was taken solely to make the expression more intuitive, since not
much is lost by doing so.

3.4.3 Finite Arithmetic

Finally, we turn to the analysis of SGN in finite arithmetic. By making the machine precision
small enough, we can bound the effect of roundoff to ensure that the parameters αk, ϵk are
not too far from what they would have been in the exact arithmetic analysis above. We will
stop the iteration before any of the quantities involved become prohibitively small, so we will
only need polylog(1− α0, ϵ0, β) bits of precision, where β is the accuracy parameter.

In exact arithmetic, recall that the Newton iteration is given by Ak+1 = g(Ak) =
1
2
(Ak + A−1

k ). Here we will consider the finite arithmetic version G of the Newton map g,
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defined as G(A) := g(A) + EA where EA is an adversarial perturbation coming from the

round-off error. Hence, the sequence of interest is given by Ã0 := A and Ãk+1 := G(Ãk).
In this subsection we will prove the following theorem concerning the runtime and precision

of SGN. Our assumptions on the size of the parameters α0, β, µINV(n) and cINV are in place
only to simplify the analysis of constants; these assumptions are not required for the execution
of the algorithm.

Theorem 3.4.9 (Main guarantees for SGN). Assume INV is a (µINV(n), cINV)-stable matrix in-
version algorithm satisfying Definition 3.2.3. Let ϵ0 ∈ (0, 1), β ∈ (0, 1/12), assume µINV(n) ≥ 1

and cINV log n ≥ 1, and assume A = Ã0 is a floating-point matrix with ϵ0-pseudospectrum
contained in Cα0 where 0 < 1− α0 < 1/100. Run SGN with

N = ⌈lg(1/(1− α0)) + 3 lg lg(1/(1− α0)) + lg lg(1/(βϵ0)) + 7.59⌉

iterations (as specified in the statement of the algorithm). Then ÃN = SGN(A) satisfies the
advertised accuracy guarantee

∥ÃN − sgn(A)∥ ≤ β

when run with machine precision satisfying

u ≤ uSGN :=
α
2N+1(cINV logn+3)
0

µINV(n)
√
nN

,

corresponding to at most

lg(1/uSGN)) = O(log n log3(1/(1− α0))(log(1/β) + log(1/ϵ0)))

required bits of precision. The number of arithmetic operations is at most

N(4n2 + TINV(n)).

Later on, we will need to call SGN on a matrix with shattered pseudospectrum; the lemma
below calculates acceptable parameter settings for shattering so that the pseudospectrum is
contained in the required pair of Appolonian circles, satisfying the hypothesis of Theorem
3.4.9.

Lemma 3.4.10. If A has ϵ-pseudospectrum shattered with respect to a grid g = grid(z0, ω, s1, s2)
that includes the imaginary axis as a grid line, then one has Λϵ0(A) ⊆ Cα0 where ϵ0 = ϵ/2 and

α0 = 1− ϵ

diam(g)2
.

In particular, if ϵ is at least 1/poly(n) and ωs1 and ωs2 are at most poly(n), then ϵ0 and
1− α0 are also at least 1/poly(n).
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Proof. First, because it is shattered, the ϵ/2-pseudospectrum of A is at least distance ϵ/2
from g. Recycling the calculation from Proposition 3.4.2, it suffices to take

α2
0 = max

z∈Λϵ/2(A)

(
1− 4|Re z|
|z − sgn(z)|2

)
.

From what we just observed about the pseudospectrum, we can take |Re z| ≥ ϵ/2. To bound
the denominator, we can use the crude bound that any two points inside the grid are at
distance no more than diam(g). Finally, we use

√
1− x ≤ 1− x/2 for any x ∈ (0, 1).

The proof of Theorem 3.4.9 will proceed as in the exact arithmetic case, with the
modification that ϵk must be decreased by an additional factor after each iteration to account
for roundoff. At each step, we set the machine precision u small enough so that the ϵk remain
close to what they would be in exact arithmetic. For the analysis we will introduce an explicit
auxiliary sequence ek that lower bounds the ϵk, provided that u is small enough.

Lemma 3.4.11 (One-step additive error). Assume the matrix inverse is computed by an
algorithm INV satisfying the guarantee in Definition 3.2.3. Then G(A) = g(A) + E for some
error matrix E with norm

∥E∥ ≤
(
∥A∥+ ∥A−1∥+ µINV(n)κ(A)

cINV logn∥A−1∥
)
2
√
nu. (3.15)

Proof. The computation of G(A) consists of three steps:

1. Form A−1 according to Definition 3.2.3. This incurs an additive error of EINV =
µINV(n) · u · κ(A)cINV logn∥A−1∥. The result is INV(A) = A−1 + EINV.

2. Add A to INV(A). This incurs an entry-wise relative error of size u: The result is

(A+ A−1 + EINV) ◦ (J + Eadd)

where J denotes the all-ones matrix, ∥Eadd∥max ≤ u, and where ◦ denotes the entrywise
(Hadamard) product of matrices.

3. Divide the resulting matrix by 2, which is an exact operation in our floating-point
model as we can simply decrement the exponent. The final result is

G(A) =
1

2
(A+ A−1 + EINV) ◦ (J + Eadd).

Finally, recall that for any n× n matrices M and E, we have the relation (3.1)

∥M ◦ E∥ ≤ ∥M∥∥E∥max
√
n.

Putting it all together, we have

∥G(A)− g(A)∥ ≤ 1

2

(
∥A∥+ ∥A−1∥

)
u
√
n+ ∥EINV∥(1 + u)

√
n
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≤ 1

2

(
∥A∥+ ∥A−1∥

)
u
√
n+ µINV(n) · u · κ(A)cINV logn∥A−1∥(1 + u)

√
n

≤
(
∥A∥+ ∥A−1∥+ µINV(n)κ(A)

cINV logn∥A−1∥
)
2
√
nu

where we use u < 1 in the last line.

With the error bound for each step in hand, we now move to the analysis of the whole
iteration. It will be convenient to define s := 1− α0, which should be thought of as a small
parameter. As in the exact arithmetic case, for k ≥ 1, we will recursively define decreasing
sequences αk and ϵk maintaining the property

Λϵk(Ãk) ⊂ Cαk
for all k ≥ 0 (3.16)

by induction as follows:

1. The base case k = 0 holds because by assumption, Λϵ0 ⊂ Cα0 .

2. Here we recursively define αk+1. Set

αk+1 := (1 + s/4)α2
k.

In the notation of Subsection 3.4.2, this corresponds to setting D = 1 + s/4. This
definition ensures that α2

k ≤ αk+1 ≤ αk for all k, and also gives us the bound (1 +
s/4)α0 ≤ 1− s/2. We also have the closed form

αk = (1 + s/4)2
k−1α2k

0 ,

which implies the useful bound

αk ≤ (1− s/2)2k . (3.17)

3. Here we recursively define ϵk+1. Combining Lemma 3.4.4, the recursive definition of

αk+1, and the fact that 1−α2
k ≥ 1−α2

0 ≥ 1−α0 = s, we find that Λϵ′
(
g(Ãk)

)
⊂ Cαk+1

,

where

ϵ′ = ϵk
(αk+1 − α2

k) (1− α2
k)

8αk
= ϵk

sαk(1− α2
k)

32
≥ ϵk

αks
2

32
.

Thus in particular

Λϵkαks2/32

(
g(Ãk)

)
⊂ Cαk+1

.

Since Ãk+1 = G(Ãk) = g(Ãk) + Ek, for some error matrix Ek arising from roundoff,
Lemma 1.1.7 ii) ensures that if we set

ϵk+1 := ϵk
s2αk
32
− ∥Ek∥ (3.18)

we will have Λϵk+1
(Ãk+1) ⊂ Cαk+1

, as desired.



CHAPTER 3. SPECTRAL BISECTION 96

We now need to show that the ϵk do not decrease too fast as k increases. In view of (3.18),
it will be helpful to set the machine precision small enough to guarantee that ∥Ek∥ is a small

fraction of ϵk
αks

2

32
.

First, we need to control the quantities ∥Ãk∥, ∥Ã−1
k ∥, and κ(Ãk) = ∥Ãk∥∥Ã

−1
k ∥ appearing

in our upper bound (3.15) on ∥Ek∥ from Lemma 3.4.11, as functions of ϵk. By Corollary
3.4.6, we have

∥Ã−1
k ∥ ≤

1

ϵk
and ∥Ãk∥ ≤ 4

αk
(1− αk)2ϵk

≤ 4

s2ϵk
.

Thus, we may write the coefficient of u in the bound (3.15) as

Kϵk :=

[
4

s2ϵk
+

1

ϵk
+ µINV(n)

(
4

s2ϵ2k

)cINV logn
1

ϵk

]
2
√
n

so that Lemma 3.4.11 reads
∥Ek∥ ≤ Kϵku. (3.19)

Plugging this into the definition (3.18) of ϵk+1, we have

ϵk+1 ≥ ϵk
s2αk
32
−Kϵku. (3.20)

Now suppose we take u small enough so that

Kϵku ≤
1

3
ϵk
s2αk
32

. (3.21)

For such u, we then have

ϵk+1 ≥
2

3
ϵk
s2αk
32

=
1

48
ϵks

2αk, (3.22)

which implies

∥Ek∥ ≤
1

2
ϵk+1; (3.23)

this bound is loose but sufficient for our purposes. Inductively, we now have the following
bound on ϵk in terms of αk:

Lemma 3.4.12 (Preliminary lower bound on ϵk). Let k ≥ 0, and for all 0 ≤ i ≤ k − 1,
assume u satisfies the requirement (3.21):

Kϵiu ≤
1

3
ϵi
s2αi
32

.

Then we have

ϵk ≥ ek := ϵ0

(
s2

50

)k
αk.

In fact, it suffices to assume the hypothesis only for i = k − 1.
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Proof. The last statement follows from the fact that ϵi is decreasing in i and Kϵi is increasing
in i.

Since (3.21) implies (3.22), we may apply (3.22) repeatedly to obtain

ϵk ≥ ϵ0(s
2/48)k

k−1∏
i=0

αi

= ϵ0(s
2/48)k(1 + s/4)2

k−1−kα2k−1
0 by the definition of αi

= ϵ0

(
s2

48(1 + s/4)

)k
αk
α0

≥ ϵ0

(
s2

50

)k
αk. α0 ≤ 1, s < 1/8

We now show that the conclusion of Lemma 3.4.12 still holds if we replace ϵi everywhere in
the hypothesis by ei, which is an explicit function of ϵ0 and α0 defined in Lemma 3.4.12. Note
that we do not know ϵi ≥ ei a priori, so to avoid circularity we must use a short inductive
argument.

Corollary 3.4.13 (Lower bound on ϵk with explicit hypothesis). Let k ≥ 0, and for all
0 ≤ i ≤ k − 1, assume u satisfies

Keiu ≤
1

3
ei
s2αi
32

(3.24)

where ei is defined in Lemma 3.4.12. Then we have

ϵk ≥ ek.

In fact, it suffices to assume the hypothesis only for i = k − 1.

Proof. The last statement follows from the fact that ei is decreasing in i and Kei is increasing
in i. Assuming the full hypothesis of this lemma, we prove ϵi ≥ ei for 0 ≤ i ≤ k by induction
on i. For the base case, we have ϵ0 ≥ e0 = ϵ0α0.

For the inductive step, assume ϵi ≥ ei. Then as long as i ≤ k − 1, the hypothesis of this
lemma implies

Kϵiu ≤
1

3
ϵi
s2αi
32

,

so we may apply Lemma 3.4.12 to obtain ϵi+1 ≥ ei+1, as desired.

Lemma 3.4.14 (Main accuracy bound). Suppose u satisfies the requirement (3.21) for all
0 ≤ k ≤ N . Then

∥ÃN − sgn(A)∥ ≤ 8

s

N−1∑
k=0

∥Ek∥
ϵ2k+1

+
8 · 50N

s2N+2ϵ0
(1− s/2)2N . (3.25)
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Proof. Since sgn = sgn ◦ g, for every k we have

∥sgn(Ãk+1)− sgn(Ãk)∥ = ∥sgn(Ãk+1)− sgn(g(Ãk))∥ = ∥sgn(Ãk+1)− sgn(Ãk+1 − Ek)∥.

From the holomorphic functional calculus we can rewrite ∥sgn(Ãk+1)− sgn(Ãk+1 − Ek)∥ as
the norm of a certain contour integral, which in turn can be bounded as follows:

1

2π

∥∥∥∥∮
∂C+

αk+1

[(z − Ãk+1)
−1 − (z − (Ãk+1 − Ek))−1] dz

−
∮
∂C−

αk+1

[(z − Ãk+1)
−1 − (z − (Ãk+1 − Ek))−1] dz

∥∥∥∥
=

1

2π

∥∥∥∥∮
∂C+

αk+1

[(z − (Ãk+1 − Ek))−1Ek(z − Ãk+1)
−1] dz

−
∮
∂C−

αk+1

[(z − (Ãk+1 − Ek))−1Ek(z − Ãk+1)
−1] dz

∥∥∥∥
≤ 1

π

∮
∂C+

αk+1

∥(z − (Ãk+1 − Ek))−1∥∥Ek∥∥(z − Ãk+1)
−1∥ dz

≤ 1

π
ℓ(∂C+

αk+1
)∥Ek∥

1

ϵk+1 − ∥Ek∥
1

ϵk+1

=
4αk+1

1− α2
k+1

∥Ek∥
1

ϵk+1 − ∥Ek∥
1

ϵk+1

,

where we use the definition (1.9) of pseudospectrum and Lemma 1.1.7, together with the
property (3.16). Ultimately, this chain of inequalities implies

∥sgn(Ãk+1)− sgn(Ãk)∥ ≤
4αk+1

1− α2
k+1

∥Ek∥
1

ϵk+1 − ∥Ek∥
1

ϵk+1

.

Summing over all k and using the triangle inequality, we obtain

∥sgn(ÃN)− sgn(Ã0)∥ ≤
N−1∑
k=1

4αk+1

1− α2
k+1

∥Ek∥
1

ϵk+1 − ∥Ek∥
1

ϵk+1

≤ 8

s

N−1∑
k=0

∥Ek∥
ϵ2k+1

,

where in the last step we use αk ≤ 1 and 1− α2
k+1 ≥ s, as well as (3.23).

By Lemma 3.4.3 (to be precise, by repeating the proof of that lemma with ÃN substituted
for AN), we have

∥ÃN − sgn(ÃN)∥ ≤
8α2

N

(1− αN)2(1 + αN)ϵN
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≤ 8

s2
αN

αN
ϵN

≤ 8

s2
αN

1

ϵ0

(
50

s2

)N
≤ 8

s2ϵ0
(1− s/2)2N

(
50

s2

)N
≤ 8 · 50N

s2N+2ϵ0
(1− s/2)2N .

where we use s < 1/2 in the last step.
Combining the above with the triangle inequality, we obtain the desired bound.

We would like to apply Lemma 3.4.14 to ensure ∥ÃN − sgn(A)∥ is at most β, the desired
accuracy parameter. The upper bound (3.25) in Lemma 3.4.14 is the sum of two terms; we
will make each term less than β/2. The bound for the second term will yield a sufficient
condition on the number of iterations N . Given that, the bound on the first term will then
give a sufficient condition on the machine precision u. This will be the content of Lemmas
3.4.17 and 3.4.18.

We start with the second term. The following preliminary lemma will be useful:

Lemma 3.4.15. Let 1/800 > t > 0 and 1/2 > c > 0 be given. Then for

j ≥ lg(1/t) + 2 lg lg(1/t) + lg lg(1/c) + 1.62,

we have
(1− t)2j

t2j
< c.

Before proving the above lemma, and other results of the sort, we state a trivial but
powerful observation.

Lemma 3.4.16. Let x, y > 0, then

log(x+ y) ≤ log(x) +
y

x
and lg(x+ y) ≤ lg(x) +

1

log 2

y

x
.

Proof. This follows directly from the concavity of the logarithm.

We can now show Lemma 3.4.15.

Proof of Lemma 3.4.15. An exact solution for j can be written in terms of the Lambert
W -function; see [43] for further discussion and a useful series expansion. For our purposes, it
is simpler to derive the necessary quantitative bound from scratch.

Immediately from the assumption t < 1/800, we have j > log(1/t) ≥ 9.
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First let us solve the case c = 1/2. We will prove the contrapositive, so assume

(1− t)2j

t2j
≥ 1/2.

Then taking log on both sides, we have

2j log(1/t) + 1 ≥ −2j log(1− t) ≥ 2jt.

Taking lg of both sides and applying the second inequality in Lemma 3.4.16 with x =
2j log(1/t) and y = 1, using lg x = 1 + lg j + lg log(1/t), we obtain

1 + lg j + lg log(1/t) +
1

log 2

1

2j log(1/t)
≥ j + lg t.

Since t < 1/800 we have 1
log 2

1
2j log(1/t)

< 0.01, so

j − lg j ≤ lg(1/t) + lg log(1/t) + 1.01 ≤ lg(1/t) + lg lg(1/t) + 0.49 =: K.

But since j ≥ 9, we have j − lg j ≥ 0.64j, so

j ≤ 1

0.64
(j − lg j) ≤ 1

0.64
K

which implies
j ≤ K + lg j ≤ K + lg(1.57K) = K + lgK + 0.65.

Note K ≤ 1.39 lg(1/t), because K− lg(1/t) = lg lg(1/t)+0.49 ≤ 0.39 lg(1/t) for t ≤ 1/800.
Thus

lgK ≤ lg(1.39 lg(1/t)) ≤ lg lg(1/t) + 0.48,

so for the case c = 1/2 we conclude the proof of the contrapositive of the lemma:

j ≤ K + lgK + 0.65

≤ lg(1/t) + lg lg(1/t) + 0.49 + (lg lg(1/t) + 0.48) + 0.65

= lg(1/t) + 2 lg lg(1/t) + 1.62.

For the general case, once (1− t)2j/t2j ≤ 1/2, consider the effect of incrementing j on the
left hand side. This has the effect of squaring and then multiplying by t2j−2, which makes it
even smaller. At most lg lg(1/c) increments are required to bring the left hand side down to

c, since (1/2)2
lg lg(1/c)

= c. This gives the value of j stated in the lemma, as desired.

We use this to now show.

Lemma 3.4.17 (Bound on second term of (3.25)). Suppose we have

N ≥ lg(8/s) + 2 lg lg(8/s) + lg lg(16/(βs2ϵ0)) + 1.62.

Then
8 · 50N

s2N+2ϵ0
(1− s/2)2N ≤ β/2.
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Proof. It is sufficient that
8 · 64N

s2N+2ϵ0
(1− s/8)2N ≤ β/2.

The result now follows from applying Lemma 3.4.15 with c = βs2ϵ0/16 and t = s/8.

Now we move to the first term in the bound of Lemma 3.4.14.

Lemma 3.4.18 (Bound on first term of (3.25)). Suppose

N ≥ lg(8/s) + 2 lg lg(8/s) + lg lg(16/(βs2ϵ0)) + 1.62,

and suppose the machine precision u satisfies

u ≤ (1− s)2N+1(cINV logn+3)

µINV(n)
√
nN

.

Then we have
8

s

N−1∑
k=0

∥Ek∥
ϵ2k+1

≤ β/2.

Proof. It suffices to show that for all 0 ≤ k ≤ N − 1,

∥Ek∥ ≤
βϵ2k+1s

16N
.

In view of (3.19), which says ∥Ek∥ ≤ Kϵku, it is sufficient to have for all 0 ≤ k ≤ N − 1

u ≤ 1

Kϵk

βϵ2k+1s

16N
. (3.26)

For this, we claim it is sufficient to have for all 0 ≤ k ≤ N − 1

u ≤ 1

Kek

βe2k+1s

16N
. (3.27)

Indeed, on the one hand, since β < 1/6 and by the loose bound ek+1 < sαk+1 < sαk we have

that (3.27) implies u ≤ 1
3Kek

s2ek
32

, which means that the assumption in Corollary 3.4.13 is

satisfied. On the other hand Corollary 3.4.13 yields ek ≤ ϵk for all 0 ≤ k ≤ N , which in turn,
combined with (3.27) would give (3.26) and conclude the proof.

We now show that (3.27) holds for all 0 ≤ k ≤ N−1. Because 1/Kek and ek are decreasing
in k, it is sufficient to have the single condition

u ≤ 1

KeN

βe2Ns

16N
.



CHAPTER 3. SPECTRAL BISECTION 102

We continue the chain of sufficient conditions on u, where each line implies the line above:

u ≤ 1

KeN

βe2Ns

16N

u ≤ 1[
4

s2eN
+ 1

eN
+ µINV(n)

(
4

s2e2N

)cINV logn
1
eN

]
2
√
n

βe2Ns

16N

u ≤ 1

6µINV(n)
(

4
s2eN

)cINV logn+1

2
√
n

βe2Ns

16N

u ≤ β

6 · 2 · 16µINV(n)
√
nN

(
eNs

2

4

)cINV logn+3

.

where we use the bound 1
eN
≤ 4

s2e2N
without much loss, and we also use our assumption

µINV(n) ≥ 1 and cINV log n ≥ 1 for simplicity.
Substituting the value of eN as defined in Lemma 3.4.12, we get the sufficient condition

u ≤ β

192µINV(n)
√
nN

(
ϵ0(s

2/50)NαNs
2

4

)cINV logn+3

.

Replacing αN by the smaller quantity α2N

0 = (1 − s)2N and cleaning up the constants
yields the sufficient condition

u ≤ β

192µINV(n)
√
nN

(
ϵ0(s

2/50)N(1− s)2Ns2

4

)cINV logn+3

.

Now we finally will use our hypothesis on the size of N to simplify this expression.
Applying Lemma 3.4.17, we have

ϵ0(s
2/50)N/4 ≥ 4(1− s)2N

s2β
.

Thus, our sufficient condition becomes

u ≤ β

192µINV(n)
√
nN

(
4(1− s)2N+1

β

)cINV logn+3

.

To make the expression simpler, since cINV log n + 3 ≥ 4 we may pull out a factor of
44 > 192 and remove the occurrences of β to yield the sufficient condition

u ≤ (1− s)2N+1(cINV logn+3)

µINV(n)
√
nN

.



CHAPTER 3. SPECTRAL BISECTION 103

Matching the statement of Theorem 3.4.9, we give a slightly cleaner sufficient condition
on N that implies the hypothesis on N appearing in the above lemmas.

Lemma 3.4.19 (Final sufficient condition on N). If

N = ⌈lg(1/s) + 3 lg lg(1/s) + lg lg(1/(βϵ0)) + 7.59⌉,

then
N ≥ lg(8/s) + 2 lg lg(8/s) + lg lg(16/(βs2ϵ0)) + 1.62.

Proof. We aim to provide a slightly cleaner sufficient condition on N than the current
condition

N ≥ lg(8/s) + 2 lg lg(8/s) + lg lg(16/(βs2ϵ0)) + 1.62.

Repeatedly using Lemma 3.4.16, as well as the cruder fact lg lg(ab) ≤ lg lg a+ lg lg b provided
a, b ≥ 4, we have

lg lg(16/(βs2ϵ0)) ≤ lg lg(16/s2) + lg lg(1/(βϵ0))

= 1 + lg(3 + lg(1/s)) + lg lg(1/(βϵ0))

≤ 1 + lg lg(1/s) +
3

log 2 lg(1/s)
+ lg lg(1/(βϵ0))

≤ lg lg(1/s) + lg lg(1/(βϵ0)) + 1.66

where in the last line we use the assumption s < 1/100. Similarly,

lg(8/s) + 2 lg lg(8/s) ≤ 3 + lg(1/s) + 2 lg(3 + lg(1/s))

≤ 3 + lg(1/s) + 2

(
lg lg(1/s) +

3

log 2 lg(1/s)

)
≤ lg(1/s) + 2 lg lg(2/s) + 4.31

Thus, a sufficient condition is

N = ⌈lg(1/s) + 3 lg lg(1/s) + lg lg(1/(βϵ0)) + 7.59⌉.

Taking the logarithm of the machine precision yields the number of bits required:

Lemma 3.4.20 (Bit length computation). Suppose

N = ⌈lg(1/s) + 3 lg lg(1/s) + lg lg(1/(βϵ0)) + 7.59⌉

and

uSGN =
(1− s)2N+1(cINV logn+3)

µINV(n)
√
nN

.

Then
lg(1/uSGN) = O

(
log n log(1/s)3(log(1/β) + log(1/ϵ0))

)
.
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Proof. In the course of the proof, for convenience we also record a nonasymptotic bound (for
s < 1/100, β < 1/12, ϵ0 < 1 and cINV log n > 1 as in the hypothesis of Theorem 3.4.9), at the
cost of making the computation somewhat messier.

Immediately we have

lg(1/uSGN) ≤ lg µINV(n) +
1

2
lg n+ lgN + (cINV log n+ 3)2N+1 log(1/(1− s)).

Note that log(1/(1−s)) < s for s < 1/2. Also, 2N+1 ≤ (1/s) lg(1/s)3(lg(1/β)+ lg(1/ϵ0))2
9.59.

Putting this together, we have

lg(1/uSGN) ≤ lg µINV(n) +
1

2
lg n+ lgN + 1000(cINV log n+ 3) lg(1/s)3(lg(1/β) + lg(1/ϵ0)).

We now crudely bound lgN . Note that for s < 1/100 we have lg(1/s)+3 lg lg(1/s)+7.59 ≤
1/s. Thus,

lgN ≤ lg(1/s+ lg lg(1/(βϵ0)))

≤ lg(1/s+ lg(1/(βϵ0)))

≤ lg(1/s) + lg lg(1/(βϵ0)) lg(a+ b) ≤ lg a+ lg b for a, b > 2

≤ lg(1/s)3 lg(1/(βϵ0)).

Combining the above, we may fold the lgN and lg n terms into the final term to obtain

lg(1/uSGN) ≤ lg µINV(n) + 5000cINV log n lg(1/s)
3(lg(1/β) + lg(1/ϵ0)) (3.28)

where we use that cINV log n > 1 and therefore cINV log n+ 3 < 4cINV log n.
Using that µINV(n) = poly(n) and discarding subdominant terms, we obtain the desired

asymptotic bound.

This completes the proof of Theorem 3.4.9. Finally, we may prove the theorem advertised
in Section 1.3.

Proof of Theorem 1.3.3. Set ϵ := min{ 1
K
, 1}. Then Λϵ(A) does not intersect the imaginary

axis, and furthermore Λϵ(A) ⊆ D(0, 2) because ∥A∥ ≤ 1. Thus, we may apply Lemma 3.4.10
with diam(g) = 4

√
2 to obtain parameters α0, ϵ0 with the property that log(1/(1− α0)) and

log(1/ϵ0) are both O(logK). Theorem 3.4.9 now yields the desired conclusion.

3.5 Analysis of the Spectral Bisection Algorithm

In this section we will prove Theorem 1.3.1. As discussed in Section 1.3, our algorithm is not
new, and in its idealized form it reduces to the two following tasks:

Split: Given an n× n matrix A, find a partition of the spectrum into pieces of roughly
equal size, and output spectral projectors P± onto each of these pieces.
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Deflate: Given an n × n rank-k projector P , output an n × k matrix Q with orthogonal
columns that span the range of P .

These routines in hand, on input A one can compute P± and the corresponding Q±, and
then find the eigenvectors and eigenvalues of A± := Q∗

±AQ±. The observation below verifies
that this recursion is sound.

Observation 3.5.1. The spectrum of A is exactly Spec(A+)⊔Spec(A−), and every eigenvector
of A is of the form Q±v for some eigenvector v of one of A±.

The difficulty, of course, is that neither of these routines can be executed exactly: we will
never have access to true projectors P±, nor to the actual orthogonal matrices Q± whose
columns span their range, and must instead make do with approximations. Because our
algorithm is recursive and our matrices nonnormal, we must take care that the errors in
the sub-instances A± do not corrupt the eigenvectors and eigenvalues we are hoping to find.
Additionally, the Newton iteration we will use to split the spectrum behaves poorly when an
eigenvalue is close to the imaginary axis, and it is not clear how to find a splitting which is
balanced.

Our tactic in resolving these issues will be to pass to our algorithms a matrix and a grid
with respect to which its ϵ-pseudospectrum is shattered. To find an approximate eigenvalue,
then, one can settle for locating the grid square it lies in; containment in a grid square is
robust to perturbations of size smaller than ϵ. The shattering property is robust to small
perturbations, inherited by the subproblems we pass to, and—because the spectrum is
quantifiably far from the grid lines—allows us to run the Newton iteration in the first place.

Let us now sketch the implementations and state carefully the guarantees for SPLIT and
DEFLATE; the analysis of these will be deferred to Appendices B.1 and B.2. Our splitting
algorithm is presented a matrix A whose ϵ-pseudospectrum is shattered with respect to a
grid g. For any vertical grid line with real part h, Tr sgn(A− h) gives the difference between
the number of eigenvalues lying to its left and right. As

|Tr SGN(A− h)− Tr sgn(A− h)| ≤ n∥SGN(A− h)− sgn(A− h)∥,

we can determine these eigenvalue counts exactly by running SGN to accuracy O(1/n) and
rounding Tr SGN(A − h) to the nearest integer. We will show in Appendix B.1 that, by
mounting a binary search over horizontal and vertical lines of g, we will always arrive at a
partition of the eigenvalues into two parts with size at least max{n/5, 1}. Having found it, we
run SGN one final time at the desired precision to find the approximate spectral projectors.

Theorem 3.5.2 (Guarantees for SPLIT). Assume INV is a (µINV, cINV)-stable matrix inversion
algorithm satisfying Definition 3.2.3. Let ϵ ≤ 0.5, β ≤ 0.05/n, and ∥A∥ ≤ 4 and g have side
lengths of at most 8, and define

NSPLIT := lg
256

ϵ
+ 3 lg lg

256

ϵ
+ lg lg

4

βϵ
+ 7.59.
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SPLIT

Input: Matrix A ∈ Cn×n, pseudospectral parameter ϵ, grid g = grid(z0, ω, s1, s2), and desired
accuracy β
Requires: Λϵ(A) is shattered with respect to g, and β ≤ 0.05/n

Algorithm: (P̃±, g±, n±) = SPLIT(A, ϵ, g, β)

1. Execute a binary search over horizontal grid shifts h until

TrSGN

(
A− h, ϵ/4, 1− ϵ

2 diam(g)2
, β

)
≤ 3n/5.

2. If this fails, set A← iA and repeat with vertical grid shifts

3. Once a shift is found,

P̃± ← 1
2

(
SGN

(
A− h, ϵ/4, 1− ϵ

2 diam(g)2
, β

)
± I
)
,

and g± are set to the two subgrids

Output: Two matrices P̃± ∈ Cn×n, two subgrids g±, and two numbers n±
Ensures: Each subgrid g± contains n± eigenvalues of A, n± ≥ n/5, and ∥P̃± − P±∥ ≤ β, where
P± are the true spectral projectors for the eigenvalues in the subgrids g± respectively.

Then SPLIT has the advertised guarantees when run on a floating point machine with precision

u ≤ uSPLIT := min

{(
1− ϵ

256

)2NSPLIT+1(cINV logn+3)

µINV(n)
√
nNSPLIT

,
ϵ

100n
,
ϵ2

512

}
,

Using at most

TSPLIT(n, g, ϵ, β) ≤ 12 lg
1

ω(g)
·NSPLIT ·

(
TINV(n) +O(n2)

)
arithmetic operations. The number of bits required is

lg 1/uSPLIT = O

(
log n log3

256

ϵ

(
log

1

β
+ log

4

ϵ

))
.

Deflation of the approximate projectors we obtain from SPLIT amounts to a standard
rank-revealing QR factorization. This can be achieved deterministically in O(n3) time with
the classic algorithm of Gu and Eisenstat [81], or probabilistically in matrix-multiplication
time with a variant of the method of [53]; we will use the latter.
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DEFLATE

Input: Matrix P̃ ∈ Cn×n, desired rank k, input precision β, and desired accuracy η
Requires: ∥P̃ − P∥ ≤ β ≤ 1

4 for some rank-k projector P .

Algorithm: Q̃ = DEFLATE(P, k, β, η)

1. H ← n× n Haar unitary +E1

2. (U,R)← QR(PH∗)

3. Q̃← first k columns of U .

Output: A tall matrix Q̃ ∈ Cn×k

Ensures: There exists a matrix Q ∈ Cn×k whose orthogonal columns span range(P ), such that

∥Q̃−Q∥ ≤ η, with probability at least 1− (20n)3
√
β

η2
.

Theorem 3.5.3 (Guarantees for DEFLATE). Assume MM and QR are matrix multiplication
and QR factorization algorithms satisfying Definitions 3.2.2 and 3.2.4. Then DEFLATE has
the advertised guarantees when run on a machine with precision:

u ≤ uDEFLATE := min

{
β

4∥P̃∥max(µQR(n), µMM(n))
,

η

2µQR(n)

}
.

The number of arithmetic operations is at most:

TDEFLATE(n) = n2TN + 2TQR(n) + TMM(n).

Remark 3.5.4. The proof of the above theorem, which is deferred to Appendix B.2, closely
follows and builds on the analysis of the randomized rank revealing factorization algorithm
(RURV) introduced in [53] and further studied in [9]. The parameters in the theorem are
optimized for the particular application of finding a basis for a deflating subspace given an
approximate spectral projector.

The main difference with the analysis in [53] and [9] is that here, to make it applicable to
complex matrices, we make use of Haar unitary random matrices instead of Haar orthogonal
random matrices. In our analysis of the unitary case, we discovered a strikingly simple
formula (Corollary B.2.6) for the density of the smallest singular value of an r× r sub-matrix
of an n× n Haar unitary; this formula is leveraged to obtain guarantees that work for any n
and r, and not only for when n− r ≥ 30, as was the case in [9]. Finally, we explicitly account
for finite arithmetic considerations in the Gaussian randomness used in the algorithm, where
true Haar unitary matrices can never be produced.

We are ready now to state completely an algorithm EIG which accepts a shattered
matrix and grid and outputs approximate eigenvectors and eigenvalues with a forward-error
guarantee. Aside from the a priori un-motivated parameter settings in lines 2 and 3—which
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we promise to justify in the analysis to come—EIG implements an approximate version of the
split and deflate framework that began this section.

EIG

Input: Matrix A ∈ Cm×m, desired eigenvector accuracy δ, grid g = grid(z0, ω, s1, s2), pseudospec-
tral guarantee ϵ, acceptable failure probability θ, and global instance size n
Requires: Λϵ(A) is shattered with respect to g, and m ≤ n.
Algorithm: EIG(A, δ, g, ϵ, θ, n)

1. If A is 1× 1, (Ṽ , D̃)← (1, A)

2. η ← δϵ2

200

3. β ← η4

(20n)6
θ2

4n8

4. (P̃+, P̃−, g+, g−, n+, n−)← SPLIT(A, ϵ, g, β)

5. Q̃± ← DEFLATE(P̃±, n±, β, η)

6. Ã± ← Q̃∗
±ÃQ̃± + E6,±

7. (Ṽ±, D̃±)← EIG(Ã±, 4δ/5, g±, 4ϵ/5, θ, n).

8. Ṽ ←
(
Q̃+Ṽ+ Q̃−Ṽ−

)
+ E8

9. Ṽ ← normalize(Ṽ ) + E9

10. D̃ ←

(
D̃+

D̃−

)

Output: Eigenvectors and eigenvalues (Ṽ , D̃)

Ensures: With probability at least 1− θ, each entry λ̃i = D̃i,i lies in the same square as exactly

one eigenvalue λi ∈ Spec(A), and each column ṽi of Ṽ has norm 1±nu, and satisfies ∥ṽi− vi∥ ≤ δ
for some exact unit right eigenvector Avi = λivi.

Theorem 3.5.5 (EIG: Finite Arithmetic Guarantee). Assume MM,QR, and INV are numer-
ically stable algorithms for matrix multiplication, QR factorization, and inversion satisfying
Definitions 3.2.2, 3.2.4, and 3.2.3. Let δ < 1, A ∈ Cn×n have ∥A∥ ≤ 3.5 and, for some
ϵ < 1/2, have ϵ-pseudospectrum shattered with respect to a grid g = grid(z0, ω, s1, s2) with
side lengths at most 8 and ω ≤ 1. Define

NEIG := lg
256n

ϵ
+ 3 lg lg

256n

ϵ
+ lg lg

(5n)26

θ2δ4ϵ9
+ 7.59.
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Then EIG has the advertised guarantees when run on a floating point machine with precision
satisfying:

lg 1/u

≥max

{
lg3

n

ϵ
lg

(
(5n)26

θ2δ4ϵ8

)
29.6(cINV log n+ 3) + lgNEIG, lg

(5n)30

θ2δ4ϵ8
+ lg({µMM(n) ∨ µQR(n))

}
=O

(
log3

n

ϵ
log

n

θδϵ
log n

)
.

The number of arithmetic operations is at most

TEIG(n, δ, g, ϵ, θ, n) = 60NEIG lg
1

ω(g)

(
TINV(n) +O(n2)

)
+ 10TQR(n) + 25TMM(n)

= O

(
log

1

ω(g)

(
log

n

ϵ
+ log log

1

θδ

)
TMM(n)

)
.

Remark 3.5.6. We have not fully optimized the large constant 29.59 appearing in the bit
length above.

Theorem 3.5.5 easily implies Theorem 1.3.1 when combined with SHATTER.

Proof of 1.3.1. Given A and δ, consider the following two step algorithm:

1. (M, g, ϵ)← SHATTER(A, δ/8).

2. (V,D)← EIG(M, δ′, g, ϵ, 1/n, n), where

δ′ :=
δ3

n4.5 · 6 · 128 · 2
. (3.29)

With probability at least 1 − 13/n, SHATTER(A, δ/8) succeeds, in which case the output

(X, grid, ϵ) output easily satisfy the assumptions in Theorem 3.5.5: δ′ ≤ δ < 1, ϵ = (δ/8)5

32n9 ≤ 1/2,
g is defined by SHATTER to have side length 8, ∥M∥ ≤ ∥A∥+ ∥M − A∥ ≤ 1 + 4(δ/8) ≤ 3.5,
and M has ϵ-pseudospectrum shattered with respect to g. On this event, M = WCW−1,
and (using the proof of Theorem 3.3.1) if we normalize W to have unit length columns, then
κ(W ) = ∥W∥∥W−1∥ ≤ 8n2/δ.

We will show that the choice of δ′ in (3.29) guarantees

∥M − V DV −1∥ ≤ δ/2.

Since ∥M∥ ≤ ∥A∥+ ∥A−M∥ ≤ 1 + 4γ ≤ 3 from Theorem 3.3.6, the hypotheses of Theorem
3.5.5 are satisfied. Thus EIG succeeds with probability at least 1−1/n, and by a union bound,
both EIG and SHATTER succeed with probabiility at least 1− 14/n. On this event, we have
V = W + E for some ∥E∥ ≤ δ′

√
n, so

∥V −W∥ ≤ δ′
√
n,



CHAPTER 3. SPECTRAL BISECTION 110

as well as

σn(V ) ≥ σn(W )− ∥E∥ ≥ δ

8n2
− δ′
√
n ≥ δ

16n2
,

since our choice of δ′ satisfies the much cruder bound of

δ′ ≤ δ

16n2.5
,

This implies that

κ(V ) = ∥V ∥∥V −1∥ ≤ 2
√
n · 16n

2

δ
,

establishing the last item of the theorem.We can control the perturbation of the inverse as:

∥V −1 −W−1∥ = ∥W−1(W − V )V −1∥
≤ κ(W )∥W − V ∥∥V −1∥

≤ 8n2

δ
· δ′
√
n · 16n

2

δ

≤ 128n4.5δ′

δ2
.

The grid output by SHATTER(A, δ/8) has ω = δ4

4∗84∗n5 ≤ δ√
2
provided δ < 1. Thus the

guarantees on EIG in Theorem 3.5.5 tell us each eigenvalue of M = WCW−1 shares a grid
square with exactly one diagonal entry of D, which means that ∥C −D∥ ≤

√
2ω ≤ δ. So, we

have:

∥V DV −1 −WCW−1∥ ≤ ∥(V −W )DV −1∥+ ∥W (D − C)V −1∥+ ∥WC(V −1 −W−1)∥

≤ δ′
√
n · 5 · 16n

2

δ
+
√
nδ′

16n2

δ
+
√
n · 5 · 128n

4.5δ′

δ2

=
δ′n4.5

δ

(
5 · 16 + 16 +

5 · 128
δ

)
≤ δ′n4.5

δ2
· 6 · 128

which is at most δ/2, for δ′ chosen as above. We conclude that

∥A− V DV −1∥ ≤ ∥A−M∥+ ∥M − V DV −1∥ ≤ δ,

with probability 1− 14/n as desired.
To compute the running time and precision, we observe that SHATTER outputs a grid

with parameters

ω = Ω

(
δ4

n5

)
, ϵ = Ω

(
δ5

n9

)
.
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Plugging this into the guarantees of EIG, we see that it takes

O
(
log

n

δ

(
log

n

δ
+ log log

n

δ

)
TMM(n)

)
= O(TMM(n) log

2(n/δ))

arithmetic operations, on a floating point machine with precision

O
(
log3

n

δ
log

n

δ
log n

)
= O(log4(n/δ) log(n))

bits, as advertised.

3.5.1 Proof of Theorem 3.5.5

A key stepping-stone in our proof will be the following elementary result controlling the
spectrum, pseudospectrum, and eigenvectors after perturbing a shattered matrix. The main
ingredient in the proof will be the spectral projector stability result proven in Lemma 1.1.11.

Lemma 3.5.7 (Eigenvector Perturbation for a Shattered Matrix). Let Λϵ(A) be shattered

with respect to a grid whose squares have side length ω, and assume that ∥Ã− A∥ ≤ η < ϵ.

Then, (i) each eigenvalue of Ã lies in the same grid square as exactly one eigenvalue of A,

(ii) Λϵ−η(Ã) is shattered with respect to the same grid, and (iii) for any right unit eigenvector

ṽ of Ã, there exists a right unit eigenvector of A corresponding to the same grid square, and
for which

∥ṽ − v∥ ≤
√
8ω

π

η

ϵ(ϵ− η)
.

Proof. For (i), consider At = A+ t(Ã− A) for t ∈ [0, 1]. By continuity, the entire trajectory
of each eigenvalue is contained in a unique connected component of Λη(A) ⊂ Λϵ(A). For (ii),

Λϵ−η(Ã) ⊂ Λϵ(A), which is shattered by hypothesis. Finally, for (iii), let w∗ and w̃∗ be the
corresponding left eigenvectors to v and ṽ respectively, normalized so that w∗v = w̃∗ṽ = 1.
Let Γ be the boundary of the grid square containing the eigenvalues associated to v and ṽ
respectively. Then, using a contour integral along Γ as in Lemma 1.1.11, one gets

∥ṽw̃∗ − vw∗∥ ≤ 2ω

π

η

ϵ(ϵ− η)
.

Thus, using that ∥v∥ = 1 and w∗v = 1,

∥ṽw̃∗ − vw∗∥ ≥ ∥(ṽw̃∗ − vw∗)v∥ = ∥(w̃∗v)ṽ − v∥.

Now, since (ṽ∗v)ṽ is the orthogonal projection of v onto the span of ṽ, we have that

∥(w̃∗v)ṽ − v∥ ≥ ∥(ṽ∗v)ṽ − v∥ =
√

1− |ṽ∗v|2.
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Multiplying v by a phase we can assume without loss of generality that ṽ∗v ≥ 0 which implies
that √

1− (ṽ∗v)2 =
√

(1− ṽ∗v)(1 + ṽ∗v) ≥
√
1− ṽ∗v.

The above discussion can now be summarized in the following chain of inequalities

√
1− ṽ∗v ≤

√
1− (ṽ∗v)2 ≤ ∥(w̃∗v)ṽ − v∥ ≤ ∥ṽw̃∗ − vw∗∥ ≤ 2ω

π

η

ϵ(ϵ− η)
.

Finally, note that ∥v − ṽ∥ =
√
2− 2ṽ∗v ≤

√
8ω
π

η
ϵ(ϵ−η) as we wanted to show.

The algorithm EIG works by recursively reducing to subinstances of smaller size, but
requires a pseudospectral guarantee to ensure speed and stability. We thus need to verify that
the pseudospectrum does not deteriorate too subtantially when we pass to a sub-problem.

Lemma 3.5.8 (Shattering is preserved after compression). Suppose P is a spectral projector
of A ∈ Cn×n of rank k. Let Q ∈ Cn×k be such that Q∗Q = Ik and that its columns span the
same space as the columns of P . Then for every ϵ > 0,

Λϵ(Q
∗AQ) ⊂ Λϵ(A).

Alternatively, the same pseudospectral inclusion holds if again Q∗Q = Ik and, instead, the
columns of Q span the same space as the rows of P .

Proof. We will first analyze the case when the columns of Q span the same space as the
columns of P . To begin, note that if z ∈ Λϵ(Q

∗AQ) then there exists v ∈ Ck satisfying
∥(z −Q∗AQ)v∥ ≤ ϵ∥v∥. Since Ik = Q∗InQ we have

∥Q∗(z − A)Qv∥ ≤ ϵ∥v∥.

And, because Q∗ acts as an isometry on range(Q) (the span of the columns of Q) and
by assumption this space is invariant under P (and hence under (z − A)), we have that
(z−A)Qv ∈ range(Q), and therefore ∥Q∗(z−A)Qv∥ = ∥(z−A)Qv∥. From where we obtain

∥(z − A)Qv∥ ≤ ϵ∥v∥ = ϵ∥Qv∥,

showing that z ∈ Λϵ(A).
For the case in which the columns of Q span the rows of P , the above proof can be easily

modified by now taking v with the property that ∥v∗Q∗(z − A)Q∥ ≤ ϵ∥v∥.

Observation 3.5.9. Since δ, ω(g), ϵ ≤ 1, our assumption on η in Line 2 of the pseudocode of
EIG implies the following bounds on η which we will use below:

η ≤ min

{
0.02, ϵ/75, δ/100,

δϵ2

200ω(g)

}
.
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Initial lemmas in hand, let us begin to analyze the algorithm. At several points we will
make an assumption on the machine precision. These will be collected at the end of the
proof, where we will verify that they follow from the precision hypothesis of Theorem 3.5.5.

Correctness.

Lemma 3.5.10 (Accuracy of λ̃i). When DEFLATE succeeds, each eigenvalue of A shares a

square of g with a unique eigenvalue of either Ã+ or Ã−, and furthermore Λ4ϵ/5(Ã±) ⊂ Λϵ(A).

Proof. Let P± be the true projectors onto the two bisection regions found by SPLIT(A, β),
Q± be the matrices whose orthogonal columns span their ranges, and A± := Q∗

±AQ±. From

Theorem 3.5.3, on the event that DEFLATE succeeds, the approximation Q̃± that it outputs

satisfies ∥Q̃±−Q±∥ ≤ η, so in particular ∥Q̃±∥ ≤ 2 as η ≤ 1. The error E6,± from performing

the matrix multiplications necessary to compute Ã± admits the bound

∥E6,±∥ ≤ µMM(n)∥Q̃±∥∥AQ̃±∥u+ µMM(n)
2∥Q̃±A∥u+ µMM(n)

2∥Q̃±∥2∥A∥u
≤ 16

(
µMM(n)u+ µMM(n)

2u2
)

≤ 3η

Where the second inequality follows from ∥A∥ ≤ 4 and ∥Q̃±∥ ≤ 1 + η ≤ 1.02 ≤
√
2, while

the last one follows from the assumption u ≤ η
10µMM(n)2

. Iterating the triangle inequality, we
obtain

∥Ã± − A±∥ ≤ ∥E6,±∥+ ∥(Q̃± −Q±)AQ̃±∥+ ∥Q±A(Q̃± −Q±)∥
≤ 3η + 8η + 4η ∥Q̃± −Q±∥ ≤ η

≤ ϵ/5 η ≤ ϵ/75.

We can now apply Lemma 3.5.7.

Everything is now in place to show that, if every call to DEFLATE succeeds, EIG has
the advertised accuracy guarantees. After we show this, we will lower bound this success
probability and compute the running time.

When A ∈ C1×1, the algorithm works as promised. Assume inductively that EIG has the
desired guarantees on instances of size strictly smaller than n. In particular, maintaining the
notation from the above lemmas, we may assume that

(Ṽ±, D̃±) = EIG(Ã±, 4ϵ/5, g±, 4δ/5, θ, n)

satisfy (i) each eigenvalue of D̃± shares a square of g± with exactly one eigenvalue of Ã±, and

(ii) each column of Ṽ± is 4δ/5-close to a true eigenvector of Ã±. From Lemma 3.5.7, each

eigenvalue of Ã± shares a grid square with exactly one eigenvalue of A, and thus the output

D̃ =

(
D̃+

D̃−

)
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satisfies the eigenvalue guarantee.

To verify that the computed eigenvectors are close to the true ones, let ˜̃v± be some

approximate right unit eigenvector of one of Ã± output by EIG (with norm 1± nu), ṽ± the

exact unit eigenvector of Ã± that it approximates, and v± the corresponding exact unit
eigenvector of A±. Recursively, EIG(A, ϵ, g, δ, θ, n) will output an approximate unit eigenvector

ṽ :=
Q̃±˜̃v± + e

∥Q̃±˜̃v± + e∥
+ e′,

whose proximity to the actual eigenvector v := Qv± we need now to quantify. The error
terms here are e, a column of the error matrix E8 whose norm we can crudely bound by

∥e∥ ≤ ∥E8∥ ≤ µMM(n)∥Q̃±∥∥Ṽ±∥u ≤ 4µMM(n)u ≤ η,

and e′, a column E9 incurred by performing the normalization in floating point; in our initial
discussion of floating point arithmetic we assumed in (3.3) that ∥e′∥ ≤ nu.

First, since ṽ − e′ and Q̃±˜̃v± + e are parallel, the distance between them is just the
difference in their norms:∥∥∥∥∥ Q̃±˜̃v± + e

∥Q̃±˜̃v± + e∥
− Q̃±˜̃v± + e

∥∥∥∥∥ ≤ ∣∣∣∥Q̃±˜̃v± + e∥ − 1
∣∣∣ ≤ (1 + η)(1 + u) + 4µMMu− 1 ≤ 4η.

Inductively ∥˜̃v± − ˜̃v±∥ ≤ 4δ/5, and since ∥A± − Ã±∥ ≤ ϵ/5 and A± has shattered ϵ-
pseudospectrum from Lemma 3.5.8, Lemma 3.5.7 ensures

∥˜̃v± − v±∥ ≤ √8ω(g) · 15η
π · ϵ(ϵ− 15η)

≤
√
8ω(g) · 15η
π · 4ϵ2/5

η ≤ ϵ/75

≤ δ/10 η ≤ δϵ2

200ω(g)
.

Thus putting together the above, iterating the triangle identity, and using ∥Q±∥ = 1,

∥ṽ − v∥

=

∥∥∥∥∥ Q̃±˜̃v± + e

∥Q̃±˜̃v± + e∥
+ e′ −Q±v±

∥∥∥∥∥
≤

∥∥∥∥∥ Q̃±˜̃v± + e

∥Q̃±˜̃v± + e∥
− Q̃±˜̃v± + e

∥∥∥∥∥+ ∥e′∥+ ∥e∥+ ∥(Q̃± −Q±)˜̃v±∥
+ ∥Q±(˜̃v± − ṽ±)∥+ ∥Q±(ṽ± − v±)∥



CHAPTER 3. SPECTRAL BISECTION 115

≤4η + nu+ µMM(n)u+ η(1 + nu) + 4δ/5 + δ/10

≤8η + 4δ/5 + δ/10 nu, µMM(n)u ≤ η

≤δ η ≤ δ/200.

This concludes the proof of correctness of EIG.

Running Time and Failure Probability. Let’s begin with a simple lemma bounding the
depth of EIG’s recursion tree.

Lemma 3.5.11 (Recursion Depth). The recursion tree of EIG has depth at most log5/4 n,
and every branch ends with an instance of size 1× 1.

Proof. By Theorem 3.5.2, SPLIT can always find a bisection of the spectrum into two regions
containing n± eigenvalues respectively, with n+ + n− = n and n± ≥ 4n/5, and when n ≤ 5
can always peel off at least one eigenvalue. Thus the depth d(n) satisfies

d(n) =

{
n n ≤ 5

1 + maxθ∈[1/5,4/5] d(θn) n > 5
(3.30)

As n ≤ log5/4 n for n ≤ 5, the result is immediate from induction.

We pause briefly to verify that the assumptions δ < 1, ϵ < 1/2, grid has side lengths at most
9, and ∥A∥ ≤ 3.5 in Theorem 3.5.5 ensure that every call to SPLIT throughout the algorithm
satisfies the hypotheses of Theorem 3.5.2, namely that ϵ ≤ 0.5, β ≤ 0.05/n, ∥A∥ ≤ 4, and
grid has side lengths of at most 8. Since δ, ϵ, and β are non-increasing as we travel down the
recursion tree of EIG — with β monotonically decreasing in δ and ϵ — we need only verify
that the hypotheses of Theorem 3.5.2 hold on the initial call to EIG. The condition on ϵ is
immediately satisfied; for the one on β, we have

β =
η4θ2

(20n)6 · 4n8
=

θ2δ4ϵ8

2004(20n)6 · 4n8
,

which is clearly at most 0.05/n.
On each new call to EIG the grid only decreases in size, so the initial assumption is sufficient.

Finally, we need that every matrix passed to SPLIT throughout the course of the algorithm
has norm at most 4. Lemma 3.5.10 shows that if ∥A∥ ≤ 4 and has its ϵ-pseudospectrum

shattered, then ∥Ã± − A±∥ ≤ ϵ/5, and since ∥A±∥ = ∥A∥, this means ∥Ã±∥ ≤ ∥A∥ + ϵ/5.
Thus each time we pass to a subproblem, the norm of the matrix we pass to EIG (and thus
to SPLIT) increases by at most an additive ϵ/5, where ϵ is the input to the outermost call to
EIG. Since ϵ decreases by a factor of 4/5 on each recursion step, this means that by the end
of the algorithm the norm of the matrix passed to EIG will increase by at most an additive
(ϵ+ (4/5)ϵ+ (4/5)2ϵ+ · · · )/5 = ϵ ≤ 1/2. Thus we will be safe if our initial matrix has norm
at most 3.5, as assumed.
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Lemma 3.5.12 (Lower Bounds on the Parameters). Assume EIG is run on an n× n matrix,
with some parameters δ and ϵ. Throughout the algorithm, on every recursive call to EIG, the
corresponding parameters δ′ and ϵ′ satisfy

δ′ ≥ δ/n ϵ′ ≥ ϵ/n.

On each such call to EIG, the parameters η′ and β′ passed to SPLIT and DEFLATE satisfy

η′ ≥ δϵ2

200n3
β′ ≥ θ2δ4ϵ8

(5n)26
.

Proof. Along each branch of the recursion tree, we replace ϵ← 4ϵ/5 and δ ← 4δ/5 at most
log5/4 n times, so each can only decrease by a factor of n from their initial settings. The
parameters η′ and β′ are computed directly from ϵ′ and δ′.

Lemma 3.5.13 (Failure Probability). EIG fails with probability no more than θ.

Proof. Since each recursion splits into at most two subproblems, and the recursion tree has
depth log5/4 n, there are at most

2 · 2log5/4 n = 2n
log 2

log 5/4 ≤ 2n4

calls to DEFLATE. We have set every η and β so that the failure probability of each is θ/2n4,
so a crude union bound finishes the proof.

The arithmetic operations required for EIG satisfy the recursive relationship

TEIG(n, δ, g, ϵ, θ, n) ≤ TSPLIT(n, ϵ, β) + TDEFLATE(n, β, η) + 2TMM(n)

+ TEIG(n+, 4δ/5, g+, 4ϵ/5, θ, n) + TEIG(n−, 4δ/5, g−, 4ϵ/5, θ, n)

+ 2TMM(n) +O(n2).

All of TSPLIT, TDEFLATE, and TMM are of the form polylog(n)poly(n), with all coefficients
nonnegative and exponents in the poly(n) no smaller than 2. So, for any n+ + n− =
n and n± ≥ 4n/5, holding all other parameters fixed, TSPLIT(n+, ...) + TSPLIT(n−, ...) ≤
((4/5)2 + (1/5)2)TSPLIT(n, ...) = (17/25)TSPLIT(n, ...) and the same holds for TDEFLATE and
TMM. Applying this recursively, with all parameters other than n set to their lower bounds
from Lemma 3.5.12, we then have

TEIG(n, δ, g, ϵ, θ, n) ≤
1

1− 17/25

(
TSPLIT

(
n, ϵ/n, g,

δ4ϵ8θ2

(5n)26

)
+ TDEFLATE

(
n, β/n, ϵ/n,

δ4ϵ8θ2

(5n)26

)
+ 4TMM(n) +O(n2)

)
=

25

8

(
12NEIG lg

1

ω(g)

(
TINV(n) +O(n2)

)
+ 2TQR(n)
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+ 5TMM(n) + n2TN +O(n2)

)
≤ 60NEIG lg

1

ω(g)

(
TINV(n) +O(n2)

)
+ 10TQR(n) + 25TMM(n),

where

NEIG := lg
256n

ϵ
+ 3 lg lg

256n

ϵ
+ lg lg

(5n)26

θ2δ4ϵ9
+ 7.59.

In the above inequalities, we’ve substituted in the expressions for TSPLIT and TDEFLATE from
Theorems 3.5.2 and 3.5.3, respectively; NEIG is defined by recomputing NSPLIT with the
parameter lower bounds, and the ϵ9 is not an error. The final inequality uses our assumption
TN = O(1). Thus using the fast and stable instantiations of MM, INV, and QR from Theorem
3.2.6, we have

TEIG(n, δ, g, ϵ, θ, n) = O

(
log

1

ω(g)

(
log

n

ϵ
+ log log

1

θδ

)
TMM(n,u)

)
; (3.31)

exact constants can be extracted by analyzing NEIG and opening Theorem 3.2.6.

Required Bits of Precision. We will need the following bound on the norms of all spectral
projectors.

Lemma 3.5.14 (Sizes of Spectral Projectors). Throughout the algorithm, every approximate

spectral projector P̃ given to DEFLATE satisfies ∥P̃∥ ≤ 10n/ϵ.

Proof. Every such P̃ is β-close to a true spectral projector P of a matrix whose ϵ/n-
pseudosepctrum is shattered with respect to the initial 8 × 8 unit grid g. Since we can
generate P by a contour integral around the boundary of a rectangular subgrid, we have

∥P̃∥ ≤ 2 + ∥P∥ ≤ 2 +
32

2π

n

ϵ
≤ 10n/ϵ,

with the last inequality following from ϵ < 1.

Collecting the machine precision requirements u ≤ uSPLIT,uDEFLATE from Theorems 3.5.2
and 3.5.3, as well as those we used in the course of our proof so far, and substituting in the
parameter lower bounds from Lemma 3.5.12, we need u to satisfy

u ≤ min

{(
1− ϵ

256n

)2NEIG+1(cINV logn+3)

µINV(n)
√
nNEIG

,

ϵ

100n2
,
θ2δ4ϵ8

(5n)26
1

4∥P̃∥max{µQR(n), µMM(n)}
,

δϵ2

100n3 · 2µQR(n)
,

δϵ2

100n3max{4µMM(n), n, 2µQR(n)}

}
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From Lemma 3.5.14, ∥P̃∥ ≤ 10n/ϵ, so the conditions in the second two lines are all satisfied
if we make the crass upper bound

u ≤ θ2δ4ϵ8

(5n)30
1

max{µQR(n), µMM(n), n}
, (3.32)

i.e. if lg 1/u ≥ O
(
lg n

θδϵ

)
. Unpacking the first requirement, using the definition NEIG :=

lg 256n
ϵ

+3 lg lg 256n
ϵ

+ lg lg (5n)26

θ2δ4ϵ9
+7.59 from Theorem 3.5.5, and recalling that ϵ ≤ 1/2, n ≥ 1,

and (1− x)1/x ≥ 1/4 for x ∈ (0, 1/512), we have

(
1− ϵ

256n

)2NEIG+1(cINV logn+3)

µINV(n)
√
nNEIG

=

((
1− ϵ

256n

) 256n
ϵ

)lg3 256n
ϵ

lg
(5n)26

θ2δ4ϵ8
28.59(cINV logn+3)

µINV(n)
√
nNEIG

≥ 4− lg3 256n
ϵ

lg
(5n)26

θ2δ4ϵ8
28.59(cINV logn+3)

µINV(n)
√
nNEIG

,

so setting u smaller than the final expression is sufficient to guarantee EIG and all subroutines
can execute as advertised. This gives

lg 1/u ≥ lg3
n

ϵ
lg

(5n)26

θ2δ4ϵ8
29.59(cINV log n+ 3) + lgNEIG

= O
(
log3

n

ϵ
log

n

θδϵ
log n

)
.

This dominates the precision requirement from (3.32), and completes the proof of Theorem
3.5.5.

Remark 3.5.15. A constant may be extracted directly from the expression above — leaving
ϵ, δ, θ fixed, a crude bound on it is 29.59 · 26 · 8 · cINV ≈ 160303cINV. This can certainly be
optimized, the improvement with the highest impact would be tighter analysis of SPLIT, with
the aim of eliminating the additive 7.59 term in NSPLIT.
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Chapter 4

Hessenberg QR Algorithm

This chapter is divided in three sections. The first two are devoted, respectively, to the
understanding of the dynamics and numerical stability of the shifted QR algorithm. The last
one presents a self-contained diagonalization algorithm, perhaps of independent interest, that
will be used to compute the Ritz values that will be used in our shifting strategy.

Throughout the chapter, in most occasions, we will use the letter H when referring to
upper Hessenberg matrices, and for k ≤ dim(H) we will use H(k) to denote the lower-right
k × k corner of H. We denote the distance between two sets R,S ⊂ C as

dist(R,S) := inf
r∈R, s∈S

|r − s|.

4.1 Dynamics

4.1.1 Proof Techniques and Complications

There are two distinct phenomena which make analyzing the dynamics of shifted QR chal-
lenging.

1. Transient behavior due to nonnormality. In the nonnormal case, the iterates Ht can
behave chaotically on short time scales,1 lacking any kind of obvious algebraic or
geometric monotonicity properties (which are present in the symmetric case). This lack
of monotonicity makes it hard to reason about convergence.

2. Fixed points and periodic orbits due to symmetry. The most natural shifting strategies
define pt(z) as a simple function of the entries of Ht, typically a function of the
characteristic polynomial of the bottom right k × k corner (Ht)(k) of Ht (see Section
4.1.2 for more details). These strategies typically have attractive fixed points and cycles
which are not upper triangular, leading to slow convergence or nonconvergence (e.g. see

1We measure time not as the number of QR steps, but as the number of QR steps of degree 1, so for
example a QR step with a degree k shift corresponds to k time steps.
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[122, 17, 47]). The conceptual cause of these fixed points is symmetry — at a very high
level, the dynamical system “cannot decide which invariant subspace to converge to.”
This feature is seen even in normal matrices, and in fact its most severe manifestation
occurs in the case of unitary matrices.

Example 4.1.1. Both pathologies are seen in the instructive family of n× n examples

M =


βn

β1
β2

. . .

βn−1


where β1, . . . , βn ∈ (0, 1). Observe that, for k ≤ n− 1, the characteristic polynomial of M(k)

is just zk, so any näıve shifting strategy based on it will yield the trivial shift. One can
verify that a QR step with the trivial strategy applied to M cyclically permutes the βi, while
leaving the zero pattern of M intact. This means that for adversarially chosen β1, ..., βn, the
bottom few subdiagonal entries of M — the traditional place to look for monotonicity in
order to prove convergence — exhibit arbitrary behavior over a small number of QR steps.
At very long time scales of n steps, the behavior becomes periodic and predictable, but there
is still no convergence.

Previous approaches to showing rapid decoupling have been essentially algebraic (relying
on examining entries of the iterates, their resolvents, or characteristic polynomials of their
submatrices) or geometric (viewing the iteration as a flow on a manifold), and have been
unable to surmount these difficulties in the nonsymmetric case.

In contrast, we take an essentially analytic approach. The key idea is to associate a
measure µt, similar in spirit to the notion of spectral measure of a normal matrix, with
the not necessarily normal iterates Ht. When the eigenvector condition number κV (H0) is
bounded, the dynamics of shifted QR can be understood in terms these measures: it turns
out that while the µt may evolve erratically on short time scales, they must behave in a
predictable way over time scales of k degree 1 QR steps when k ≫ log κV (H0) as in (1.27)
— essentially, this is enough to “damp” the transient behavior due to nonnormality (this is
articulated precisely in Section 4.1.3). Specifically, the behavior of the µt can be related to
the geometric mean of the bottom k subdiagonal entries of Ht, which we show satisfies an
approximate monotonicity property and use as a potential function to track convergence.

To see this phenomenon in action, if we impose a bound on κV (M) in Example 4.1.1,
it can be seen that the ratios of the βi cannot be arbitrary and the geometric mean of the
bottom log κV (M) subdiagonal entries of M must remain almost-constant on intervals of k
unshifted QR steps.

The above insights are sufficient to handle the transience issue but not the symmetry
issue. For the latter, we carefully design a shifting strategy which satisfies the following
dichotomy: either (i) a certain QR step of degree k significantly decreases the potential
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function defined above, or, (ii) the measure µt associated to the current iterate Ht must
have a special structure (essentially, being well-supported on an annulus of a particular
radius). In the second case (which corresponds to the symmetry case discussed above) we
exploit the structure to design a simple exceptional shift which is guaranteed to significantly
reduce the potential, yielding linear convergence in either case. Thus, our proof articulates
that transients and symmetry are the only obstacles to rapid convergence of the shifted QR
iteration on nonsymmetric matrices.

4.1.2 History and Related Work

The literature on shifted QR is vast, so we mention only the most relevant works — in
particular, we omit the large body of experimental work and do not discuss the many works
on local convergence of shifted QR (i.e., starting from an H0 which is already very close to
decoupling). The reader is directed to the excellent surveys [18, 141, 39] or [123, 171, 77]
for a dynamical or numerical viewpoint, respectively, or to the books [79, 157, 55, 170] for a
comprehensive treatment.

Most of the shifting strategies studied in the literature are a combination of the following
three types. The motivation for considering shifts depending on H(k) is closely related to
Krylov subspace methods, see e.g. [170]. Below H denotes the current Hessenberg iterate.

1. k-Francis Shift. Take p(z) = det(z−H(k)) for some k. The case k = 1 is called Rayleigh
shift.

2. Wilkinson Shift. Take p(z) = (z − a) where a is the root of det(z −H(2)) closer to H(1).

3. Exceptional Shift. Let p(z) = (z−x) for some x chosen randomly or arbitrarily, perhaps
with a specified magnitude (e.g. |x| = 1 for unitary matrices in [61, 166, 167, 168]).

Shifting strategies which combine more than one of these through some kind of case analysis
are called “mixed” strategies.

Symmetric Matrices. Jiang [66] showed that the geometric mean of the bottom k
subdiagonal entries is monotone for the k-Francis strategy in the case of symmetric tridiagonal
matrices. Aishima et al. [1] showed that this monotonicity continues to hold for a “Wilkinson-
like” shift which chooses k − 1 out of k Ritz values. Both of these results yield global
convergence on symmetric tridiagonal matrices (without a rate).

Rayleigh Quotient Iteration and Normal Matrices. The behavior of shifted QR is well
known to be related to shifted inverse iteration (see e.g. [157]). In particular, the Rayleigh
shifting strategy corresponds to a vector iteration process known as Rayleigh Quotient
Iteration (RQI). Parlett [124] (building on [117, 33, 127]) showed that RQI converges globally
(but without giving a rate) on almost every normal matrix and investigated how to generalize
this to the nonnormal case.
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Batterson [17] studied the convergence of 2-Francis shifted QR on 3× 3 normal matrices
with a certain exceptional shift and showed that it always converges. The subsequent work
[16] showed that 2-Francis shifted QR converges globally on almost every real n× n normal
matrix (without a rate). In Theorem 6 of that paper, it was shown that the same potential
that we consider is monotone-decreasing when the k-Francis shift is run on normal matrices,
which was an inspiration for our proof of almost-monotonicty for nonnormal matrices.

Nonnormal Matrices. Parlett [122] showed that an unshifted QR step applied to a
singular matrix leads to immediate 0-decoupling, taking care of the singularity issue that
was glossed over in the introduction, and further proved that all of the fixed points of an
extension of the 2-Francis shifted QR step (for general matrices) are multiples of unitary
matrices.

In a sequence of works, Batterson and coauthors investigated the behavior of RQI and
2-Francis on nonnormal matrices from a dynamical systems perspective. Batterson and
Smillie [21, 20] showed that there are real matrices such that RQI fails to converge for an
open set of real starting vectors. The latter paper also established that RQI exhibits chaotic
behavior on some instances, in the sense of having periodic points of infinitely many periods.
Batterson and Day [19] showed that 2-Francis shifted QR converges globally and linearly on
a certain conjugacy class of 4× 4 Hessenberg matrices.

In the realm of periodicity and symmetry breaking, Day [47], building on an example of
Demmel, showed that there is an open set of 4× 4 matrices on which certain mixed shifting
strategies used in the EISPACK library fail to converge rapidly in exact arithmetic; such an
example was independently discovered by Moler [109] who described its behavior in finite
arithmetic. These examples are almost normal in the sense that they satisfy κV ≤ 2, so
the reason for nonconvergence is symmetry, and our strategy Shk,B with modest parameters
k = B = 2 is guaranteed to converge rapidly on them (in exact arithmetic).

Using topological considerations, Leite et al. [102] proved that no continuous shifting
strategy can decouple on every symmetric matrix. Accordingly (in retrospect), the most
successful shifting strategy for symmetric matrices, the Wilkinson Shift, is discontinuous in
the entries of the matrix and explicitly breaks symmetry when it occurs. Our strategy Shk,B
is also discontinuous in the entries of the matrix.

Mixed and Exceptional Shifts. Eberlein and Huang [61] showed global convergence (with-
out a bound on the rate) of a certain mixed strategy for unitary Hessenberg matrices; more
recently, the works [166, 167, 168] exhibited mixed strategies which converge globally for
unitary Hessenberg matrices with a bound on the rate, but this bound depends on the matrix
in a complicated way and is not clearly bounded away from 1. Our strategy Shk,B is also a
mixed strategy which in a sense combines all three types above. Our choice of exceptional
shift was in particular inspired by the work of [61, 167] — the difference is that the size of
the exceptional shift is naturally of order 1 in the unitary case, but in the general case it
must be chosen carefully at the correct spectral scale.
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Higher Degree Shifts. The idea of using higher degree shifts was already present in [68, 52],
but was popularized in by Bai and Demmel in [5], who observed that higher order shifts can
sometimes be implemented more efficiently than a sequence of lower order ones; see [5, Section
3] for a discussion of various higher order shifting strategies which were considered in the 1980s.

Integrable Systems. The unshifted QR algorithm on Hermitian matrices is known to
correspond to evaluations of an integrable dynamical system called the Toda flow at integer
times [49]; such a correspondence is not known for any nontrivial shifting scheme or for
nonnormal matrices. See [39] for a detailed survey of this connection. More recently, the line
of work [130, 51, 50] studied the universality properties of the decoupling time of unshifted
QR on random matrices, and used the connection to Toda flow to prove universality in the
symmetric case; it was experimentally observed that such universality continues to hold for
shifted QR.

We defer a detailed discussion of the extensive related work on numerical issues related
to shifted QR as well as a comparison to other algorithms for computing eigenvalues (in
particular, [3] and [11]) to Section 4.2 below.

4.1.3 Notation and Basic Lemmas

Throughout the remainder of Section 4.1, H = (hi,j)i,j∈[n] will denote an n × n upper
Hessenberg matrix, B ≥ κV (H) an upper bound on its eigenvector condition number and
and k ≥ 2 a power of two, which the reader may consider for concreteness to be on the
order of logB log logB; all logarithms will be taken base two for simplicity. As above, we use
H(k) and χk(z) to denote the lower-right k × k corner of H and its characteristic polynomial
respectively. All matrix norms are operator norms, denoted by ∥ · ∥.

We will use the geometric mean of the last k subdiagonal entries of the H to track
convergence of the Shifted QR iteration, since we are guaranteed δ-decoupling once this
quantity is smaller than δ∥H∥. More explicitly, define the potential ψk(H) of H to be

ψk(H) := |hn−k,n−k−1 · · ·hn,n−1|
1
k .

Fixing some γ ∈ (0, 1), we will show that our shifting strategy guarantees potential reduction:

the efficient computation of a Hessenberg matrix Ĥ, unitarily equivalent to H, with the
property that

ψk(Ĥ) ≤ γψk(H). (4.1)

Since ψk(H) ≤ ∥H∥, it follows immediately that we can achieve δ-decoupling in log δ
log γ

iterations.

Note that the relationship (1.27) between k and B is not required for the proof of potential
reduction, but impacts the cost of performing each iteration. The table below collates several
constants which will appear throughout Section 4.1.

We assume black box access to a routine for efficiently performing a QR step in O(kn2)
arithmetic operations rather than O(kn3).
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Symbol Meaning Typical Scale
H Upper Hessenberg matrix
B Eigenvector condition bound B ≥ κV (H)
k Shift degree O(logB log logB)
δ Decoupling parameter
γ Decoupling rate 0.8
θ Approximation parameter for Ritz values 2

α Promising Ritz value parameter B4k−1 log k = 1 + o(1)

Definition 4.1.2 (Implicit QR Algorithm). For k ≤ n, an exact implicit QR algorithm
iqr(H, p(z)) takes as inputs a Hessenberg matrix H ∈ Cn×n and a polynomial p(z) =

(z − s1) · · · (z − sk) and outputs a Hessenberg matrix Ĥ satisfying

Ĥ = Q∗HQ,

where Q is a unitary matrix such that p(H) = QR for some upper triangular matrix R, as
well as the number ∥e∗np−1(H)∥ whenever p(H) is invertible. It runs in at most

TIQR(k, n) ≤ 7kn2 (4.2)

operations.

See e..g [171, Section 3] for a proof in exact arithmetic of the existence of an efficient
implicit QR algorithm.

Before introducing and analyzing our shifting strategy, we pause to prove three simple and
essential lemmas relating the potential ψk(H), the Hessenberg structure of H, its eigenvector
condition number κV (H), and certain measures associated with H. The first is well known
and gives a variational characterization of the potential (see [157, Theorem 34.1]).

Lemma 4.1.3 (Variational Formula for ψk). Let H ∈ Cn×n be any Hessenberg matrix. Then,
for any k

ψk(H) = min
p∈Pk

∥e∗np(H)∥
1
k ,

with the minimum attained for p = χk.

Proof. Since H is upper Hessenberg, for any polynomial p ∈ Pk we have

p(H)n,n−j =


p(H(k))k,k−j+1 j = 0, . . . , k − 1,

hn−k,n−k−1 · · ·hn,n−1 j = k,

0 j ≥ k + 1.

Thus for every such p,

min
p∈Pk

∥e∗np(H)∥ ≥ |hn−k,n−k−1 · · ·hn,n−1| = ψk(H)k,
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and the bound will be tight for any polynomial whose application to H(k) zeroes out the last
row; by Cayley-Hamilton, the matrix χk(H(k)) is identically zero.

It will be useful to have a mechanism for proving upper bounds on the potential of Ĥ
produced from H by an implicit QR step. To this end, let p ∈ Pk and define

τp(H) := ∥e∗np(H)−1∥−
1
k , (4.3)

when p(H) is invertible, and τp(H) = 0 otherwise. The special case k = 1 of this quantity
has been used to great effect in previous work studying linear shifts (e.g. [88]), and our next

lemma shows that it bounds the potential of Ĥ = iqr(H, p(z)) for shift polynomials p of
arbitrary degree.

Lemma 4.1.4 (Upper Bounds on ψk(Ĥ)). Let H ∈ Cn×n be a Hessenberg matrix, p(z) a

monic polynomial of degree k and Ĥ = iqr(H, p(z)). Then

ψk(Ĥ) ≤ τp(H).

Proof. Assume first that p(H) is singular. In this case for any QR decomposition p(H) = QR,

the entry Rn,n = 0, and because p(Ĥ) = Q∗p(H)Q = RQ, the last row of p(Ĥ) is zero as

well. In particular ψk(Ĥ) = |p(Ĥ)1,k+1|
1
k = 0 = τp(H). When p(H) is invertible, applying

Lemma 4.1.3 and using repeatedly that Q is unitary, R is triangular, and p(H) = QR,

ψk(Ĥ)k ≤ ∥e∗np(Ĥ)∥ = ∥e∗nQ∗p(H)∥ = ∥e∗nR∥ = ∥e∗nR−1Q∗∥−1 = ∥e∗np(H)−1∥−1 = τp(H)k.

Lemma 4.1.4 ensures that given H, we can reduce the potential with an implicit QR step
by producing a polynomial p with ∥e∗np(H)−1∥ 1

k ≤ γψk(H). To do so, we will require a final
lemma relating quantities of this form to the moments of a certain measure associated to H
which quantifies the overlap of the vector e∗n with the left eigenvectors of H.

4.1.4 Approximate Functional Calculus

For H ∈ Cn×n upper Hessenberg and diagonalizable, recall the definition of the associated
random variable ZH defined in Section 1.6. We will now prove the claim made about the
approximate functional calculus.

Lemma 4.1.5 (Approximate Functional Calculus). For any upper Hessenberg H and complex
function f whose domain includes the eigenvalues of H,

∥e∗nf(H)∥
κV (H)

≤ E
[
|f(ZH)|2

] 1
2 ≤ κV (H)∥e∗nf(H)∥.
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Proof. By the definition of ZH above,

E
[
|f(ZH)|2

] 1
2 =
∥e∗nf(H)V ∥
∥e∗nV ∥

≤ ∥e∗nf(H)∥∥V ∥∥V −1∥ = ∥e∗nf(H)∥κV (H),

and the left hand inequality is analogous.

Using this lemma with some carefully chosen rational functions f of degree k, we will
be able to probe the distribution of ZH for each iterate H of the algorithm by examining
the observable quantities ∥e∗nf(H)∥ 1

k — for appropriately large k, these are related to

(E|f(ZH)|2)
1
k by a multiplicative factor of κV (H)

1
k ≈ 1, so we obtain accurate information

about ZH , which enables a precise understanding of convergence. Since the iterates are all
unitarily similar, κV is preserved with each iteration, so the k required is an invariant of the
algorithm. Thus the use of a sufficiently high-degree shifting strategy is both an essential
feature and unavoidable cost of our approach.

4.1.5 Promising Ritz Values and Almost Monotonicity of the
Potential

In the same spirit as Wilkinson’s shift, which chooses a particular Ritz value (out of two),
but using a different criterion, our shifting strategy will begin by choosing a Ritz value (out
of k) that has the following property for some α ≥ 1.

Definition 4.1.6 (α-promising Ritz value). Let α ≥ 1, R = {r1, ..., rk} be a set of θ-
approximate Ritz values for H, and p(z) =

∏k
i=1(z − ri). We say that r ∈ R is α-promising

if

E
1

|ZH − r|k
≥ 1

αk
E

1

|p(ZH)|
. (4.4)

Note that there is at least one 1-promising Ritz value in every set of approximate Ritz
values, since

1

k

k∑
i=1

E
1

|ZH − ri|k
= E

1

k

k∑
i=1

1

|ZH − ri|k
≥ E

1

|p(ZH)|
(4.5)

by linearity of expectation and AM/GM. The notion of α-promising Ritz value is a relaxation
which can be computed efficiently from the entries of H (in fact, as we will explain in Section
4.1.7, using a small number of implicit QR steps with Francis-like shifts of degree k/2).

As a warm-up for the analysis of the shifting strategy, we will first show that if k ≫
log κV (H) and r is a promising Ritz value, the potential is almost monotone under the shift
(z − r)k. This justifies the intuition from Section 4.1.1 and suggests that promising Ritz
values should give rise to good polynomial shifts, but is not actually used in the proof of our
main theorem. Subsequent proofs will instead use the stronger property (4.6) established
below.
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Lemma 4.1.7 (Almost-monotonicity and Moment Comparison). Let R = {r1, . . . , rk} be a

set of θ-optimal Ritz values and assume that r ∈ R is α-promising. If Ĥ = iqr(H, (z − r)k)
then

ψk(Ĥ) ≤ κV (H)
2
kαθψk(H),

and moreover

E
[
|ZH − r|−2k

]
≥ E

[
|ZH − r|−k

]2 ≥ 1

κV (H)2(αθψk(H))2k
. (4.6)

Proof. Let p(z) =
∏k

i=1(z − ri). The claim follows from the following chain of inequalities:√
E [|ZH − r|−2k] ≥ E

[
|ZH − r|−k

]
Jensen, x 7→ x2

≥ 1

αk
E[|p(ZH)|−1] r is α-promising

≥ 1

αk
1√

E[|p(ZH)|2]
Jensen, x 7→ x2

≥ 1

αk
1

∥e∗np(H)∥κV (H)
Lemma 4.1.5

≥ 1

αk
1

θk∥e∗nχk(H)∥κV (H)
Definition 1.4.2 of θ-optimal

=
1

αk
1

θkψk(H)kκV (H)
Lemma 4.1.3.

This already shows (4.6). For the other claim, rearrange both extremes of the above inequality
to get

αθκV (H)
1
kψk(H) ≥ E

[
|ZH − r|−2k

]− 1
2k

≥
τ(z−r)k(H)

κV (H)
1
k

Lemma 4.1.5

≥ ψk(Ĥ)

κV (H)
1
k

Lemma 4.1.4

which concludes the proof.

In 4.1.6, we will see that when the shift associated with a promising Ritz value does not
reduce the potential, Lemma 4.1.7 can be used to provide a two-sided bound on the quantities
E[|ZH − r|−2k] and E[|ZH − r|−k]2. This is the main ingredient needed to obtain information
about the distribution of ZH when potential reduction is not achieved.
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4.1.6 Shifting Strategy

An important component of our shifting scheme, discussed in detail in Section 4.1.7, is a simple
subroutine, “Find,” guaranteed to produce an α-promising Ritz value with α = κV (H)4k

−1 log k.
Guarantees for this subroutine are stated in the lemma below and proved in Section 4.1.7.

Lemma 4.1.8 (Guarantees for Find). The subroutine Find specified in Section 4.1.7 produces
a κV (H)4k

−1 log k-promising Ritz value, using at most 12k log kn2 + log k arithmetic operations.

Our strategy is then built around the following dichotomy, which crucially uses the
α-promising property: in the event that a degree k implicit QR step with the α-promising
Ritz value output by Find does not achieve potential reduction, we show that there is a
modestly sized set of exceptional shifts, one of which is guaranteed to achieve potential
reduction. These exceptional shifts are constructed by the procedure “Exc” described in
Section 4.1.8. The overall strategy is specified below.

Shk,B

Input: Hessenberg H and a set R of θ-approximate Ritz values of H
Output: Hessenberg Ĥ.
Requires: 0 < ψk(H) and κV (H) ≤ B

Ensures: ψk(Ĥ) ≤ γψk(H) and κV (Ĥ) ≤ B

1. r ← Find(H,R)

2. If ψk(iqr(H, (z − r)k)) ≤ γψk(H), output Ĥ = iqr(H, (z − r)k)

3. Else, S ← Exc(H, r,B)

4. For each s ∈ S, if ψk(iqr(H, (z − s)k)) ≤ γψk(H), output Ĥ = iqr(H, (z − s)k)

The failure of line (2) of Shk,B to reduce the potential gives useful quantitative information
about the distribution of ZH , articulated in the following lemma. This will then be used to
design the set S of exceptional shifts produced by Exc in line (3) and prove that at least one
of them makes progress in line (4).

Lemma 4.1.9 (Stagnation Implies Support). Let γ ∈ (0, 1) and θ ≥ 1, and let R =
{r1, . . . , rk} be a set of θ-approximate Ritz values of H. Suppose r ∈ R is α-promising and
assume

ψk
(
iqr(H, (z − r)k)

)
≥ γψk(H) > 0. (4.7)

Then ZH is well-supported on an disk of radius approximately αψk(H) centered at r in the
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following sense: for every t ∈ (0, 1):

P

[
|ZH − r| ≤ θα

(
κV (H)

t

) 1
k

ψk(H)

]
≥ (1− t)2 γ2k

α2kθ2kκV (H)4
. (4.8)

Proof. Observe that H − r is invertible since otherwise, for Ĥ = iqr(H, (z − r)k), we would

have ψk(Ĥ) = 0 by Lemma 4.1.4. Our assumption implies that that:

γψk(H) ≤ ψk(Ĥ) hypothesis

≤ τ(z−r)k(H) Lemma 4.1.4

= ∥e∗n(H − r)−k∥−
1
k definition

≤

(
κV (H)

E [|ZH − r|−2k]
1
2

)1/k

Lemma 4.1.5.

Rearranging and using (4.6) from Lemma 4.1.7 we get

κV (H)2

(1− γ)2kψk(H)2k
≥ E

[
|ZH − r|−2k

]
≥ E

[
|ZH − r|−k

]2 ≥ 1

α2kθ2kψk(H)2kκV (H)2
, (4.9)

which upon further rearrangement yields the “reverse Jensen” type bound:

E[|ZH − r|−2k]

E[|ZH − r|−k]2
≤
(
αθ

γ

)2k

κV (H)4. (4.10)

We now have

P
[
|ZH − r| ≤

α

t1/k
θψk(H)κ

1/k
V

]
= P

[
|ZH − r|−k ≥ t

1

αkθkψk(H)kκV

]
≥ P

[
|ZH − r|−k ≥ tE[|ZH − r|−k]

]
by (4.9)

≥ (1− t)2E[|ZH − r|
−k]2

E[|ZH − r|−2k]
Paley-Zygmund

≥ (1− t)2 γ2k

α2kθ2kκV (H)4
by (4.10),

establishing (4.8), as desired.

In Section 4.1.8, we will use Lemma 4.1.9 to prove the following guarantee on Exc.

Lemma 4.1.10 (Guarantees for Exc). The subroutine Exc specified in Section 4.1.8 produces
a set S of exceptional shifts, one of which achieves potential reduction. If θ ≤ 2, γ = 0.8, and
α = B4 log k/k, then both the arithmetic operations required for Exc, and the size of S, are at
most

Nnet

(
0.002B− 8 log k+4

k

)
,
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where Nnet(ϵ) = O(ϵ−2) denotes number of points in an efficiently computable ϵ-net of the unit
disk. In the normal case, taking B = α = θ = 1, k = 4, γ = 0.8, the arithmetic operations
required and the size of |S| are both bounded by 50.

Remark 4.1.11 (Improving the Disk to an Annulus). Control on the other tail of |ZH − r|
can be achieved by using Markov’s inequality and the upper bound (4.10) on the inverse
moment E[|ZH − r|−2k]. Then, for k ≫ log κV (H), the control on both tails yields that the
distribution of ZH has significant mass on a thin annulus (the inner and outer radii are
almost the same).2 In this scenario one can take a net S with fewer elements when calling
the exceptional shift, which would reduce the running time of Texc(k,B). However, following
this path would complicate the analysis and for the sake of exposition we do not pursue it
any further in dissertation.

We are now ready to prove Theorem 1.4.3.

Proof of Theorem 1.4.3. Rapid convergence. In the event that we choose a α-promising Ritz
value in step (1) that does not achieve potential reduction in step (2), Lemma 4.1.10 then
guarantees we achieve potential reduction in (3). Thus each iteration decreases the potential
by a factor of at least γ, and since ψk(H0) ≤ ∥H∥ we need at most

log(1/δ)

log(1/γ)
≤ 4 log(1/δ)

iterations before ψk(Ht) ≤ δ∥H0∥, which in particular implies δ-decoupling.

Arithmetic Complexity. Computing a full set R of θ-approximate Ritz values of H has a
cost TOptRitz(k, θ, δ). Then, using an efficient implicit QR algorithm (cf. Definition 4.1.2)
each computation of iqr(H, (z − ri)k) has a cost of 7kn2. By Lemma 4.1.8, we can produce a
promising Ritz value in at most 12k log kn2 + log k arithmetic operations. Then, in the event
that the promising shift fails to reduce the potential the algorithm calls Exc, which takes

Nnet(0.002B
− 8 log k+4

k−1 ) arithmetic operations to specify the set S of exceptional shifts. Some
exceptional shift achieves potential reduction, and we pay 7kn2 operations for each one that
we check.

4.1.7 Efficiently Finding a Promising Ritz Value

In this section we show how to efficiently find a promising Ritz value, in O(n2k log k) arith-
metic operations. Note that it is trivial to find a κV (H)2/k-promising Ritz value in O(n2k2)
arithmetic operations simply by computing ∥e∗n(H − ri)−k/2∥ for i = 1, . . . , k with k calls to
iqr(H, (z − ri)k/2), choosing the maximizing index i, and appealing to Lemma 4.1.5. The

2We note in passing (cf. [122]) that when H is normal, α = 1, θ = γ = 0, and k = 1, the above arguments
can be modified to show that, under the assumption of Lemma 4.1.9, ZH is fully supported on a circle with
center r and radius ψk(H), and hence 1

ψk(H) (H − r) is a unitary matrix.
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content of Lemma 4.1.8 below that this can be done considerably more efficiently if we use
a binary search type procedure. This improvement has nothing to do with the dynamical
properties of our shifting strategy so readers uninterested in computational efficiency may
skip this section.

Find

Input: Hessenberg H, a set R = {r1, . . . , rk} of θ-optimal Ritz values of H.
Output: A complex number r ∈ R
Requires: ψk(H) > 0

Ensures: r is α-promising for α = κV (H)
4 log k

k .

1. For j = 1, ..., log k

a) Evenly partition R = R0 ⊔R1, and for b = 0, 1 set pj,b =
∏

r∈Rb
(z − r)

b) R ← Rb, where b maximizes ∥e∗npj,b(H)−2j−1∥

2. Output R = {r}

Proof of Lemma 4.1.8 (Guarantees for Find). First, observe that ∥e∗nq(H)∥ ̸= 0 for every
polynomial appearing in the definition of Find, since otherwise we would have ψk(H) = 0.

On the first step of the subroutine p1,0p1,1 = p, the polynomial whose roots are the full
set of approximate Ritz values, so

max
b
∥e∗np1,b(H)−1∥ ≥ 1

κV (H)2
E
[
1

2

(
|p1,0(ZH)|−2 + |p1,1(ZH)|−2

)]
Lemma 4.1.5

≥ 1

κV (H)2
E[|p(ZH)|−1] AM/GM.

On each subsequent step, we’ve arranged things so that pj+1,0pj+1,1 = pj,b, where b maximizes

∥e∗npj,b(H)−2j−1∥, and so by the same argument

max
b
∥e∗npj+1,b(H)−2j∥2

≥ 1

κV (H)2
E
[
1

2

(
|pj+1,0(ZH)|−2j+1

+ |pj+1,1(ZH)|−2j+1
)]

Lemma 4.1.5

≥ 1

κV (H)2
E
[
|pj+1,0(ZH)pj+1,1(ZH)|−2j

]
AM/GM

≥ 1

κV (H)4
∥e∗n(pj+1,0(H)pj+1,1(H))−2j−1∥ Lemma 4.1.5

=
1

κV (H)4
max
b
∥e∗npj,b(H)−2j−1∥.
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Paying a further κV (H)2 on the final step to convert the norm into an expectation, we get

E
[
|ZH − r|−k

]
≥ 1

κV (H)4 log k
E
[
|p(ZH)|−1

]
as promised.

For the runtime, we can compute every ∥e∗npj,b(H)−2j−1∥ by running an implicit QR step

with the polynomials p2
j−1

j,b , all of which have degree k/2. There are 2 log k such computations
throughout the subroutine, and each one requires 6kn2 arithmetic operations. Beyond that
we need only compare the two norms on each of the log k steps.

Remark 4.1.12 (Opportunism and Judicious Partitioning). In practice, it may be beneficial
to implement Find opportunistically, meaning that in each iteration one should check if the
new set of Ritz values gives potential reduction (this can be combined with the computation
of ∥e∗npj,b(H)−2j−1∥ and implemented with no extra cost). Moreover, note that Find does
not specify a way to partition the set of Ritz values obtained after each iteration, and as
can be seen from the above proof, the algorithm works regardless of the partitioning choices.
It is conceivable that a judicious choice of the partitioning could be used to obtain further
improvements.

4.1.8 Analysis of the Exceptional Shift

To conclude our analysis, it remains only to define the subroutine “Exc,” which produces
a set S of possible exceptional shifts in the event that an α-promising Ritz value does not
achieve potential reduction. The main geometric intuition is captured in the case when H is
normal and κV (H) = 1. Here, Find gives us a 1-promising Ritz value r and Lemma 4.1.9
with t = 1/2 tells us that if r does not achieve potential reduction, than ZH has measure at
least 1

4
(γ/θ)2k on a disk of radius R := 21/kθψk(H).

For any ϵ > 0, we can easily construct an Rϵ-net S contained in this disk — i.e., a set
with the property that every point in the disk is at least Rϵ-close to a point in S — with
O(1/ϵ)2 points. One can then find a point s ∈ S satisfying

τ(z−s)k(H)−2k = ∥e∗n(H − s)−k∥2

= E[|ZH − s|−2k]

≥ P[|ZH − s| ≤ ψk(H)]

|S|(Rϵ)2k

≈ 1

4

(γ
θ

)2k 1

R2kϵ2k−2
,

where the first equality is by normality of H, and second inequality comes from choosing
s ∈ S to maximize |ZH − s|−2k. Since ψk(iqr(H, (z − s)k)) ≤ τ(z−s)k(H), we can ensure

potential reduction by setting ϵ ≈ γ2R
θψk(H)

≈ (γ/θ)2.
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When H is nonnormal, the chain of inequalities above hold only up to factors of κV (H),
and Find is only guaranteed to produce a κV (H)4 log k/k-promising Ritz value. The necessary
adjustments are addressed below in the implementation of Exc and the subsequent proof of
its guarantees.

Exc

Input: HessenbergH, a θ-approximate Ritz value r, a condition number bound B, promising
parameter α
Output: A set S ⊂ C
Requires: κV (H) ≤ B, r is α-promising, and ψk(iqr(H, (z − r)k) ≥ γψk(H)
Ensures: For some s ∈ S, ψk(iqr(H, (z − s)k) ≤ γψk(H)

1. R← 21/kθαB1/kψk(H)

2. ϵ←
(

γ2

(12B4)1/kα2θ2

) k
k−1

3. S ← ϵR-net of Rψk(H).

Proof of Lemma 4.1.10: Guarantees for Exc. Instantiating t = 1/2 in equation (4.8), we find
that for the setting of R in line (1) of Exc,

P [|ZH − r| ≤ D(r, R)] ≥ 1

4B4

( γ
αθ

)2k
.

Let S be an ϵR-net of D(r, R); it is routine that such a net has at most (1 + 2/ϵ)2 ≤ 9/ϵ2

points. By Lemma 4.1.4, to show that some s ∈ S achieves potential reduction, it suffices to
find one for which

∥e∗n(H − s)−k∥2 ≥
1

γ2kψk(H)2k
.

We thus compute

max
s∈S
∥e∗n(H − s)−k∥2 ≥

1

κV (H)2|S|
∑
s∈S

E
[
|ZH − s|−2k

]
≥ ϵ2

9B2
E

[∑
s∈S

|ZH − s|−2k · 1 {ZH ∈ D(r, R)}

]
Fubini, κV (H) ≤ B

≥ ϵ2

9B2
E
[
max
s∈S
|ZH − s|−2k · 1 {ZH ∈ D(r, R)}

]
≥ ϵ2

9B2
E
[
1 {ZH ∈ D(r, R)}

(ϵR)2k

]
S is an ϵR-net

≥ P[ZH ∈ D(r, R)]

9B2R2kϵ2k−2
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≥ 1

γ2kψ(H)2k

with the second to last line following from the fact that some s ∈ S is at least ϵR-close to
ZH whenever the latter is in D(r, R), and the final inequality holding provided that

ϵ ≤
(
P[|ZH − r| ≤ Rψk(H)]γ2kψk(H)2k

9B2R2k

) 1
2k−2

.

Expanding the probability and using the definition of R in line 1, it suffices to set ϵ smaller
than (

γ2k

4B4α2kθ2k
· γ

2kψk(H)2k

9B2
· 1

4B2α2kθ2kψk(H)2k

) 1
2k−2

=

(
γ2

(12B4)1/kα2θ2

) k
k−1

,

which is the quantity appearing in line 2. Setting θ = 2, γ = 0.8, and α = B4 log k/k, and
using k ≥ 2, we obtain the expression appearing in Nnet(·) in the statement of Lemma 4.1.10.

However, a more practical choice (and the one that we will use in Section 4.2) is an
equilateral triangular lattice with spacing

√
3ϵ, intersected with the D(r, (1 + ϵ)R). Such a

construction is optimal as ϵ→ 0, and can be used to give a better bound on Nnet(ϵ) when ϵ
is small. For instance, by adapting an argument of [3, Lemma 2.6] one can show that this
choice of S satisfies

Nnet(ϵ) ≤
2π

3
√
3
(1 + 1/ϵ)2 +

4
√
2√
3
(1 + 1/ϵ) + 1.

In the normal case, when B = α = θ = 1, k = 4, and γ = 0.8, the above bound gives

|S| ≤ Nnet

((
0.82

121/4

)4/3
)
≤ 49.9.

4.2 Numerical Stability

4.2.1 Results and Organization

When trying to obtain guarantees for the shifted QR algorithm in finite arithmetic, the
following two interrelated issues arise:

1. Forward Stability of QR Steps. Consider a degree k shifted QR step:

p(H) = QR H = Q∗HQ,
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where p(z) = (z − r1) . . . (z − rk) is a monic polynomial of degree k and H is an upper
Hessenberg matrix. It is well-known that such a step can be implemented in a way
which is backward stable, in the sense that the finite arithmetic computation produces a
matrix H which is the unitary conjugation of a matrix near H [155]. Backward stability
is sufficient to prove correctness of the shifted QR algorithm in finite arithmetic, i.e.,
whenever it converges in a small number of iterations, the backward error is controlled.
However, it is insufficient for proving an upper bound on the number of iterations before
decoupling, which requires showing that certain subdiagonal entries of the Hessenberg
iterates decay rapidly — to reason about these entries, some form of forward stability
is required. The issue is that a shifted QR step is not forward stable when p(H) is
nearly singular (which can occur before decoupling). Thus, the existing convergence
proofs break down in finite arithmetic whenever this situation occurs. As far as we
know, there is no complete and published proof of rapid convergence of the implicitly
shifted QR algorithm with any shifting strategy in finite arithmetic, even on symmetric
matrices (see Section 4.2.2 for a detailed discussion).

2. Computation of (Good Quality) Approximate Ritz Values. The Ritz values of order
k of an upper Hessenberg matrix H are equal to the eigenvalues of its bottom right
k × k corner H(k); they are also defined variationally as the zeros of the monic degree
k polynomial pk minimizing ∥e∗npk(H)∥, where en is an elementary basis vector. All
of the higher order shifting strategies we are aware of are defined in terms of these
Ritz values. However, we are not aware of any theoretical analysis of how to compute
the Ritz values (approximately) in the case of nonsymmetric H(k), nor a theoretical
treatment of which notion of approximation is appropriate for their use in the shifted
QR iteration.3

Section 4.2 contains the following contributions, which address the above complications
and in conjunction provide a proof of Theorem 1.4.6 advertised in Section 1.4.

(i) Forward Stability by Regularization. We handle the first issue above simply by replacing
any given shifts r1, . . . , rk in a QR step by random perturbations r1 + w1, . . . , rk + wk where
the wi are independent random numbers of an appropriate size (which depends on κV (H)
and gap(H)). We refer to this technique as shift regularization and show in Section 4.2.4
(Lemma 4.2.13) that it yields forward stability of an implicit QR step with high probability,
for any Hessenberg matrix H with an upperbound on κV (H) and a lowerbound on gap(H),
and any shifts r1, . . . , rk. Note that here the wi must be large enough to ensure forward
stability, but small enough to preserve the convergence properties of the QR iteration, which
are presumably tied to the r1, . . . , rk being approximate Ritz values. The precise notion
of “approximate” used thus determine how constrained we are in choosing our shifts while
maintaining good convergence properties.

3In practice, and in the current version of LAPACK, the prescription is to run the shifted QR algorithm
itself on H(k), but there are no proven guarantees for this approach.
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The proof of forward stability requires us to establish stronger backward stability of
implicit QR steps than was previously recorded in the literature; this appears in Section 4.2.4
and may be of independent interest.

(ii) Optimal Ritz Values/Early Decoupling Dichotomy. The second issue is more subtle. The
notion of approximate Ritz values relevant for analyzing Shk,B is the following variational
one. Recall from Section 1.4 that {r1, . . . , rk} ⊂ C is called a set of θ-optimal Ritz values of
a Hessenberg matrix H if:

∥e∗n(H − r1) . . . (H − rk)∥1/k ≤ θmin
p
∥e∗np(H)∥1/k, (4.11)

where the minimization is over monic polynomials of degree k. Thus, the true Ritz values are
1-optimal.

It is not immediately clear how to efficiently compute a set of θ-optimal Ritz values, so
we reduce this task to the more standard one of computing forward-approximate Ritz values,
which are just forward-approximations of the eigenvalues of H(k) with an appropriately chosen
accuracy parameter β roughly proportional to the right hand side of (4.11). Our key result
(Theorem 4.2.14) is the following dichotomy: if a set of β-forward approximate Ritz values
r1, . . . , rk of H is not θ-optimal, then one of the Ritz values rj must be close to an eigenvalue
of H and the corresponding right eigenvector of H must have a large inner product with en.
In the latter scenario we show that a single degree k implicit QR step using the culprit Ritz
value rj as a shift must lead to immediate decoupling, which we refer to as early decoupling.

Importantly, this dichotomy is compatible with the random regularizing perturbation used
in (i), since the property of being a β-forward approximate Ritz value is preserved (with a
slight increase in β) under small perturbations ri → ri+wi when |wi| ≪ β. Thus, as long as we
can compute β-forward approximations r1, . . . , rk of the eigenvalues of H(k), the combination
of (i) and the dichotomy guarantees that with high probability, r1 + w1, . . . , rk + wk are
θ-optimal Ritz values and the corresponding QR step is forward stable (which is exactly what
is needed in order to analyze convergence of the iteration) — or we achieve early decoupling.

Example 4.2.1 (Necessity of Forward Error for Ritz Value Optimality). It is natural to
ask whether the weaker property of being a β-backward approximation of the eigenvalues of
H(k) is sufficient for producing O(1)-optimal Ritz values when the right hand side of (4.11)
is of scale β. The following example shows that this is not in general the case: let T be an
n× n Hessenberg Toeplitz matrix with 1s on the superdiagonal, δs on the subdiagonal, and
T (1, n) = 1. Let the bottom right k × k corner of T be T(k) and let T ′

(k) = T(k) + βeke
∗
1. An

explicit computation of characteristic polynomials shows that if r1, . . . , rk are the eigenvalues
of T(k) and r

′
1 . . . , r

′
k are the eigenvalues of T ′

(k) (which are β-backward approximations of the

ri) then

δ = ∥e∗n(T − r1) . . . (T − rk)∥1/k ≪ ∥e∗n(T − r′1) . . . (T − r′k)∥1/k ≈ β1/k,

unless β = O(δk). But this latter condition is enough to guarantee that the r′1 . . . , r
′
k are

δ-forward approximations of the Ritz values of T , which is what we require. Since T is close
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to normal when δ ≪ 1/n, this example also highlights that while we may have control of the
nonnormality of H, this does not imply any control on the nonnormality of H(k) in general.

To produce a complete eigenvalue algorithm, we also need the following auxiliary ingredients.

(iii) Analysis of Deflation. Once the shifting strategy Shk,B has been used to achieve
decoupling, it is typical to deflate the resulting matrix by zeroing out small subdiagonal
elements. The outcome of this procedure is a block upper triangular matrix whose diagonal
blocks are themselves upper Hessenberg, allowing one to recursively apply Shk,B. Because
our analysis of Shk,B relies on κV (H) and gap(H) being controlled, it is critical that we can
preserve these quantities when deflating and passing to a submatrix. This will be handled in
Section 4.2.7.

4.2.2 Related Work

The need for a finite arithmetic convergence analysis of shifted QR in the case of symmetric
tridiagonal matrices was noted in the remarkable thesis of Sanderson [136], who observed that
it does not follow from the exact arithmetic analysis of Wilkinson [174]. Sanderson formally
proved the convergence of the tridiagonal QR algorithm with explicit (as opposed to implicit)
QR steps using Wilkinson shift under certain additional assumptions, one of which [136,
Section 4] is that the “computation of the [Wilkinson shift] be done more accurately [i.e., in
exact arithmetic]”. Sanderson left open the question of analyzing implicit shifted QR and gave
an example for which its convergence breaks down unless the machine precision is sufficiently
small in relation to the subdiagonal entries of the matrix. These insightful observations of
Sanderson are consistent with the approach taken in this section, and Sanderson’s question is
resolved by Remark 1.4.9, albeit with a different shifting strategy.

Forward Stability of Shifted QR. An important step towards understanding and addressing
the two issues mentioned at the beginning of the introduction was taken by Parlett and
Le [126], who showed that for symmetric tridiagonal matrices, high sensitivity of the next
QR iterate to the shift parameter (a form of forward instability) is always accompanied by
“premature deflation”, which is a phenomenon specific to “bulge-chasing” implementations
of the implicit QR algorithm on tridiagonal matrices. Our dichotomy is distinct from but
was inspired by their paper, and carries the same conceptual message: if the behavior of
the algorithm is highly sensitive to the choice of shifts, then one must already be close to
convergence in some sense.

Watkins [169] argued informally (but did not prove) that the implicit QR iteration should
in many cases converge rapidly even in the presence of forward instability. This is an in-
triguing direction for further theoretical investigation, and could potentially lead to provable
guarantees for the shifted QR algorithm with lower precision than required here.

Aggressive Early Deflation. The classical criterion for decoupling/deflation in shifted QR
algorithms is the existence of small subdiagonal entries of H. The celebrated papers [31, 32]
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introduced an additional criterion called aggressive early deflation which yields significant
improvements in practice. Kressner [98] showed that this criterion is equivalent to checking for
converged Ritz values (i.e., Ritz pairs which are approximate eigenpairs of H), and “locking
and deflating them” (i.e., deflating while preserving the Hessenberg structure of H) using
Stewart’s Krylov-Schur algorithm [145].

The early decoupling procedure introduced in this section is similar in spirit to aggressive
early deflation — in that it detects Ritz values which are close to eigenvalues of H and
enables decoupling even when the subdiagonal entries of H are large — but different in that
it does not require the corresponding Ritz vector to have a small residual, and it ultimately
produces classical decoupling in the sense of a small subdiagonal entry.

Shift Blurring. The shifting strategies considered in Section 4.1 use shift polynomials
p(z) = (z − r1) . . . (z − rk) of degree k where k is roughly proportional to log κV (H). It was
initially proposed [5] that such higher degree shifts should be implemented via “large bulge
chasing”, a procedure which computes the QR decomposition of p(H) in a single implicit
QR step. This procedure was found to have poor numerical stability properties, which was
referred to as “shift blurring” and explained by Watkins [172] and further by Kressner [97]
by relating it to some ill-conditioned eigenvalue and pole placement problems.

To avoid these issues, we implement all degree k QR steps in this section as a sequence of
k degree-1 “small bulge” QR steps. However, since our analysis requires establishing forward
stability of each degree k step, the amount of numerical precision required for provable
δ−decoupling increases as a function of k, roughly as O(k log(n/δ)) bits. This increase in
precision is sufficient to avoid shift blurring. We suspect that forward stability of large bulge
chasing can be established given a similar increase in precision, and leave this as a direction
for further work.

4.2.3 Preliminaries

Finite Precision Arithmetic.

We will use the floating point axioms discussed in Section 1.1 (ignoring overflow and underflow
as is customary), and use u to denote the unit roundoff.

Our implementation of implicit QR steps is based on Givens rotations. If x ∈ R2, write
giv(x) for the 2× 2 Givens rotation mapping giv(x) : x 7→ ∥x∥e1. It is routine [85, Lemmas
19.7-19.8, e.g.] that, assuming u ≤ 1/24, one can compute the norm of x with relative error
2u and apply giv(x) to a vector y ∈ R2 in floating point so that∣∣∣(g̃iv(x)y)i − (giv(x)y)i

∣∣∣ ≤ ∥y∥ 6u

1− 6u
≤ ∥y∥ · 8u i = 1, 2.

For some tasks, our algorithm and many of its subroutines need to set certain scalar
parameters in order to know when to halt, at what scale to perform certain operations and
how many iterations to perform. In this context, sometimes the algorithm will have to
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compute k-th roots for moderate values of k — even though these operations are not directly
used on the matrices in question. We will assume that the following elementary functions
can be computed accurately and relatively quickly.

Lemma 4.2.2 (kth Roots). There exist small universal constants Croot, croot ≥ 1, such that
whenever kcrootu ≤ ϵ ≤ 1/2 and for any a ∈ R+, there exists an algorithm that computes a1/k

with relative error ϵ in at most

Troot(k, ϵ) := Crootk log(k log(1/ϵ))

arithmetic operations.

Proof sketch. Use Newton’s method, with starting point found via bisection.

Random Sampling Assumptions.

As discussed above, we will repeatedly regularize our shifts by replacing each with uniformly
random point on a small surrounding disk of radius O(δ2), where δ is the accuracy. To
simplify the presentation, we will assume that these perturbations can be executed in exact
arithmetic. Importantly, this assumption’s only impact is on the failure probability of the
algorithm, and its effect is quite mild. We will see below that the algorithm fails when
one of our randomly perturbed shifts happens to land too close to an eigenvalue, and we
bound the failure probability by computing the area of the ‘bad’ subset of the disk where this
occurs. If the random perturbation was instead executed in finite arithmetic, the probability
of landing in the bad set differs from this estimate by O(u/δ2). Since we will set u = o(δ2),
this discrepancy can reasonably be neglected.

Definition 4.2.3 (Efficient Perturbation Algorithm). An efficient random perturbation
algorithm takes as input s ∈ C and R > 0, and generates a random w ∈ C distributed
uniformly in the disk D(s, R) using CD arithmetic operations.

Reader Guide and Parameter Settings

There are many algorithm inputs, constants, and parameters that the reader will encounter
in Section 4.2; we will collect them here, along with some typical settings. We will regard
our main algorithm ShiftedQR in fact as a family of algorithms, indexed by several defining
parameters; these in turn used to set a number of global constants used by the algorithm
and its subroutines. The most important of the former is the “nonnormality” or condition
number bound B, from which we define the shift degree k to be the smallest power of 2 for
which

B
8 log k+3

k−1 · (2B4)
2

k−1 ≤ 3, (4.12)

which makes k = O(logB log logB). We further define the auxiliary constants

α := (1.01B)4 log k/k ∈ [1, 2], θ := 1.01
0.9981/k

(2B4)1/2k ∈ [1, 2] γ := 0.2, (4.13)
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Defining Parameter Meaning Typical Setting

B Eigenvector Condition Number Bound B ≥ 2κV (H)
Γ Minimum Gap Bound Γ ≤ gap(H)/2
Σ Operator Norm Bound Σ ≥ 2∥H∥
k Shift Degree O(logB log logB)

Global Constant

α Ritz Value Promising-ness α ∈ [1, 2]
θ Ritz Value Optimality θ ∈ [1, 2]
γ Decoupling Rate 0.2

Table 4.1: Global Data for ShiftedQR

Input Parameter Meaning Typical Setting

H Upper Hessenberg Matrix
δ Accuracy
ϕ Failure Probability Tolerance

Internal Parameter

ϵ Working Accuracy Ω
(
min{δn−2,Γn−3/2B−2}

)
φ Working Failure Probability Tolerance Ω

(
ϕ

log(ϵ/Σ)

)
η1, η2 Regularization Parameters Ω(ϵ2),Ω(ϵ2ϕ−1/2Σ−1)
β Forward Accuracy for Ritz Values Ω(ϵ2Σ−1)
R Approximate Ritz Values
S Exceptional Shifts

Table 4.2: Input and Internal Parameters for ShiftedQR

which depend only on B.
Table 4.2 contains the input parameters for ShiftedQR, as well as internal parameters

used by its subroutines. The setting of the working accuracy below is to ensure that the
norm, eigenvector condition number, and minimum eigenvalue gap are controlled for every
matrix H ′ encountered in the course of the algorithm, in the sense that

κV (H
′) ≤ 2κV (H) ≤ B ∥H ′∥ ≤ 2∥H∥ ≤ Σ gap(H ′) ≥ gap(H)/2 ≥ Γ.

We will not include the defining parameters or global constants as input to ShiftedQR or its
subroutines, and instead assume that all subroutines have access to them; however, we will
for clarity keep track of which of this global data each subroutine uses, and any constraints
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that it places on their inputs. Table 4.3 lists the main subroutines (note that we will write
Shk,B for the finite arithmetic implementation of Shk,B).

Subroutine Action Output Input Global Data

IQR Implicit QR Step H̃, R̃ H, p(z)

Taum Approx. τmp(z)(H) = ∥e∗np(H)−1∥ τ̃m H, p(z)

Optimal Check Ritz Value Optimality opt H,R θ
RitzOrDecouple Compute θ-Optimal Ritz Values H,R, dec H, ϵ, ϕ Σ,Γ, θ
Find Find a α-Promising Ritz Value r H,R α
Exc Compute Exceptional Shifts S H, r, ϵ, ϕ B,Σ, γ, θ, α
Shk,B Shifting Strategy to Reduce ψk H H,R, ϵ, ϕ B,Σ, γ, θ, α
deflate Deflate a Decoupled Matrix H1, H2, ... H, ϵ

Table 4.3: Subroutines of ShiftedQR

Absolute vs. Relative Decoupling. Because ShiftedQR and its subroutines do not have
direct access to the norms of matrices, we will find it useful for the remainder of the section
to work with an absolute notion of decoupling, instead of the relative one used in Section 4.1.
In particular, we will say that a matrix H is ϵ-decoupled if one of its k bottom subdiagonal
entries is smaller than ϵ (as opposed to ϵ∥H∥), and ϵ-unreduced if every one of its k bottom
subdiagonal entries is larger than ϵ.

4.2.4 Implicit QR: Implementation, Forward Stability, and
Regularization

Here we present a standard implementation (called “IQR”) of a degree 1 (i.e., single shift)
implicit QR step using Givens rotations (see [55, Section 4.4.8]) and provide an analysis of
its backward stability which is slightly stronger than the guarantees of [155]4. We then use
this to give a corresponding backward error bound for a degree k IQR step. We suspect much
of this material is already known to experts, but we could not find it in the literature so we
record it here.

We will prove bounds on the forward error of a degree k IQR step in terms of the distance
of the shifts to the spectrum; we will accordingly refer to shifts which are appropriately far
away from the spectrum as forward stable. We also record a forward error bound on the
bottom right entry Rnn of the QR factorization, which is used in analyzing many shifting
strategies.

4[155] uses Householder reflectors instead of Givens rotations. We have chosen the latter for simplicity
of exposition, but the stronger backward stability analysis obtained in Lemma 4.2.8 can also be shown for
Householder reflectors.
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We show in Section 4.2.4 that a sufficiently large random perturbation of any choice of
shifts is commensurately forward stable, with high probability.

Description and Backward Stability of IQR

We begin with some preliminaries on implicit QR steps in exact arithmetic.

Definition 4.2.4. The QR decomposition of an invertible matrix A is the unique factorization
A = QR where Q is unitary and R is upper triangular with positive diagonal entries. We
will use

[Q,R] = qr(A)

to signal that Q and R are the matrices coming from the QR decomposition of A.

Given a polynomial p(z) and a Hessenberg matrix H, iqr(H, p(z)) will denote the matrix
H = Q∗HQ where [Q,R] = p(H). When p(z) = z − s we will use iqr(H, s) as a shorthand
notation for iqr(H, z − s). We will also denote by κ(A) := ∥A∥∥A−1∥ the condition number
of a matrix A. We pause to verify a fundamental composition property of iqr; the proof is
standard (e.g. see [155, Section 2.3]), but we will need to adapt it in the sequel so we include
it for the reader’s convenience.

Lemma 4.2.5. For any invertible H and polynomial p(z) = (z − r1) · · · (z − rk),

iqr(H, p(z)) = iqr(· · · iqr(iqr(H, r1), r2), ..., rk). (4.14)

Moreover, if [Q,R] = qr(p(H)), H1 = H, and for each ℓ ∈ [k] we set [Qℓ, Rℓ] := qr(Hℓ − rℓ)
and Hℓ+1 := Q∗

ℓHℓQℓ, then

Q = Q1 · · ·Qk and R = RkRk−1 · · ·R1. (4.15)

Proof. Repeatedly using definition of Qℓ, Rℓ, and Hℓ for each ℓ ∈ [k], we can compute

p(H) = p(H1) = (H1 − rk) · · · (H1 − r1)
= (H1 − rk) · · · (H1 − r2)Q1R1 H1 − r1 = Q1R1

= (H1 − rk) · · ·Q1(H2 − r2)R1 H2 = Q∗
1H1Q1

= (H1 − rk) · · · (H1 − r3)Q1Q2R2R1 H2 − r2 = Q2R2

= Q1Q2 · · ·QkRkRk−1 · · ·R1, etc.

where in the final equality we continue passing Q1 · · ·Qℓ across the term H1 − rℓ and then
replace the resulting Hℓ − rℓ = QℓRℓ. Since each Qℓ is unitary and Rℓ has positive diagonal
entries, uniqueness of the QR decomposition gives Q = Q1 · · ·Qk and R = Rk · · ·R1 as
desired. The composition property (4.14) is then immediate.

The following corollary will be repeatedly useful.
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Lemma 4.2.6. Under the hypotheses of Lemma 4.2.5,

∥e∗np(H)−1∥−1 = Rnn = (R1)nn · · · (Rk)nn (4.16)

Proof. Maintaining the notation of Lemma 4.2.5, we have

∥e∗np(H)−1∥ = ∥e∗nR−1Q∗∥ = ∥e∗nR−1∥ = 1

Rn,n

,

and the proof is concluded by observing that (4.15) implies Rn,n = (R1)n,n · · · (Rk)n,n.

We will require the following definition of backward stability for a degree 1 implicit QR
step. The difference between this and the backward stability condition considered in [155] is
the additional second equation below.

Definition 4.2.7 (Backward-Stable Degree 1 Implicit QR Algorithm). A νIQR(n)-stable
single-shift implicit QR algorithm takes as inputs a Hessenberg matrix H ∈ Cn×n and a shift
s ∈ C and outputs a Hessenberg matrix H̃ and an exactly triangular matrix R̃, for which
there exists a unitary Q̃ satisfying∥∥∥H̃ − Q̃∗HQ̃

∥∥∥ ≤ ∥H − s∥νIQR(n)u (4.17)∥∥∥H − s− Q̃R̃∥∥∥ ≤ ∥H − s∥νIQR(n)u (4.18)

We now verify that there is a suitable backward-stable implicit QR algorithm. The
pseucodode of IQR given below is a standard implementation based on Givens rotations. We
use sans serif fonts to indicate subroutines implemented in finite arithmetic.

Lemma 4.2.8 (Backward Stability of Degree 1 IQR). Assuming

u ≤ min

{
1

24
,
log 2

8n5/2

}
= 2−O(logn), (4.19)

IQR satisfies its guarantees and uses at most 7n2 arithmetic operations. In particular, it is a
νIQR(n)-stable implicit QR algorithm for νIQR(n) = 32n3/2.

The straightforward proof is deferred to Appendix C.1].
We now extend the definition of IQR to shifts of higher degree. We take the straightforward

approach of composing many degree 1 QR steps to obtain a higher degree one. Given a
Hessenberg matrix H, an implicit QR algorithm IQR satisfying Definition 4.2.7, and shifts
s1, . . . , sk, we will define

IQR(H, {s1, . . . , sk}) := IQR(IQR(· · · IQR(IQR(H, s1), s2), · · · ), sk), (4.20)

which can be executed in TIQR(n, k) = 7kn2 arithmetic operations. We will sometimes use
the notation

IQR(H, p(z)) = IQR(H, {s1, . . . , sk})
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IQR

Input: Hessenberg H, shift s ∈ C
Output: Hessenberg H̃ and triangular R̃
Ensures: ∥H̃∥ ≤ ∥H∥ + 32n3/2u · ∥H − s∥, and there exists unitary Q̃ for which ∥H̃ −
Q̃∗HQ̃∥ ≤ 32n3/2u · ∥H − s∥ and ∥H − s− Q̃R̃∥ ≤ 16n3/2u · ∥H − s∥

1. R̃← H − s

2. For i = 1, 2, ..., n− 1

a) X1:2,i ← R̃i:i+1,i

b) R̃i:i+1,i+1,n ← giv(X1:2,i)
∗R̃i:i+1,i+1:n + E2,i,b

c) R̃i:i+1,i ←
(
∥X1:2,i∥+ E2,i,c

0

)
3. H̃ ← R̃

4. For i = 1, 2, ...n− 1

a) H̃1:n,i:i+1 ← H̃1:n,i:i+1giv(X1:2,i) + E4,i

5. H̃ ← H̃ + s

where p(z) = (z − s1) . . . (z − sk), though it is understood that IQR takes the roots of p
and not its coefficients as input. Lemma 4.2.8 is readily adapted to give backward stability
guarantees for IQR(H, p(z)).

Lemma 4.2.9 (Backward Error Guarantees for Higher Degree IQR). Fix C > 0 and let p(z) =∏
ℓ∈[k](z − sℓ), where S = {s1, ..., sk} ⊂ D(0, C∥H∥). Write

[
H̃, R̃1, ..., R̃k

]
= IQR(H, p(z)),

and let Q̃ℓ be the unitary guaranteed by Definition 4.2.7 to the ℓth internal call to IQR.
Assuming

νIQR(n)u ≤ 1/4,

the outputs R̃ = R̃k · · · R̃1 and Q̃ = Q̃1 · · · Q̃k satisfy∥∥∥H̃ − Q̃∗HQ̃
∥∥∥ ≤ 1.4k(1 + C)∥H∥νIQR(n)u (4.21)∥∥∥p(H)− Q̃R̃

∥∥∥ ≤ 4
(
2(1 + C)∥H∥

)k
νIQR(n)u. (4.22)

The straightforward proof is deferred to Appendix C.1.
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Forward Stability of Higher Degree IQR

In this subsection we prove forward error guarantees for IQR(H, p(z)) using the backward error
guarantees of the previous section. Let us first recall the following bound on the condition
number of the QR decomposition [146, Theorem 1.6].

Lemma 4.2.10 (Condition Number of the QR Decomposition). Let A,E ∈ Cn×n with A

invertible. Furthermore assume that ∥E∥∥A−1∥ ≤ 1
2
. If [Q,R] = qr(A) and [Q̃, R̃] = qr(A+E),

then
∥Q̃−Q∥F ≤ 4∥A−1∥∥E∥F and ∥R̃−R∥ ≤ 3∥A−1∥∥R∥∥E∥.

The main result of this subsection, which will be used throughout, is the following.

Lemma 4.2.11 (Forward Error Guarantees for IQR). Under the hypotheses of Lemma 4.2.9,
and assuming further that [Q,R] = qr(p(H)), H = Q∗HQ, and

u ≤ uIQR(n, k, ∥H∥, κV (H), dist(S, Spec(H))) :=
1

8κV (H)νIQR(n)

(
dist(S, Spec(H))

∥H∥

)k
(4.23)

= 2−O(lognκV (H)+k log
∥H∥

dist(S,Spec(H))),

we have the forward error guarantees:

∥Q̃−Q∥F ≤ 16κV (H)

(
(2 + 2C)∥H∥

dist(S, Spec(H))

)k
n1/2νIQR(n)u (4.24)

∥R̃−R∥ ≤ 12κV (H)

(
(2 + 2C)2∥H∥2

dist(S, Spec(H))

)k
νIQR(n)u (4.25)∥∥∥H̃ −H∥∥∥

F
≤ 32κV (H)∥H∥

(
(2 + 2C)∥H∥

dist(S, Spec(H))

)k
n1/2νIQR(n)u. (4.26)

Proof. The first two assertions are immediate from applying Lemma B.2.8 to M = p(H),
computing

∥M−1∥ = ∥p(H)−1∥ ≤ κV (H)

dist(S, Spec(H))k
,

bounding ∥p(H)∥ ≤ (2 + 2C)k∥H∥k, and finally using Lemma 4.2.9 to control ∥E∥ ≤
2(2 + 2C)k∥H∥kνIQR(n)u. For the third, observe that

∥Q̃∗HQ̃−Q∗HQ∥F ≤ ∥Q̃∗H(Q̃−Q)∥F + ∥(Q̃∗ −Q∗)HQ∥F ≤ 2∥H∥∥Q̃−Q∥F ,

and use the first assertion again.
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We close the subsection by giving forward error bounds for computing

τp(H)k = ∥e∗np(H)−1∥−1

indirectly, from the R’s output by IQR(H, p(z)), for p a polynomial of degree k.

Tauk

Input: Hessenberg H ∈ Cn×n, polynomial p(z) = (z − s1) · · · (z − sk)
Output: τ̃ k ≥ 0

Ensures: |τ̃ k − τp(H)k| ≤ 0.001τp(H)k

1. [
˜̂
H, R̃1, . . . , R̃k]← IQR(H, p(z))

2. τ̃ k ← fl
(
(R̃1)nn · · · (R̃k)nn

)

Lemma 4.2.12 (Guarantees for Tauk). If S = {s1, ..., sk} ⊂ D(0, C∥H∥) and

u ≤ uTau(n, k, C, ∥H∥, κV (H), dist(S, Spec(H))) (4.27)

:=
1

6 · 103κV (H)νIQR(n)

(
dist(S, Spec(H))

(2 + 2C)∥H∥

)2k

(4.28)

= 2−O(lognκV (H)+k log
∥H∥

dist(S,Spec(H))),

then Tauk satisfies its guarantees, and runs in

TTau(n, k) := TIQR(n, k) + k = O(kn2)

arithmetic operations.

Proof. Let [Q,R] = qr(p(H)) and recall that (4.16) shows that τp(H)k = Rnn. As (4.27)
implies uIQR(n, k, ∥H∥, κV (H), dist(S, Spec(H))), we can apply Lemma 4.2.11: the matrix

R̃ = R̃k · · · R̃1 satisfies

|R̃n,n −Rn,n|
≤∥R̃−R∥

≤12κV (H)

(
(2 + 2C)2∥H∥2

dist(S, Spec(H))

)k
νIQR(n)u Lemma 4.2.11

≤ 0.0005

∥p(H)−1∥
(4.27), ∥p(H)−1∥ ≤ κV (H)dist(S, Spec(H))−k

≤0.0005σmin(R) p(H) = QR
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≤0.0005Rn,n. σmin(R) ≤ ∥e∗nR∥ = Rn,n

Now, because τ̃ k is the result of computing the product of the (R̃i)n,n in floating point

arithmetic, we have
∣∣∣τ̃ k − R̃n,n

∣∣∣ ≤ kuR̃n,n, whence∣∣∣τ̃ k −Rn,n

∣∣∣ ≤ ∣∣∣τ̃ k − R̃n,n

∣∣∣+ ∣∣∣R̃n,n −Rn,n

∣∣∣
≤ kuR̃n,n + 0.0005Rn,n

≤ (1.0005ku+ 0.0005)Rn,n

≤ 0.001Rn,n.

It will also be useful to observe that∣∣∣∣ 1
τ̃ k
− 1

Rn,n

∣∣∣∣ ≤ 0.001

|τ̃ k|
≤ 0.001

|τ̃ k|
≤ 0.001∣∣Rn,n − |τ̃ k −Rn,n|

∣∣ ≤ 0.001

0.99Rn,n

≤ 0.0011

Rn,n

.

Shift Regularization

The forward error bounds on our shifts are controlled by the inverse of the distance to
Spec(H); to ensure that this is not too large, we regularize the shifts r1, . . . , rk by randomly
perturbing them.

Lemma 4.2.13 (Regularization of shifts). Let R = {r1, ..., rk} ⊂ C and η2 ≥ η1 > 0. Assume

η1 + η2 ≤
gap(H)

2
.

Let w1, ..., wk ∼ Unif(D(0, η2)) be i.i.d. and Ř = {ř1, ..., řk} = {r1 + w1, ..., rk + wk}. Then
with probability at least 1− k (η1/η2)2, we have dist(Ř, Spec(H)) ≥ η1.

Proof. Define the bad region B ⊂ C as the union of disks B :=
⋃
λ∈Spec(H)D(λ, η1). The

assumption η1 + η2 ≤ gap(H)/2 implies that for each ri, the disk D(ri, η2) intersects at most
one disk in B; since ři is distributed uniformly in D(ri, η2) we have

P[ři ∈ B] ≤
(
η1
η2

)2

,

and the total probability that at least one ři lies in the bad region is at most k times this by
a union bound.
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4.2.5 Finding Forward Stable Optimal Ritz Values (or Decoupling
Early)

The shifting strategy Shk,B in Section 4.1 uses a specific notion of approximation for Ritz
values, namely θ-optimality as defined in (4.11). In Section 4.1 we assumed the existence of
a black box algorithm for computing such optimal values. In this section we will show how
to compute θ-optimal Ritz values which are forward stable in the sense of Section 4.2.4 (or
guarantee immediate decoupling).

The procedure consists of two steps, and relies on the black box algorithm SmallEig for
computing forward approximations of the eigenvalues of a k × k or smaller matrix, in the
sense of Definition 1.4.5. The first step of our approximation procedure is simply to compute
forward approximations to the Ritz values using SmallEig. Second, we show the following
dichotomy: for appropriately set parameters, any forward-approximate set of Ritz values R
of a Hessenberg matrix H is either (i) θ-optimal or (ii) contains a Ritz value which can be
used to decouple the matrix in a single degree k implicit QR step (in fact, the proof shows
that this Ritz value must be close to an eigenvalue of H, see Remark 4.2.16). This is the
content of Theorem 4.2.14, which is established in Section 4.2.5. We give a finite arithmetic
implementation of this dichotomy in Section 4.2.5.

The Dichotomy in Exact Arithmetic

In this subsection we show that for β small enough and θ large enough, any setR = {r1, . . . , rk}
of β-forward approximate Ritz values of H either yields a θ-optimal set of Ritz values, or one
of the ri ∈ R has a small value of τ(z−ri)k(H).

Theorem 4.2.14 (Dichotomy). Let P = {ρ1, . . . , ρk} be the Ritz values of H and assume
that R = {r1, . . . , rk} satisfies |ρi − ri| ≤ β for all i ∈ [k]. If

θ ≥ (2κ4V (H))1/2k and
β

gap(H)
≤ 1

2

(
θ

(2κ4V (H))1/2k
− 1

)
=: c (4.29)

then at least one of the following is true:

i) R is a set of θ-optimal Ritz values of H.

ii) There is an ri ∈ R for which

∥e∗n(H − ri)−k∥1/k ≥
1

2κV (H)2/k
·
(

ψk(H)

∥H∥+ β

)
·

(
1− (2κ4V )1/2k

θ

β

)
. (4.30)

The remainder of this subsection is dedicated to the proof of Theorem 4.2.14. Let P =
{ρ1, . . . , ρk} and R = {r1, . . . , rk} be as in Lemma 4.2.14, and set χ(z) = (z − ρ1) · · · (z − ρk)
and p(z) = (z−r1) · · · (z−rk). Of course, by construction χ(z) is the characteristic polynomial
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of H(k). Our strategy in proving Theorem 4.2.14 will be to show that if i) does not hold, then
ii) does; assuming the former, we can get that

E[|p(ZH)|2] ≥
∥e∗np(H)∥2

κV (H)2
Lemma 4.1.5

≥ θ2k∥e∗nχ(H)∥2

κV (H)2
Negation of i)

≥ θ2kE[|χ(ZH)|2]
κV (H)4

Lemma 4.1.5 (4.31)

= 2(1 + 2c)2kE[|χ(ZH)|2] (4.29) (4.32)

In other words, E[|p(ZH)|2] is much larger than E[|χ(ZH)|2]. On the other hand, by the
assumptions in Theorem 4.2.14, the roots of p(z) and χ(z) are quite close. Intuitively, because
ZH is supported on the eigenvalues of H, these two phenomena can only occur simultaneously
if some root of p(z) is close to an eigenvalue of ofH with significant mass under the distribution
of ZH . The following lemma, whose proof we will briefly defer, articulates this precisely. The
lemma does not require any particular properties of p and χ other than that their roots are
close, so we will phrase it in terms of two generic polynomials q and q̌; when we apply the
lemma, we will set q = χ and q̌ = p.

Lemma 4.2.15. Assume that β
c
≤ gap(H) with c defined as in (4.29), q(z) := (z−s1) · · · (z−

sk) for some S = {s1, . . . , sk} ⊂ D(0, ∥H∥), and let q̌(z) := (z − š1) · · · (z − šk) with
š1, ..., šk ∈ C satisfying

max
i∈[k]
|si − ši| ≤ β.

Then

P
[
dist(ZH , {s1, ..., sk}) ≤

β

2c

]
≥ E[|q̌(ZH)|2]− (1 + 2c)2kE[|q(ZH)|2]

(2(∥H∥+ β)(1 + 2c))2k
.

Lemma in hand, we can now complete the proof.

Proof of Theorem 4.2.14. Using Lemma 4.2.15 with q(z) = χ(z) = (z − ρ1) . . . (z − ρk) and
q̌(z) = p(z) = (z − r1) . . . (z − rk), we find that

P
[
dist(ZH ,P) ≤

β

2c

]
≥ E[|p(ZH)|2]− (1 + 2c)2kE[|χ(ZH)|2]

(2(∥H∥+ β)(1 + 2c))2k

≥ E[|χ(ZH)|2]
22k(∥H∥+ β)2k

(4.32)

≥ ∥e∗nχ(H)∥2

22kκV (H)2(∥H∥+ β)2k
Lemma 4.1.5

=
ψ2k
k (H)

22kκV (H)2(∥H∥+ β)2k
Lemma 4.1.3.
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Since the right hand side is nonzero and ZH is supported on the spectrum of H (and since
c ≤ 1/2 by assumption) this implies that for some i ∈ [k] and λ ∈ Spec(H)

|ρi − λ| ≤
β

2c
.

On the other hand, as we are assuming β/c ≤ gap(H), there can be at most one eigenvalue
within β/2c of each ρi — otherwise by the triangle inequality two such eigenvalues would be
at distance less that β/c ≤ gap(H) from one another. Since there are only k of the ρi’s, at
least one of the eigenvalues, say λ, that is at least β/2c-close to of one of them must satisfy

P [ZH = λ] ≥ 1

k

(
ψk(H)

2κV (H)1/k(∥H∥+ β)

)2k

. (4.33)

By the triangle inequality, we then have

|ri − λ| ≤ |ri − ρi|+ |ρi − λ| ≤ β

(
1 +

1

2c

)
. (4.34)

Finally,

∥e∗n(H − ri)−k∥1/k

≥
E
[
|ZH − r|−2k

]1/2k
κV (H)1/k

Lemma 4.1.5

≥ 1

κV (H)1/k
· 1

(2k)1/2k

(
ψk(H)

κV (H)1/k(∥H∥+ β)

)
·
(

2c

(2c+ 1)β

)
,

where the second inequality uses E
[
|ZH − ri|−2k

]
≥ P[ZH=λ]

|λ−r|2k and (4.33), (4.34). This yields

the conclusion by substituting c and noting that (2k)1/2k ≤ 2.

Remark 4.2.16. By (4.33) and (4.34), the above proof shows that the culprit Ritz value ri is
close to an eigenvalue of H and the corresponding right eigenvector has a large inner product
with en. This could alternatively be used to decouple the matrix using other techniques such
as inverse iteration.

Proof of Lemma 4.2.15. We begin by partitioning set S = {s1, ..., sk} according to which
eigenvalue of H is the closest: relabelling Spec(H) = {λ1, ..., λn} as necessary, write S =
S1 ⊔ · · · ⊔ Sℓ, where Sj consists of those si whose closest eigenvalue is λj (breaking ties
arbitrarily).

Now, recursively define a sequence of polynomials q0, . . . , ql with l ≤ k given by q0(z) = q(z)
and

qj+1(z) :=

∏
i∈Sj+1

(z − ši)∏
i∈Sj+1

(z − si)
qj(z);
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in other words, the qj interpolate between q and q̌ by exchanging the original roots s1, ..., sk for
the perturbed ones š1, ..., šk, doing so in batches according to the partition S = S1 ⊔ · · · ⊔ Sℓ.
The proof reduces to the following bound on E[|qj(ZH)|2] in terms of E[|qj−1(ZH)|2], which
we will prove shortly.

Claim 4.2.17. For each j = 1, ..., ℓ, we have

E[|qj(ZH)|2] ≤ (1 + 2c)2|Sj |E[|qj−1(ZH)|2] + (2(∥H∥+ β))2kP[ZH = λj]1
[
dist(λj,S) ≤ β

2c

]
.

In view of the claim, we can inductively assemble these bounds to compare E[|q(ZH)|2] and
E[|q̌(ZH)2]:

E[|q̌(ZH)|2] = E[|qℓ(ZH)|2]
≤ (1 + 2c)2|Sℓ|E[|qℓ−1(ZH)|2] + (2(∥H∥+ β))2kP[ZH = λℓ]1

[
dist(λℓ,S) ≤ β

2c

]
≤ (1 + 2c)2kE[|q0(ZH)|2]

+
∑
i∈[ℓ]

(2(∥H∥+ β))2k(1 + 2c)2
∑i

j=1 |Si|P[ZH = λi]1
[
dist(λi,S) ≤ β

2c

]

≤ (1 + 2c)2k

E[|q(ZH)|2] + (2(∥H∥+ β))2k
∑
i∈[ℓ]

P[ZH = λi]1
[
dist(λi,S) ≤ β

2c

]
≤ (1 + 2c)2k

(
E[|q(ZH)|2] + (2(∥H∥+ β))2kP

[
dist(ZH ,S) ≤ β

2c

])
.

Rearranging gives the bound advertised in the lemma.
It remains to prove Claim 4.2.17. To lighten notation, we’ll write s and š for an arbitrary

element in Sj ⊂ S, and its perturbation, respectively. For any m ∈ [n] \ j and s ∈ Sj, we
have |λm − s| ≥ gap(H)

2
, so∣∣∣∣λm − šλm − s

∣∣∣∣ ≤ 1 +

∣∣∣∣ s− šλm − s

∣∣∣∣ ≤ 1 +
2|s− š|
gap(H)

≤ 1 + 2c,

and hence ∏
s∈Sj

∣∣∣∣λm − šλm − s

∣∣∣∣ ≤ (1 + 2c)|Sj |.

Using the above, the definition of qj in terms of qj−1, and expanding the expectation as a
sum, we find

E[|qj(ZH)|2] = P[ZH = λj]|qj(λj)|2 +
∑

m∈[n]\j

P[ZH = λm]|qj−1(λm)|2
∏

s∈Sj+1

∣∣∣∣λm − šλm − s

∣∣∣∣2
≤ P[ZH = λj]|qj(λj)|2 + (1 + 2c)2|Sj |

∑
m∈[n]\j

P[ZH = λm]|qj−1(λm)|2
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≤ P[ZH = λj]
(
|qj(λj)|2 − (1 + 2c)2|Sj ||qj(λj−1)|2

)
+ (1 + 2c)2|Sj |E[|qj−1(ZH)|2]

(4.35)

≤ P[ZH = λj]|qj−1(λj)|2
∏
s∈Sj

(
1 +

∣∣∣∣ s− šλj − s

∣∣∣∣)2

− (1 + 2c)2|Sj |


+ (1 + 2c)2|Sj |E[|qj−1(ZH)|2] (4.36)

We have defined Sj so that λj is the closest eigenvalue to every s ∈ Sj, so dist(λj,S) =
dist(λj, Sj). Thus when dist(λj,S) > β

2c
, we can rearrange to see that

0 ≥
(
1 +

β

dist(λj, Sj)

)2|Sj |

− (1 + 2c)2|Sj |

≥
∏
s∈Sj

(
1 +

|s− š|
|λj − s|

)2

− (1 + 2c)2|Sj |;

the latter is a factor of the first term on the right hand side of (4.36), so in the event
dist(λj,S) > β

2c
we have

E[|qj(ZH)|2] ≤ (1 + 2c)2|Sj |E[|qj−1(ZH)|2].

On the other hand, independent of dist(λj,S) (and thus in particular when dist(λj,S) ≤ β
2c
)

from (4.35) we know that

E[|qj(ZH)|2] ≤ P[ZH = λj]|qj(λj)|2 + (1 + 2c)2|Sj |E[|qj−1(ZH)|2]
≤ P[ZH = λj](2(∥H∥+ β))2k + (1 + 2c)2|Sj |E[|qj−1(ZH)|2.

For the final inequality, note that λj ∈ D(0, ∥H∥) and, because S ⊂ D(0, ∥H∥), and |š−s| ≤ β
for every s ∈ S, the roots of each qj are contained in D(0, ∥H∥+ β). Combining the bounds
on E[|qj(ZH)|2] in the cases dist(λj,S) > β

2c
and dist(λj,S) ≤ β

2c
, we find that

E[|qj(ZH)|2] ≤ (1 + 2c)2|Sj |E[|qj−1(ZH)|2] + (2(∥H∥+ β))2kP[ZH = λj]1
[
dist(λj,S) ≤ β

2c

]
,

establishing the claim.

Finite Arithmetic Implementation of RitzOrDecouple

In this subsection we combine Theorem 4.2.14 and the regularization procedure of Lemma
4.2.13 to obtain a finite arithmetic algorithm RitzOrDecouple for finding θ-optimal Ritz values
in the sense of Definition 1.4.2, for θ set as in (4.13), and with the additional property of
being forward stable. The first step is testing whether a set of putative approximate Ritz
values are θ-optimal.
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Optimal

Input: Hessenberg H ∈ Cn×n, {s1, . . . , sk} = S ⊂ C
Global Data: Optimality parameter θ
Output: Optimality flag opt

Ensures: If opt = true, then S are θ-optimal; if opt = false, then they are not
(.9981/kθ)-optimal

1. ṽ0 ← en

2. For j = 0, . . . , k − 1

a) ṽj+1 ← fl ((H − sj+1)
∗ṽj)

3. If fl(∥ṽk∥) ≥ .999θkψkk(H), opt← false, else opt← true

Lemma 4.2.18 (Guarantees for Optimal). Assume that s1, . . . , sk ∈ D(0, C∥H∥) and

u ≤ uOptimal(n, k, C, ∥H∥, θ) :=
1

2 · 103n2

(
ψk(H)

θ(2 + 2C)∥H∥

)k
= 2

−O
(
logn+k log

θ∥H∥
ψk(H)

)
; (4.37)

then Optimal satisfies its guarantees and runs in at most TOptimal(k) := 4k2 = O(k2) arithmetic
operations.

Proof of Lemma 4.2.18. From our initial floating point assumptions, we have ṽi = (H −
si)ṽi−1 + ∆i, where ∆ is supported only on its i + 1 final coordinates, each of which has
magnitude at most (1+C)∥H∥∥ṽi−1∥·nu, giving the crude bound ∥∆i∥ ≤ (1+C)∥H∥∥ṽi−1∥·
n3/2u. Thus inductively

∥ṽi∥ ≤
(
(1 + C)∥H∥(1 + n3/2u)

)i
and given u ≤ n−3/2,

|fl (∥ṽk∥)− ∥e∗np(H)∥| ≤ nu∥ṽk∥+ |∥ṽk∥ − ∥e∗np(H)∥|

≤ nu
(
(1 + C)∥H∥(1 + n3/2u)

)k
+ kn3/2u ·

(
(1 + C)∥H∥(1 + n3/2u)

)k
≤ 2n2(2 + 2C)k∥H∥ku.

Thus if fl(∥ṽk∥) ≥ .999θkψkk(H), our assumption on u ensures

∥e∗np(H)∥ ≥ .999θkψkk(H)− 2(1 + C)k∥H∥kk2n3/2u ≥ .998θkψkk(H).

On the other hand, if fl(∥ṽk∥) ≤ .999θkψkk(H), then analogously we have

∥e∗np(H)∥ ≤ θkψkk(H).

For the running time, each ṽi is supported only on i+2 coordinates, so each multiplication
(H− si)ṽi−1 requires 3i+3 arithmetic operations, for a total of 3k(k+1)/2; we then require a
further 2k to compute ∥ṽk∥, giving 3k(k + 1)/2 + 2k ≤ 4k2 arithmetic operations overall.
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We now specify RitzOrDecouple in full.

RitzOrDecouple

Input: Hessenberg H, working accuracy ϵ, failure probability ϕ
Global Data: Norm bound Σ, optimality parameter θ as in (4.13)
Requires: H is ϵ-unreduced, ∥H∥ ≤ Σ, gap(H) ≥ 2ϵ2

Σ
, k/ϕ ≥ 2

Output: Hessenberg H, θ-approximate Ritz values Ř, decoupling flag dec

Ensures: With probability at least 1− ϕ, dist(Ř, Spec(H)) ≥ η1 (as defined in line 1) and
one of the following holds:

• dec = false, H = H, and Ř is an exact set of θ-optimal Ritz values of H, satisfying
Ř ⊂ D(0, 1.1∥H∥).

• dec = true and for some ř ∈ Ř, H = IQR(H, (z − ř)k) is ϵ-decoupled.

1. β ← ϵ2

16·101·Σ , η2 ←
β
2
, η1 ← η2√

2k/ϕ
= ϵ2

√
ϕ

32·101·Σ
√
2k

2. R ← SmallEig
(
H(k), β/2, ϕ/2

)
3. {ř1, . . . , řk} = Ř ← {r1 + w1, . . . , rk + wk}, where the wi are i.i.d samples from

Unif
(
D(0, η2)

)
4. If Optimal(Ř, H, θ) = true, set H ← H and dec← false

5. Else if Optimal(Ř, H, θ) = false, for i = 1, ..., k

a) H ← IQR(H, (z − ři)k)
b) If Hj+1,j ≤ ϵ for any j ∈ {n− k, n− k + 1, . . . , n− 1}, set dec← true and halt

Lemma 4.2.19 (Guarantees for RitzOrDecouple). Assuming that

u ≤ uRitzOrDecouple(n, k,Σ, B, θ, ϵ, ϕ)

:= min

{
uOptimal(n, k, 1.1,Σ, θ),

ϵ

8n1/2Σ
uIQR

(
n, k, 1.1,Σ, B,

ϵ2
√
ϕ

32 · 101 · Σ
√
2k

)}
(4.38)

= 2−O(lognB+k log
θ∥H∥·kΣ

ϵϕ ) (4.39)

then RitzOrDecouple satisfies its guarantees and its running time depends on the value of the
decoupling flag. In either case it makes one call to SmallEig, in addition to that call

1. if dec = false, RitzOrDecouple uses at most

TRitzOrDecouple(n, k, false) := kCD + k + TOptimal(k) = O(k2)

arithmetic operations.
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2. otherwise, RitzOrDecouple uses at most

TRitzOrDecouple(n, k, true) := TOptimal(k) + k(TIQR(n, k) + k + CD + 1) = O(k2n2)

arithmetic operations.

Proof. First, the assumptions of RitzOrDecouple on its input parameters imply that

η1 + η2 ≤ β ≤ ϵ2

Σ
≤ gap(H)/2

so we can apply Lemma 4.2.13 to find that dist(Ř, Spec(H)) ≥ η1 with probability at least

1− k
(
η1
η2

)2

= 1− k

(√
ϕ

2k

)2

≥ 1− ϕ/2.

By the black box assumptions on SmallEig, R is a set of β/2-forward approximate Ritz
values with probability at least 1 − ϕ/2. The perturbed set Ř are in this case β-forward
approximate Ritz values, and we further have

β ≤ 0.1ϵ ≤ 0.1∥H∥

so the set Ř is contained in a disk of radius 1.1∥H∥.
The assumption u ≤ uOptimal(1.1, k, n,H) means that if Optimal(Ř, H, θ) = true we

are guaranteed that Ř is indeed a set of θ-optimal Ritz values for H. On the other hand
if Optimal(Ř, H, θ) = false, then by Lemma 4.2.18 the Ř fail to be 0.9981/kθ-optimal.
Examining the definitions of θ and β, we verify the hypotheses of Theorem 4.2.14:

c =
1

2

(
0.9981/kθ

(2κV (H)4)1/2k
− 1

)
≥ 1

2

(
101
100

(2B4)1/2k

(2B4)1/2k
− 1

)
=

1

200
≥ β

gap(H)
,

and conclude that there is some ř ∈ Ř for which

∥e∗n(H − ř)−k∥1/k

≥ 1

2κV (H)2/k
·
(

ψk(H)

∥H∥+ β

)
·

1− (2κ4V )1/2k

0.9981/kθ

β


≥1

4
·
( ϵ

2Σ

)
·
(
1− 100

101

β

)
B2/k ≤ 2, ψk(H) ≤ ϵ, β ≤ ∥H∥

≥2

ϵ
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by the definition of β in line 1. In the event that dist(Ř, Spec(H)) ≥ η1, our choice of u in
(4.38) means that we can apply Lemma 4.2.11 to H = IQR(H, (z − ř)k) with C = 1.1, giving

∥H − iqr(H, (z − ř)k)∥F ≤ 32κV (H)∥H∥
(

4.2∥H∥
dist(ř, Spec(H))

)k
n1/2νIQR(n)u ≤ ϵ/2.

Using ψk(iqr(H, (z − ř)k) ≤ τ(z−ř)k(H) ≤ ϵ/2 (which was verified in Lemma 4.1.4) we find
that iqr(H, (z− ř)k) has a subdiagonal entry smaller than ϵ/2, so H must have a subdiagonal
entry smaller than ϵ, completing the proof of correctness.

To analyze the running time, note that when dec = false other than the call to SmallEig,
in line 3 k samples are taken from Unif(D(0, η2)) and k additions are made which amounts
to CDk + k operations, and in line 4 Optimal is called once, adding TOptimal(k) to the running
time. In addition to that, when dec = true, at most k calls to IQR with degree k are made
and each time k subdiagonals of H are checked, adding kTIQR(n, k) + k2 operations.

4.2.6 Finite Arithmetic Analysis of One Iteration of Shk,B

In this section we provide the finite arithmetic analysis of a single iteration of the shifting
strategy Shk,B introduced in Section 4.1; we assume familiarity with the context and notions
introduced there. In exact arithmetic, Shk,B takes as input a Hessenberg matrix H with
κV (H) ≤ B, and a set R of θ-optimal Ritz values for H, and ouputs a new Hessenberg
matrix Ĥ unitarily equivalent to H, with ψk(Ĥ) ≤ (1− γ)ψk(H). Along the way, it first uses
a subroutine Find to generate a promising Ritz value r ∈ R and then — in the event that
the shift (z − r)k does not reduce the potential — uses a subroutine Exc to produce a set of
exceptional shifts S, one of which is guaranteed to achieve potential reduction. Let us now
specify these subroutines in finite arithmetic and state their guarantees.

Computation of τ and ψ. The shifting strategy Shk,B needs access to both τp(H) and
ψk(H). The former can be computed using Lemma 4.2.12. For the latter, we will assume for
simplicity that ψkk(H) (which is simply a product of k entries of H) can be computed exactly
(this could for instance be achieved by temporary use of moderately increased precision). On
the other hand, in some places it will be important to account for the error in computing the
k-th root of ψkk(H), so we will denote

ψ̃k(H) := fl
((
ψkk(H)

)1/k)
,

and assume
|ψ̃k(H)− ψk(H)| ≤ (1− 0.9991/k)ψk(H) ≤ 0.001ψk(H), (4.40)

which as per Lemma 4.2.2 can be computed in Tψ(k) := k + Troot(k, 1− 0.9991/k) arithmetic
operations provided that

u ≤ uψ(k) :=
1− 0.9991/k

k(croot + 1− 0.9991/k)
= 2−O(log k). (4.41)
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This setting of the accuracy of ψ̃k will be convenient for the analysis of Exc below.

Analysis of Find. To produce a promising Ritz value with Find, we will proceed as in the
exact arithmetic case, using Tauk to guide our binary search procedure. The guarantees on

Tauk are only strong enough to ensure that we discover a (1.01κV (H))
4 log k

k -promising Ritz

value — as opposed the κV (H)
4 log k

k -optimality we are guaranteed in the exact case.

Find

Input: Hessenberg H, a set R = {r1, . . . , rk} ⊂ C
Global Data: Promising parameter α = (1.01B)

4 log k
k as in (4.13)

Output: A complex number r ∈ R
Requires: ψk(H) > 0
Ensures: r is α-promising

1. For j = 1, ..., log k

a) Evenly partition R = R0 ⊔R1, and for b = 0, 1 set pj,b =
∏

r∈Rb
(z − r)

b) R ← Rb̃j
, where b̃j is the b that minimizes Tauk/2(H, p2

j−1

j,b )

2. Output R = {r}

Lemma 4.2.20 (Guarantees for Find). Assume that R ⊂ D(0, C∥H∥) and

u ≤ uFind(n, k, C, ∥H∥, κV (H), dist(R, Spec(H)))

:= uTau(n, k/2, C, ∥H∥, κV (H), dist(R, Spec(H))) (4.42)

= 2−O(lognκV (H)+k log
∥H∥

dist(R,Spec(H))).

Then Find satisfies its guarantees, and runs in

TFind(n, k) := 2 log kTTau(n, k/2) + log k = O(k log k · n2)

arithmetic operations.

Proof. The definition of uFind is sufficient to let us invoke Lemma 4.2.12 and conclude that
it satisfies its guarantees throughout Find. On each step of the iteration, write bj for the
b ∈ {0, 1} maximizing ∥e∗npj,b(H)−1∥. Applying Lemma 4.2.12, for each b ∈ {0, 1} we have∣∣∣Tauk/2(H, pj,b)− ∥e∗npj,b(H)−1∥−1

∣∣∣ ≤ 0.0011∥e∗npj,b(H)−1∥−1,

and thus it always holds that

∥e∗npj,b̃j(H)−1∥2 ≥ (1− 0.0022)2∥pj,bj(H)−1∥2 ≥ 1

2.02

(
∥pj,0(H)−1∥2 + ∥pj,1(H)−1∥2

)
.
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We now mirror the proof of the analogous Lemma 2.7 in Part 1 of this work, which analyzes
Find in exact arithmetic. On each step of the iteration, we have defined thing so that

pj,b̃j(z) = pj+1,0(z)pj+1,1(z). (4.43)

On the first step of the subroutine, this identity becomes p(z) = p1,0(z)p1,1(z), where p(z) is
the polynomial whose roots are the full set R of approximate Ritz values, so

∥e∗np1,b̃1(H)−1∥2 ≥ 1

2.02

(
∥e∗np1,0(H)−1∥2 + ∥e∗np1,1(H)−1∥2

)
≥ 1

1.01κV (H)2
E
[
1

2

(
|p1,0(ZH)|−2 + |p1,1(ZH)|−2

)]
Lemma 4.1.5

≥ 1

1.01κV (H)2
E[|p(ZH)|−1] AM/GM and (4.43)

Applying the same argument to each subsequent step,

∥e∗npj+1,b̃j+1
(H)−2j∥2

≥ 1

1.01κV (H)2
E
[
1

2

(
|pj+1,0(ZH)|−2j+1

+ |pj+1,1(ZH)|−2j+1
)]

Lemma 4.1.5

≥ 1

1.01κV (H)2
E
[
|pj+1,0(ZH)pj+1,1(ZH)|−2j

]
AM/GM

≥ 1

1.01κV (H)4
∥e∗n(pj+1,0(H)pj+1,1(H))−2j−1∥ Lemma 4.1.5

=
1

1.01κV (H)4
∥e∗npj,b̃j(H)−2j−1∥. (4.43)

Paying a further κV (H)2 on the final step to convert the norm into an expectation, we get

E
[
|ZH − r|−k

]
≥
(

1

1.01κV (H)

)4 log k

E
[
|p(ZH)|−1

]
as promised.

For the runtime, we make 2 log k calls to Tauk/2 and log k comparisons of two floating
point numbers.

Analysis of Exc. We now come to the exceptional shift, effectuated by the subroutine
Exc in the event that a promising Ritz value fails to achieve potential reduction. In finite
arithmetic, we will again proceed similarly to the exact arithmetic setting — however, we
will additionally need to ensure that all of our exceptional shifts are forward stable in the
sense of Section 4.2.4, and to achieve this we will apply a random perturbation in the same
spirit as Section 4.2.4.
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Let us first pause to prove a key lemma ensuring potential reduction in finite arithmetic
for sufficiently forward stable shifts. In particular, we will use the forward error guarantee of
Lemma 4.2.11 to analyze the potential of IQR(H, p(z)), by directly comparing it to that of
iqr(H, p(z)).

Lemma 4.2.21. Let p(z) = (z − s1)...(z − sm) for some floating point complex numbers
S = {s1, ..., sm} ⊂ D(0, C∥H∥), and assume that for some ϵ > 0,

u ≤ u4.2.21(n, k, C, ∥H∥, κV (H), dist(S, Spec(H)), ϵ)

:= 0.001ϵ · dist(S, Spec(H))k

32κV (H)∥H∥k+1(2 + 2C)kn1/2νIQR(n)
(4.44)

= 2
−O

(
log

nκV (H)

ϵ
+k log

∥H∥
dist(S,Spec(H))

)
.

Then at least one of the following holds:

1. (ϵ-Decoupling) Some subdiagonal of IQR(H, p(z)) is smaller than ϵ.

2. (Potential Approximation) ψk(IQR(H, p(z))) ≤ 1.0011ψk(iqr(H, p(z))).

Proof. Calling H̃ = IQR(H, p(z)) and H = iqr(H, p(z)), one of two cases are possible. If
Hi+1,i < 0.999ϵ for some i ∈ [n− 1], then applying Lemma 4.2.11 and our assumption on u,

H̃i+1,i < Hi+1,i + 0.001ϵ < ϵ.

On the other hand, if for every i ∈ [n− 1] we have Hi+1,i ≥ 0.999ϵ, then

ψk

(
H̃
)
≤ ψk

(
H
) ∏

i∈[n−1]

(
1 +

0.001ϵ

Hi+1,i

)1/k

≤ 1.0011ψk
(
H
)
.

Lemma 4.2.22 (Guarantees for Exc). Assume that |r|+ 1.001θαB1/kψk(H) ≤ C∥H∥ and

u ≤ uExc(n, k, C,Σ, B, θ, ϵ, ϕ, γ, ξ, α)

:= min

{
uψ(k),

0.1ε · 1.998θαBϵ
4(ε+ 2(1 + ε)CΣ)

,

u4.2.21

(
n, k, C,Σ, B,

(
ξ(1− γ)

(13B4)1/kα2θ2

) k
k−1

· 1.998 θαB
1/kϵ
√
ϕ√

3n
, ϵ

)}
(4.45)

= 2−O(k log
nΣBαθ

ξ(1−γ)ϵϕ). (4.46)

Then Exc (defined below) satisfies its guarantees and runs in at most

TExc(n, k, ξ, γ, B, α, θ)
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:=Tψ(k) + 2S

((
ξ(1− γ)

(13B4)1/kα2θ2

) k
k−1

)
+ CD +O(1) = O

(
B

8
k−1

(
α2θ2

ξ(1− γ)

) 2k
k−1

)
arithmetic operations and

|S| ≤ S

((
ξ(1− γ)

(13B4)1/kα2θ2

) k
k−1

)
= O

(
B

8
k−1

(
α2θ2

ξ(1− γ)

) 2k
k−1

)

where the function S(ε) = O(ε−2) is defined in (4.48).

Exc

Input: Hessenberg H, initial shift r, working accuracy ϵ, stagnation ratio ξ, failure
probability tolerance ϕ
Global Data: Condition number bound B, decoupling rate γ, norm bound Σ, optimality
parameter θ, promising parameter α
Output: Finite subset S ⊂ C.
Requires: H is ϵ-unreduced, κV (H) ≤ B, ∥H∥ ≤ Σ, r is a θ-approximate, α-promising
Ritz value, and τ(z−r)k(H) ≥ ξψk(H)
Ensures: With probability at least 1− ϕ, some s ∈ S satisfies at least one of

• (ϵ-Decoupling) A subdiagonal of IQR(H, (z − s)k) is smaller than ϵ

• (Potential Reduction) ψk(IQR(H, (z − s)k)) ≤ 1.0011(1− γ)ψk(H)

1. R̃← 21/kαB1/kθψ̃k(H)

2. ε←
(

ξ(1−γ)
(13B4)1/kα2θ2

) k
k−1

3. S0 ← maximal 0.99ε-net of D
(
0, 1 + ε

)
4. w ∼ Unif

(
D
(
0, εR̃

))
5. S ← fl

(
(r + w + R̃S0)

)
∩D

(
r, R̃

)
Proof of Lemma 4.2.22. From (4.40), the fact that u ≤ uψ(k) we can bound

1.998 θαBψk(H) ≤ (2 · .999)1/kθαBψk(H) ≤ R̃ ≤ 1.001 · θαB1/kψk(H), (4.47)

meaning that (as ψk(H) ≤ ∥H∥) the set S is contained in a disk of radius |r|+1.001θαB1/k∥H∥ =
C∥H∥. We can then obtain that

P
[
ZH ∈ D(r, R̃)

]
≥ P

[
|ZH − r| ≤ 1.998 θακ

1/k
V (H)ψk(H)

]
by (4.47)
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≥
(
1− 1

1.998

)2
ξ2k

κV (H)4α2kθ2k
Lemma 4.1.9 with t =

1

1.998

≥ 0.24 ξ2k

B4α2kθ2k

:= P.

When we shift and scale each point s0 ∈ S0 in finite arithmetic,

|fl(r + w + R̃s0)− r + w + R̃s0| ≤
3u

1− 3u
|r + w + R̃s0|

≤ 4u
(
|r|+ ε+ (1 + ε)1.001θαB1/kψk(H)

)
≤ 4u (ε+ 2(1 + ε)CΣ)

≤ 0.1ε · 1.998 θαBϵ
≤ 0.1εR̃

from our assumption on u, which means that the computed S still contains a εR̃-net of
D(r, R̃). We will assume for simplicity that one can perform the intersection in the final

line of Exc while preserving the property that S is a maximal ε-net of D(r, R̃)) —this can
be achieved, e.g., by intersecting with a slightly larger set and projecting all points outside
D(r, R̃)) to this latter set. Since S is a maximal ε-net of D(r, R̃)), it has size at most 9/ε2,
and we may recycle a calculation from Section 4.1,

max
s∈S

τ−2k
(z−s)k(H) ≥ P

9B2ε2k−2R̃2k
≥ 1

(1− γ)2kψ2k
k (H)

provided that ε is no larger than(
P (1− γ)2kψ2k

k (H)

9B2R̃2k

) 1
2k−2

≥
(

0.24ξ2k(1− γ)2k

B6α2kθ2k · 9 · 2.0012θ2kα2kB2

) 1
2k−2

≥
(

ξ(1− γ)
(13B4)1/kα2θ2

) k
k−1

,

which is the expression appearing in line 2 of Exc.
On the other hand, after the random translation, one can quickly show that every s ∈ S

is forward stable with high probability. Because the net is maximal (meaning that no two

of the points in it are within εR̃ of one another) each eigenvalue λ ∈ Spec(H) lies within

distance εR̃ of at most three points in the net, so the probability that dist(λ,S) < η after

the random translation is at most 3η2/ε2R̃2. Thus the probability that dist(Spec(H),S) < η

after the random translation is at most 3nη2/ε2R̃2. To ensure that this is smaller than the
failure probability ϕ, we can safely set

η =
εR̃
√
ϕ√

3n
≥
(

ξ(1− γ)
(13B4)1/kα2θ2

) k
k−1

· 1.998θαB
1/kϵ
√
ϕ√

3n
.
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In the event that the shifts are all forward stable, the definition of uExc means that we can
invoke Lemma 4.2.21: either some subdiagonal of IQR(H, (z − s)k) is smaller than ϵ, or
IQR(H, (z − s)k) satisfies

ψk(IQR(H, (z− s)k)) < 1.0011ψk(iqr(H, (z− s)k)) ≤ 1.0011τ(z−s)k(H) ≤ 1.0011(1−γ)ψk(H).

One practical choice of the of the initial .99ε-net of D(0, (1 + ε)) is to take an equilateral
triangular lattice with spacing

√
3ε and intersect it with D(0, (1 + 1.99ε)); since this lattice

gives an optimal planar sphere packing, it is the optimal choice of net as ε→ 0. Other choices
may be more desirable when ε is large. Adapting an argument of [4, Lemma 2.6] (which in
turn uses [28, Theorem 3, p327]) one can show that with this choice of S0,

|S| ≤ |S0| ≤
2π

3
√
3

(
1.99 +

1

0.99ε

)2

+
4
√
2√
3

(
1.99 +

1

0.99ε

)
+ 1

:= S(ε) (4.48)

We will see that every time Exc is called in the course of the full algorithm ShiftedQR, the
same ε is used, depending only on the global data. Thus the original net of D(0, 1 + ε) need
only be computed once, and can be regarded a fixed overhead cost of the algorithm. Given
the original net, computing S costs one arithmetic operation to add r + w, followed by |S0|
each to scale and shift by r + w. Add to this the operations to compute ψ̃k(H) and R̃, and
the cost of obtaining the single random sample, and we get a total of

2|S0|+ Crootk log(k log
1

1−0.9991/k
) +O(1)

arithmetic operations. Bounding |S0| ≤ S(ε) yields the assertion of the lemma.

Analysis of Shk,B. We now specify and analyze the complete shifting strategy Shk,B.

Lemma 4.2.23 (Guarantees for Shk,B). Assume that |r|+ 1.001θαB1/kψk(H) ≤ C∥H∥ and

u ≤ uSh(n, k, C,Σ, B, dist(R, Spec(H)), θ, ϵ, ϕ, γ, α) (4.49)

:= min
{
uFind(n, k, C,Σ, B, dist(R, Spec(H))),

uExc (n, k, C,Σ, B, θ, ϵ, ϕ, γ, 0.999(1− γ), α) ,

u4.2.21(n, k, C,Σ, B, dist(R, Spec(H)), ϵ)
}

(4.50)

= 2−O(k log
nΣBθα

(1−γ)ϵϕdist(R,Spec(H)))

Then, Shk,B (defined below) satisfies its guarantees, and runs in at most

TSh(n, k, γ, B, α, θ) := TFind(n, k) + TTau(n, k) + TExc(n, k, 0.999(1− γ), (1− γ), B, α, θ)
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+ S

((
0.999(1− γ)2

(13B4)1/kα2θ2

) k
k−1

)
(TIQR(n, k) + Tψ(n, k))

= O

(
kn2B

8
k−1

(
αθ

(1− γ)

) 4k
k−1

)

arithmetic operations.

Shk,B

Input: Hessenberg H, θ-optimal Ritz values R of H, working accuracy ϵ, failure probability
tolerance ϕ.
Global Data: Condition number bound B, decoupling rate γ, norm bound Σ, optimality
parameter θ, promising parameter α
Output: Hessenberg H.
Requires: H is ϵ-unreduced and κV (H) ≤ B
Ensures: With probability at least 1− ϕ, either H is ϵ-decoupled or ψk(H) ≤ 1.002(1−
γ)ψk(H)

1. r ← Find(H,R)

2. If Tauk(H, (z − r)k) < (1− γ)kψkk(H), output H = IQR(H, (z − r)k).

3. Else, S ← Exc(H, r, ϵ, 0.999(1− γ), ϕ).

4. For each s ∈ S, if ψk(IQR(H, (z − s)k)) < 1.002(1− γ)ψk(H) or some subdiagonal of
IQR(H, (z − s)k) is smaller than ϵ, output H = iqr(H, (z − s)k)

Proof of Lemma 4.2.23. The definition of uSh ensures that Exc and Find (and therefore Tau)
satisfy their guarantees when called in the course of Sh; the analysis of Sh is accordingly
straightforward. In line 1, Find produces an α-promising, θ-approximate Ritz value r for

α = (1.01B)
4 log k

k as in Table 4.1; in line 2 — because every subdiagonal of H is assumed
larger than ϵ — we know from definition of uSh and Lemma 4.2.21 that if Tauk(H, (z− r)k) ≤
(1− γ)kψkk(H), then

ψk(IQR(H, (z − r)k)) ≤ 1.0011ψk(iqr(H, (z − r)k))
≤ 1.0011τ(z−r)k(H)

≤ 1.0011 ·
(
1.001Tauk(H, (z − r)k)

)1/k
≤ 1.002(1− γ)ψk(H).

On the other hand, if Tauk(H, (z − r)k) > (1− γ)kψkk(H) in line 2, then using the guarantees
for Tauk,

τ k(z−r)k(H) > 0.999Tauk(H, (z − r)k) ≥ 0.999(1− γ)kψk(H).



CHAPTER 4. HESSENBERG QR ALGORITHM 164

Finally, Exc satisfies its guarantees from Lemma 4.2.22 when called with α = (1.01B)
4 log k

k

and ξ = 0.9991/k(1− γ). Thus with probability at least 1− ϕ at least one exceptional shift
s ∈ S satisfies either decoupling (some subdiagonal smaller than ϵ) or potential reduction
(ψk(IQR(H, (z − s)k)) ≤ 1.0011(1− γ)ψk(H) ≤ 1.002(1− γ)ψk(H)).

For the arithmetic operations, Shk,B requires one call to Find, one to Tauk, one to Exc
with stagnation ratio ξ = 0.999(1 − γ), and finally |S| calls to degree-k IQR. We can
bound |S| ≤ S(ε), where ε is defined in the course of Exc with stagnation ratio parameter
ξ = 0.999(1 − γ), and S(·) is defined in (4.48). Since and checking every shift in S for
potential reduction dominates the arithmetic operations, we get that

TSh(n, k,B, γ, α, θ) = O

(
kn2 ·B

8
k−1

(
αθ

(1− γ)

) 4k
k−1

)
.

4.2.7 Finite Arithmetic Analysis of ShiftedQR

Preservation of gap and κV

Lemma 4.2.24. Suppose A has distinct eigenvalues. Then for any E satisfying

∥E∥ ≤ gap(A)

8n2 · κ3V (A)
(4.51)

we have
gap(A+ E) ≥ gap(A)− 2κV (A)∥E∥ (4.52)

and

κV (A+ E) ≤ κV (A) + 6n2 κ
3
V (A)

gap(A)
∥E∥. (4.53)

Proof. The assertion in (4.52) is an immediate consequence of the Bauer-Fike theorem.
For (4.53), let V be scaled so that ∥V ∥ = ∥V −1∥ = κV (A), with (not necessarily unit)
columns v1, ..., vn satisfying Avi = λivi for each i ∈ [n]. It follows from [11, Proposition 1.1]

that whenever ∥E∥ ≤ gap(A)
8κV (A)

, there exists a matrix V ′ with columns v′1, ..., v
′
n diagonalizing

A′ := A+ E, such that

∥vi − v′i∥ ≤ 2n
κV (A)

gap(A)
∥E∥∥vi∥,

which implies

∥V − V ′∥ ≤ ∥V − V ′∥F ≤ 2n3/2 κV (A)

gap(A)
∥E∥∥V ∥F ≤ 2n2 κV (A)

gap(A)
∥V ∥.
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It is standard that each singular value of V ′ satisfies |σi(V ′) − σi(V )| ≤ ∥V − V ′∥, so
using ∥V ∥ = ∥V −1∥ =

√
κV (A), we have

κV (A
′) ≤ ∥V ′∥∥(V ′)−1∥

≤ ∥V ∥+ ∥V − V ′∥
∥V −1∥−1 − ∥V − V ′∥

≤ κV (A)
1 + 2n2 κV (A)

gap(A)
∥E∥

1− 2n2 κ
2
V (A)

gap(A)
∥E∥

≤ κV (A) +
8

3
n2(1 + κV (A))

κ2V (A)

gap(A)
∥E∥,

where in the final line we have used (4.51) to argue that 2n2 κ
2
V (A)

gap(A)
∥E∥ ≤ 1/4, and convexity of

the function f(x) = 1+x/κV (A)
1−x to bound by the linear interpolation between x = 0 and x = 1/4.

The advertised bound then follows from applying κV (A) ≥ 1 and bounding 16/3 ≤ 6.

Lemma 4.2.25. If A is block upper triangular and A′ is a diagonal block, then κV (A
′) ≤ κV (A)

and gap(A′) ≥ gap(A).

Proof. The gap assertion is immediate since SpecA′ ⊂ SpecA. For κV , assume without loss
of generality that A is diagonalizable (otherwise the inequality is trivial) and

A =

(
A′ ∗
0 ∗

)
.

We claim that every V diagonalizing A is of the form

V =

(
V ′ ∗
0 ∗

)
,

where V ′ diagonalizes A′. To see this, if AV = V D, then block upper triangularity gives
A′V ′ = V ′D′ for D′ the upper left block of D. Moreover, V invertible implies V ′ is as well,
and quantitatively ∥V ′∥∥(V ′)−1∥ ≤ ∥V ∥∥V −1∥. Choosing V so that κV (A) = ∥V ∥∥V −1∥, we
have

κV (A
′) ≤ ∥(V ′)∥∥(V ′)−1∥ ≤ ∥V ∥∥V −1∥ = κV (A).

The Full Algorithm

We are now ready to analyze, in finite arithmetic, how the shifting strategy Shk,B introduced
in Section 4.1 can be used to approximately find all eigenvalues of a Hessenberg matrix H.
One simple subroutine is required in addition to the ones described in the preceding sections:
deflate(H, ϵ, k) takes as input a Hessenberg matrix H, deletes any of the bottom k − 1
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subdiagonal entries smaller than ϵ, and outputs the resulting diagonal blocks H1, H2, .... It
runs in Tdeflate(H, ϵ, k) = k arithmetic operations.

ShiftedQR

Input: Hessenberg matrix H, accuracy δ, failure probability tolerance ϕ
Global Data: Eigenvector condition number bound B, eigenvalue gap bound Γ, matrix
norm bound Σ, original matrix dimension n
Requires: Σ ≥ 2∥H∥, B ≥ 2κV (H), Γ ≤ gap(H)/2, δ ≤ Σ
Output: A multiset Λ ⊂ C
Ensures: With probability at least 1−ϕ, Λ are the eigenvalues of some H̃ with ∥H̃−H∥ ≤ δ

1. ϵ← 1
4n

min
{
δ, Γ

8n2B2

}
, φ← ϕ

3n2

log 1
1.002(1−γ)

log Σ
ϵ

2. If dim(H) ≤ k, Λ← SmallEig(H, δ, ϕ), output Λ and halt

3. Else Λ← ∅ and

a) While minn−k+1≤i≤nHi,i−1 > ϵ

i. [R, H, dec] = RitzOrDecouple(H, ϵ, φ)

ii. If dec = true, H ← H and end while

iii. Else if dec = false, H ← Shk,B(H,R, ϵ, φ)
b) [H1, H2, ...Hℓ] = deflate(H, ϵ)

c) For each j ∈ [ℓ]

i. If dim(Hj) ≤ k, Λ← Λ ⊔ SmallEig(Hj, δ/n, ϕ/3n)

ii. Else repeat lines 3a-3c on Hj

Theorem 4.2.26 (Guarantees for ShiftedQR). Let k, θ, α, and γ be set in terms of B as in
(4.12), Ndec be defined in (4.57), and ϵ and φ be defined in line 1 of ShiftedQR. Assuming

u ≤ uShiftedQR(n, k,Σ, B, δ)

:= min

{
ϵ

4.5kNdec · nνIQR(n)Σ
,uRitzOrDecouple (n, k,Σ, B, θ, ϵ, φ) ,

uSh

(
n, k, 3,Σ, B,

ϵ2
√
φ

32 · 101 · Σ
√
2k
, θ, ϵ, φ, γ, α

)}
(4.54)

= 2−O(k log
nΣB
δΓϕ ),

ShiftedQR satisfies its guarantees and runs in at most

TShiftedQR(n, k, δ, B,Σ, γ) ≤ n
(
TRitzOrDecouple(n, k, true)
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+Ndec

(
TRitzOrDecouple(n, k, false) + TSh(n, k, γ, B, α, θ)

)
(4.55)

+ Tdeflate(k)
)

= O

((
log

nBΣ

δΓ
k log k + k2

)
n3

)
arithmetic operations, plus O(n log nBΣ

δΓ
) calls to SmallEig with accuracy Ω( Γ2

n4B4Σ
) and failure

probability tolerance Ω( ϕ

n2 log nBΣ
δΓ

).

In the above result, we assume access to an upper bound Σ ≥ 2∥H∥ and show that
ShiftedQR can approximate the eigenvalues of H with (absolute) backward error δ, whereas
in our main Theorem 1.4.6, we ask for (relative) backward error δ. To prove Theorem 1.4.6
from Theorem 4.2.26, we need only compute an upper bound Σ ≥ 2∥H∥ and call ShiftedQR
with accuracy δ/Σ. Such a bound can be computed (for instance) using random vectors or, at
the cost of a factor of

√
n, by taking the Frobenius norm of H. In either case, the arithmetic

cost and precision are dominated by the requirements for ShiftedQR itself.

Proof of Theorem 4.2.26. At a high level, ShiftedQR is given an input matrix H, ϵ-decouples
H to a unitarily similar matrix H via a sequence of applications of RitzOrDecouple+ Shk,B,
deflates H to a block upper triangular matrix with diagonal blocks H1, ..., Hℓ, then repeats this
process on each block Hj with dimension larger than k×k. Since the effect of RitzOrDecouple
and Shk,B on any input matrix H ′ is approximately a unitary conjugation, it will be fruitful
for the analysis to regard each of the blocks H1, ..., Hℓ as embedded in the original matrix,
and promote the approximate unitary conjugation actions of the subroutines on each block to
unitary conjugations of the full matrix. The same goes once each of H1, ..., Hℓ is decoupled
and deflated and we pass to further submatrices of each one. Importantly, this viewpoint
is necessary only for the analysis: the algorithm need not actually manipulate the entries
outside the blocks H1, ..., Hℓ. In this picture, the end point of the algorithm is a matrix of
the form L1 ∗ ∗

L2 ∗
. . .

 , (4.56)

where L1, L2, ... are all k×k or smaller matrices on which SmallEig can be called directly, and
the ∗ entries are unknown and irrelevant to the algorithm. By the guarantees on SmallEig
(and the fact that β-forward approximation of eigenvalues implies β-backward approximation),
the output of the algorithm is thus

⊔
j

SmallEig(Lj, ϵ, φ) =
⊔
j

Spec(L̃j) = Spec

L̃1 ∗ ∗
L̃2 ∗

. . .


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where L̃1, L̃2, ... are some matrices satisfying ∥Lj − L̃j∥ ≤ δ/n, and the remaining entries are
identical to those in (4.56). Our goal in the proof will thus be to show that for some unitary

Q̃, ∥∥∥∥∥∥∥
L1 ∗ ∗

L2 ∗
. . .

− Q̃∗HQ̃

∥∥∥∥∥∥∥ ≤ δ − δ/n,

where the left hand matrix is a block upper triangular matrix with the blocks L1, L2, ... on
the diagonal. This will in turn imply that∥∥∥∥∥∥∥

L̃1 ∗ ∗
L̃2 ∗

. . .

− Q̃∗HQ̃

∥∥∥∥∥∥∥ ≤
∥∥∥∥∥∥∥
L1 − L̃1 ∗ ∗

L2 − L̃2 ∗
. . .


∥∥∥∥∥∥∥+ δ − δ/n

≤ max
i
∥Li − L̃i∥+ δ − δ/n ≤ δ,

as desired.
We begin by analyzing the while loop in line 3a.

Lemma 4.2.27. Assume that at during the execution of ShiftedQR, the while loop in line 3a
is initialized with a matrix H ′ satisfying ∥H ′∥ ≤ (1− 1/2n)Σ, κV (H

′) ≤ (1− 1/2n)B, and
gap(H ′) ≥ (1 + 1/2n)Γ. Let

Ndec :=
log Σ

ϵ

log 1
1.002(1−γ)

. (4.57)

If
u ≤ uShiftedQR(n, k,Σ, B, δ),

then the loop terminates in at most Ndec iterations, having produced a ϵ-decoupled matrix H ′

at most ϵ-far from a unitary conjugate of H ′.

Proof of Lemma. Let us write H ′′ for the matrix produced by several runs through lines
3(a)i-3(a)iii, after the while loop has been initialized with H ′, and assume that all prior calls
to RitzOrDecouple or Shk,B during the loop have satisfied their guarantees, and moreover
that all prior shifts have had modulus at most 4.5∥H ′∥ in the complex plane. We will show
inductively that this last condition holds throught the while loop.

Because the prior calls to RitzOrDecouple and Shk,B satisfy their guarantees, each previous
run through lines 3(a)i-3(a)iii has either effected immediate decoupling or potential reduction
by a multiplicative 1.002(1 − γ). Since ϵ ≤ ψk(H

′) ≤ ∥H ′∥ ≤ Σ, there can have been at
most Ndec runs through lines 3(a)i-3(a)iii so far, each of which we can regard as an IQR
step of degree k, meaning that we can think of H ′′ as being produced from H ′ by a single
IQR step of degree kNdec.

5 Thus by Lemma 4.2.9, our inductive assumption on the prior

5This is because we have simply defined a higher degree IQR step as a composition of many degree 1 IQR
steps.
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shifts, and the hypothesis on u, the distance from H ′′ to a unitary conjugate of H ′ is at most
4.5∥H∥kNdecνIQR(n)u ≤ ϵ. If H ′′ is ϵ-decoupled, then the while loop terminates, and the
proof is complete.

Otherwise H ′′ is not ϵ-decoupled. By the definition of ϵ and the fact that ϵ ≤ δ/2n ≤ Σ/2n,
we can apply Lemma 4.2.24 to find

∥H ′′∥ ≤ ∥H ′∥+ ϵ ≤ (1− 1/2n)Σ + Σ/2n ≤ Σ

κV (H
′′) ≤ κV (H

′) + 6n2 κ
3
V (H

′)

gap(H ′)
ϵ ≤ (1− 1/2n)B +B/2n ≤ B

gap(H ′′) ≥ gap(H ′)− 2κV (H
′)ϵ ≥ (1 + 1/2n)Γ− Γ/2n ≥ Γ,

and we furthermore have 2ϵ2/Σ ≤ 2ϵ ≤ Γ ≤ gap(H ′′) by the above and the definition of
ϵ. This means RitzOrDecouple(H ′′, ϵ, φ) meets its requirements, and from our assumption
on u we can apply Lemma 4.2.19 to conclude that it satisfies its guarantees. If this call to
RitzOrDecouple outputs dec = true, then the matrix it outputs is indeed decoupled and the
while loop terminates.

If on the other hand dec = false, then RitzOrDecouple outputs H ′′ and θ-approximate
Ritz values R contained in in a disk of radius 1.1∥H ′′∥, and RitzOrDecouple guarantees

dist(R, H ′′) ≥
ϵ2
√
φ

32 · 101 · Σ
√
2k
.

The bound on κV (H
′′) in the previous paragraph ensures that the requirements of the

algorithm Shk,B(H,R, ϵ, φ) have been met, and the parameter settings in (4.12)-(4.13) give
us

1.001θαB1/kψk(H
′′) = 1.001

1.01

0.9981/k
(2B4)1/2k(1.01B)

4 log k
k B1/kψk(H

′′)

= 1.04 · 21/2kB
4 log k+3

k ψk(H
′′)

≤ 1.04 ·
√

2
2

k−1B
8 log k+11

k−1 ∥H ′′∥
≤ 1.04

√
3∥H ′′∥

≤ 1.9∥H ′′∥,

so every exceptional shift has modulus at most 3∥H ′′∥ in the complex plane. Our assumption
on u lets us invoke Lemma 4.2.23 to conclude that Shk,B achieves potential reduction by a
multiplicative factor of 1.002(1− γ). Moreover, the shifts executed by RitzOrDecouple and
Sh in the above run through the while loop had modulus at most

3∥H ′′∥ ≤ 3∥H ′∥(1 + 4.5kNdecνIQR(n)u) ≤ 3∥H ′∥ · (1 + ϵ/Σ) ≤ 4.5∥H ′∥,

again since ϵ ≤ δ/2n ≤ Σ.
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The proof above ensures that for each of its first Ndec iterations, the while loop either
produces decoupling or potential reduction by a multiplicative 1.002(1− γ), and our earlier
discussion implies that it therefore terminates after after at most Ndec iterations. When it
does, the proof above additionally tells us that the final matrix H ′ is at most ϵ-far from a
unitary conjugate of H ′, as desired.

We next check that each time the while loop begins in the course of ShiftedQR, the
hypotheses of Lemma 4.2.27 are satisfied. This is immediate the first time the loop begins,
where the requirements of ShiftedQR give ∥H∥ ≤ Σ/2, κV (H) ≤ B/2, and gap(H) ≥ 2Γ.
If H ′ is a matrix passed to the while loop, and each of the while loops in its production
has satisfied the conclusion of Lemma 4.2.27, then H ′ is the result of at most n − 1 of
decouplings-and-deflations, each of which caused the norm, eigenvector condition number,
and gap to deteriorate by at worst an additive 2ϵ. Thus, finally using the full force of the
1/4n factor in the definition of ϵ,

∥H ′∥ ≤ ∥H∥+ 2(n− 1)ϵ ≤ (1− 1/2n)Σ

κV (H
′) ≤ κV (H) + 6n2 κ

3
V (H)

gap(H)
· 2(n− 1)ϵ ≤ (1− 1/2n)B

gap(H ′) ≥ gap(H)− 2κV (H) · 2(n− 1)ϵ ≥ (1 + 1/2n)Γ

by the definition of ϵ.
This ensures that every execution of the while loop throughout ShiftedQR satisfies the

conclusion of Lemma 4.2.27, which means that the set of ‘base case’ matrices L1, L2, ... are
produced by a tree of alternating decouplings and deflations with depth at most n− 1, and
moreover that ∥∥∥∥∥∥∥

L1 ∗ ∗
L2 ∗

. . .

− Q̃∗HQ̃

∥∥∥∥∥∥∥ ≤ 2(n− 1)ϵ ≤ δ − δ/n,

for some unitary Q̃, as we had set out to show.

Failure Probability. We have already shown that RitzOrDecouple and Shk,B satisfy their
guarantees (including their failure probability) throughout ShiftedQR whenever the hypotheses
of Theorem 4.2.26; these, plus the base calls to SmallEig, are the only sources of randomness
in the algorithm. There are at most n2 ·Ndec calls each to RitzOrDecouple and Shk,B over the
course of the algorithm, each failing with probability φ, and at most n calls to SmallEig, each
failing with probability at most ϕ/3n. By a union bound and the definition of φ, the total
failure probability is at most ϕ.

Arithmetic Operations and Calls to SmallEig. ShiftedQR recursively runs through line
3 many times in the course of the algorithm; write T3(m, k, δ, B,Σ,Γ) for the arithmetic
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operations required to execute this line on some matrix of size m×m during the algorithm,
with the convention that this quantity is zero when m ≤ k. Then we have

TShiftedQR(n, k, δ, B,Σ,Γ) = T3(n, k, δ, B,Σ,Γ)

≤ TRitzOrDecouple(n, k, true)

+Ndec

(
TRitzOrDecouple(n, k, false) + TSh(n, k, δ, B,Σ,Γ)

)
+ Tdeflate(k) + max∑

i ni=n

∑
i

T3(ni, k, δ, B,Σ,Γ).

Since each of the expressions T□(·) is a polynomial of degree at most two in n, the maximum
in the third line can be bounded by T3(n− 1, k, δ, B,Σ,Γ). Losing only a bit in the constant,
we can bound as

TShiftedQR(n, k, δ, B,Σ, γ) ≤ n
(
TRitzOrDecouple(n, k, true)

+Ndec

(
TRitzOrDecouple(n, k, false) + TSh(n, k, δ, B,Σ,Γ)

)
+ Tdeflate(k)

)
= O

((
log

nBΣ

δΓ
k log k + k2

)
n3

)
.

In addition, ShiftedQR requires at most O(n log nBΣ
δΓ

) calls to SmallEig with accuracy Ω(ϵ2/Σ)
and failure probability tolerance φ in the course of the calls to RitzOrDecouple, plus O(n)
‘base case’ calls with accuracy δ/n and failure probability tolerance ϕ/3n; the latter calls
to SmallEig are asymptotically dominated by the former. The estimates in the theorem
statement come from bounding ϵ and φ.

4.3 Finding Ritz Values

Section 4.3 will be devoted to showing the following theorem.

Theorem 4.3.1. On any input matrix A ∈ Cn×n, accuracy parameter δ > 0, and failure
probability tolerance ϕ > 0, the algorithm SmallEig(A, δ, ϕ) produces, with probability 1− ϕ,
the eigenvalues of a matrix Ã ∈ Cn×n with ∥A− Ã∥ ≤ δ∥A∥, using at most

O
(
n4 + n3 log(n/δϕ)2 + log(n/δϕ)2 log log(n/δϕ)

)
arithmetic operations on a floating point machine with O(log(n/δϕ)2) bits of precision.

The above theorem shows that, when implemented on a floating point machine with
O(log(n/δϕ)2) bits of precision, the algorithm SmallEig is δ-backward stable. However, as
mentioned above, in the context of this analysis the above algorithm will be used to find
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forward approximations of the eigenvalues of a (small) matrix, namely the k × k corner of
a Hessenberg matrix. The following result [26, Theorem 39.1] turns any backward error
algorithm for the eigenproblem into a forward error algorithm, at the cost of multiplying
the number of bits of precision by a roughly n (which might be tolerable for small n, but
prohibitively expensive otherwise).

Lemma 4.3.2. Let A, Ã ∈ Cn×n be any two matrices. Then there are labellings λ1, ..., λn
and λ̃1, ..., λ̃n of the eigenvalues of A and Ã, respectively, so that

max
i
|λi − λ̃i| ≤ 4(∥A∥+ ∥Ã∥)1−1/n∥A− Ã∥1/n.

In particular, for every β ≤ 1 one can produce β-forward approximate eigenvalues by
calling SmallEig with accuracy

δ =

(
β

12

)n
,

as ∥Ã∥ ≤ ∥A∥+ δ ≤ 2∥A∥. This yields the following corollary.

Corollary 4.3.3. On any input matrix A ∈ Cn×n with eigenvalues λ1, . . . , λn, any accuracy
parameter β > 0, and failure probability tolerance ϕ > 0, one can use SmallEig to find, with
probability 1− ϕ, approximate eigenvalues λ̃1, . . . , λ̃n ∈ Cn×n such that

max
i
|λi − λ̃i| ≤ β∥A∥,

using at most
O
(
n5 log(n/βϕ)2 + n2 log(n/βϕ)2 log(n log(n/βϕ))

)
arithmetic operations on a floating point machine with O(n2 log(n/βϕ)2) bits of precision.

And a direct translation of the above corollary gives Theorem 4.3.1 advertised in Section
1.4.

4.3.1 Overview of the Algorithm and Intermediate Results

The main subroutine of SmallEig, which we call findOne, is a form of shifted inverse iteration
that on a diagonalizable input A ∈ Cn×n and an input accuracy parameter β ≥ 0, produces
a β-forward approximation λ̃ ∈ C of an eigenvalue of A. The precision required to ensure
stability of this subroutine and its running time are a function of n and the eigenvector
condition number of A, i.e. of

κV (A) := inf
V :A=V DV −1

∥V ∥∥V −1∥.

The shifting strategy in findOne crucially relies on a subroutine distSpec, which allows us to
estimate the distance of any given point s ∈ C to the spectrum of A (henceforth denoted by
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SpecA) up to relative distance 0.1. The subroutine distSpec is in itself a form of unshifted
inverse iteration on A− s and its required precision and running time are also a function of
n and κV (A).

Once a β-forward approximation λ̃ ∈ C of A is obtained, the algorithm calls a subroutine
dec, which essentially uses inverse iteration on A− λ̃ to find a vector v ∈ Cn which is close
to the right eigenvector of A associated to the eigenvalue which is closest to λ̃. Then, the
subroutine deflate is called to reduce the problem A to a smaller instance.

All of the subroutines used in the algorithm require some control on κV (A), and some
additionally require a lower bound on gap(A). As usual, in order for SmallEig to work on any
matrix, we pre-process the input matrix by adding a small random perturbation. We refer
the reader to Section 4.3.7 for a detailed discussion on how this works in this context.

Below we elaborate on the main subroutines of SmallEig and discuss the technical results
proven in this section.

Computing the Distance to the Spectrum (distSpec). Let A ∈ Cn×n be a diagonalizable
matrix with spectral decomposition

A =
n∑
i=1

λiviw
∗
i ,

and fix s ∈ C\SpecA. The main idea behind distSpec is simple: if u ∈ Cn is a vector sampled

uniformly at random from the complex unit sphere Sn−1 then ∥u∗(s− A)−m∥− 1
m converges

(with probability one) as m goes to infinity, to the distance from s to the spectrum of A,
which we will denote by dist(s, SpecA). Indeed:

lim
m→∞

∥u∗(s− A)−m∥−
1
m = lim

m→∞

∥∥∥ n∑
i=1

(s− λi)−mu∗viw∗
i

∥∥∥− 1
m

= lim
m→∞

dist(s, SpecA)
∥∥∥ n∑
i=1

(
dist(s, SpecA)

s− λi

)m
u∗viw

∗
i

∥∥∥− 1
m

= dist(s, SpecA) (4.58)

where the last equality holds almost surely. In Section 4.3.4 we will prove a quantitative
version of this fact, and show that when m = Ω

(
log(nκV (A))

)
one obtains an approximation

of dist(s, SpecA) up to a relative error of 0.1. We will then conclude that distSpec can be
implemented with a running time of at most

O(log(nκV (A))n
2 + log(nκV (A)) log log(nκV (A)))

arithmetic operations and prove its backward error guarantees, which depend on dist(s, SpecA)
and κV (A).

Finding One Eigenvalue (findOne). With distSpec in hand, findOne generates a sequence
of complex numbers s0, s1, . . . that converges linearly to an eigenvalue of A. This sequence
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is recursively generated as follows: at time t, the algorithm uses distSpec to compute an
estimate τt ≈ dist(st, SpecA) with relative error of at most 0.1. This guarantees that there is
at least one eigenvalue of A inside the annulus

Ast,τt := {z ∈ C : 0.9τt ≤ |z − st| ≤ 1.12τt}, (4.59)

and hence if Nst,τt is a fine enough net of Ast,τt (we will show that nets of six points suffice),
we will be able to guarantee that

min
s∈Nst,τt

dist(s, SpecH) ≤ 0.6 dist(st, SpecH).

Given the above guarantee, findOne then uses distSpec again, now to estimate the distances
of the points s ∈ Nst,τt to the spectrum of A, and chooses a point s ∈ N for which

distSpec(s, SpecA) ≤ γτt

for some suitably chosen parameter γ ∈ (0, 1) (we will show that when γ = 0.66 the above
inequality is guaranteed for some point in the net). For such an s, findOne sets st+1 := s
and τt+1 := distSpec(s, SpecA), after which the iteration is repeated (see Figure 4.1 for an
example).

Figure 4.1: The locations of the eigenvalues of A are represented by an ×. The figure illustrates
the first steps of the iteration which produce s0, s1 and s2. The annuli As0,τ0 and As1,τ1 are signaled
with dotted lines, and the corresponding nets of six points on them are marked with solid dots.

Clearly, the st will converge linearly to an eigenvalue of A and hence finding a point that
is at distance at most β from the spectrum of A will take O(log(1/β)) calls to distSpec. This
will be discussed in detail in Section 4.3.4.
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Remark 4.3.4. Intuitively, findOne is a shifting strategy for inverse iteration where each
shift is an exceptional shift (cf. [61, 167, 12]) chosen from a net of six points.

Remark 4.3.5. Note that even if the subroutine findOne provides a β-forward approximation
of an eigenvalue of the matrix, the ultimate algorithm SmallEig will only be able to provide
an O(β)-backward set of approximate eigenvalues. This is because in order to obtain the full
eigendecomposition one needs to deflate the problem once a converged eigenvalue is obtained
(see the next paragraph for more details on this process), and after deflation we are only able
to control the backward error of the eigenvalues that are subsequently obtained.

Implementation of the Subroutines (Taum, dec, deflate). There are many ways to im-
plement the subroutines distSpec and findOne described above. In this section, for several
reasons, we have decided to operate with matrices in their Hessenberg form (similar to what
the shifted QR algorithm does). One of the advantages of doing this is that, in the Hessenberg

setting, instead of computing the quantity ∥u∗(s− A)−m∥− 1
m mentioned in the analysis of

distSpec one need to compute

τ(z−s)m(H) := ∥e∗n(s−H)−m∥−
1
m

whereH is a Hessenberg matrix that is unitarily equivalent to A (or almost unitarily equivalent
when finite arithmetic is taken into account). Computing the above quantity, as shown in
Section 4.2, can be done directly from running the implicit QR algorithm IQR on H (see
Section 4.2.4 for a definition of IQR and the subroutine Taum defined by it). So in essence,
when working with Hessenberg matrices the subroutine distSpec can be easily implemented
by calling IQR with a suitable degree.

The second advantage of working with a Hessenberg matrix H is that once a forward
approximate eigenvalue λ̃ of H is found (which is the purpose of findOne), reducing the
problem H to a smaller instance becomes easier. Indeed, in Section 4.3.5 we will show
that if Hℓ := IQR(H, (z − λ̃)ℓ), then one is guaranteed to have |(Hℓ)n,n−1| = O(β) for some
ℓ = O(n log κV (A)). This will allow us to decouple and then deflate the problem.

Remark 4.3.6 (Comparison to Shifted QR). One reason why our algorithm is not an actual
shifted QR algorithm is that we have chosen to maintain the same Hessenberg matrix H
throughout the computation of the shifts s1, s2, . . . done by findOne, as opposed to updating
the Hessenberg matrix in each iteration to produce a sequence of Hessenberg matrices
H0 = H,H1, . . . hand in hand with the computation of each st (as a standard shifted QR
algorithm would do). During this process we are using the Hessenberg structure merely as a
device for a fast implementation of inverse iteration, and not any of its more subtle properties
as in Sections 4.1 and 4.2. Between calls to findOne the Hessenberg structure is further used
to deflate the matrix in a convenient manner.

More substantially, findOne requires as input a Hessenberg matrix whose right eigenvectors
all have reasonably large (say 1/poly(n)) inner products with the vector en; this is roughly
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because our analysis is based on the power method and not the more sophisticated potential-
based arguments of Section 4.1 which require no assumptions whatsoever. We guarantee the
inner product condition by computing a Hessenberg form with respect to a random vector.
Unfortunately this must be redone after each deflation, which inflicts a cost in the running
time of O(n4), as opposed to the O(n3) achieved by algorithms that do not need to repeatedly
recompute the Hessenberg form.

Randomness in the Algorithm (RHess,Unif(D(0, η2)), Gn). Our algorithm uses randomness
in three different ways. The first one is related to the inverse iteration described above when
discussing distSpec. In the Hessenberg setting, the equivalent of running inverse iteration
on a randomly chosen vector is to compute a random Hessenberg matrix H that is unitarily
equivalent to the initial matrix A, where the randomness is uniform (in some suitable sense)
among the set of Hessenberg matrices that are uniformly equivalent to A. The source of
randomness in this case is also a unit vector distributed uniformly on the complex unit sphere
Sn−1
C . We refer the reader to Section 4.3.3 for the details on the sampling assumptions made

here, and to Section 4.3.6 for an analysis of the subroutine RHess which on an input matrix
A returns a Hessenberg matrix H chosen at random from the unitary equivalence class (up
to machine error) of A.

The second use of randomness is related to the forward stability of IQR(H, (z−s)m), which
as discussed in Section 4.2, is a function of dist(s, SpecH). As in Section 4.2, before every call
to IQR we will add a small random perturbation to the desired shift s, i.e. we define š := s+w
with w chosen uniformly at random from the disk centered at zero of radius η2 — henceforth
denoted by w ∼ Unif(D(0, η2)) — and run IQR(H, (z − š)m) instead of IQR(H, (z − s)m).
The point of doing this is to ensure that with high probability dist(š, SpecH) ≥ η1, for some
appropriately chosen (as a function of the desired probability) tolerance parameter η1 that
will ultimately determine the precision required for IQR to be numerically forward stable, a
necessary condition for our running time guarantees on SmallEig to hold.

Finally, the third way in which we use randomness is to randomly perturb the matrix
that is given as input to SmallEig, with the purpose of having high probability upper and
lower bounds on κV and gap (as explained in Section 1.2) when running the subroutines of
SmallEig. For this we assume access to a Gaussian sampler that allows us to generate (once)
an n× n complex Ginibre matrix Gn.

To conclude this section we make some comments about our analysis and presentation.

Pseudospectrum vs gap and κV . Although all of the requirements, actions, and guarantees
of the subroutines used by the main algorithm can be phrased in terms of the minimum
eigenvalue gap and eigenvector condition number of the matrices in question, in some cases we
have decided to instead work with the notion of pseudospectrum. This treatment simplifies the
analysis of the effects of roundoff error, since the perturbation theory for the pseudospectrum
of a matrix is significantly simpler than that for the eigenvalue gap and eigenvector condition
number.
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Use of Global Data. As in Section 4.2 we will use the notion of global data when presenting
the pseudocode of the algorithms. Here, the global data will be composed of four quantities
that all of the subroutines can access if needed. More specifically, the global data will be
given by n the dimension of the original input matrix, Σ an approximation of the norm of
the matrix, and two parameters ϵ and ζ which will be used to control the pseudospectrum.

4.3.2 Related Work and Discussion

Inverse iteration has been used since the 1940’s [173] as a method for computing an eigenvector
when an approximation of the corresponding eigenvalue is known; a detailed survey of its
history and properties may be found in [163, 129, 128, 91]. In contrast, this section uses
inverse iteration along with a simple shifting strategy to find the eigenvalues from scratch.

As discussed in the references above, two situations in which the behavior of inverse
iteration in finite arithmetic is known to be tricky to analyze are: (1) matrices with tiny
eigenvalue gaps (2) nonnormal matrices which exhibit transient behavior. We deal with these
issues by assuming a priori bounds on the eigenvalue gaps and nonnormality of our input
matrix (see Definition 4.3.10) and always dealing with high enough powers of the inverse
to dampen transient effects. Assuming such bounds is not restrictive because they may be
guaranteed with high probability by adding a small random perturbation, as discussed above.

The algorithm SmallEig presented here is, at the time of writing, one of four known provable
algorithms for computing backward approximations of the eigenvalues of an arbitrary complex
matrix in floating point arithmetic, along with [3, 11, 13]. The strengths of the algorithm are
its simplicity and use of O(log2(n/δ)) bits of precision, which is better than [11] but worse
than [3] (however [3] has the drawback of running in O(n10/δ) arithmetic operations). The
main weakness of this algorithm compared to [11, 13] is its use of O(n4) arithmetic operations
for repeatedly computing the Hessenberg form. We do not know any example where this
recomputation after deflation is actually needed, but are not able to prove that it is not (with
high probability). Doing so would entirely remove the O(n4) factor from the running time in
Theorem 4.3.1 and is worthy of further investigation.

4.3.3 Preliminaries

In Section 4.3 many of ingredients from Section 4.2 will be used, and in particular we will
maintain the finite precision arithmetic assumptions from Section 4.2.3, and repeatedly use
the results and implementations from Section 4.2.4.

In the remaining of Section 4.3 we will use fl(∗) to denote that the expression ∗ is computed
in finite arithmetic.

Random Sampling Assumptions

In Section 4.3.1 we enlisted the three different ways in which randomness is used in SmallEig.
Here we specify the assumptions we make about the algorithms used to generate the desired
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random objects.

Definition 4.3.7 (Efficient Unif(Sn−1
C ) Sampler). An efficient random vector algorithm takes

as input a positive integer n and generates a random unit vector u ∈ Cn distributed uniformly
in the complex unit n-sphere Sn−1 and runs in CUn arithmetic operations, for some universal
constant CU.

Definition 4.3.8 (Efficient Unif(D(0, R)) Sampler). An efficient random perturbation
algorithm takes as input an R > 0, and generates a random w ∈ C distributed uniformly in
the disk D(0, R), and runs in CD arithmetic operations, for some universal constant CD.

Definition 4.3.9 (Efficient Ginibre Sampler). An efficient Ginibre sampler takes as input
a positive integer n and generates a random matrix Gn ∈ Cn×n, where the entries of Gn

independent centered complex Gaussians of variance 1/n, and runs in CGn
2 arithmetic

operations.

Note that the roundoff error in the algorithm coming from using finite precision when
sampling any of these random objects only affects (in a negligible way) the failure probabilities
reported in the analysis of the algorithm, and not the quantities handled by the algorithm
itself. So, for simplicity we will assume that the samples can be drawn from their exact
distribution.

ζ-Shattered Pseudospectra

When analyzing the algorithm in finite arithmetic it will be necessary to have some control
on the eigenvector condition number and minimum eigenvalue gap of the matrices produced
by the algorithm. For this, we will use the notion of ζ-shattered pseudospectrum, which is
very similar to the notion of shattered pseudospectra that we discussed in Section 1.3, but
without referencing a grid.

Definition 4.3.10 (ζ-shattered pseudospectrum). Let ϵ, ζ > 0 and A ∈ Cn×n. We say that
Λϵ(A) is ζ-shattered if there exist n disjoint disks D1, . . . , Dn of radius ζ such that

i) (Containment) Λϵ(A) ⊂
⋃n
i=1Di.

ii) (Separation) Any two disks are at distance at least ζ, that is, dist(Di, Dj) ≥ ζ for all
i ̸= j.

In what can be thought as a converse of Lemma 1.1.9, the shattering parameter can be
used to control the eigenvector condition number of a matrix and its minimum eigenvalue
gap.

Lemma 4.3.11 (κV and gap from ζ and ϵ). Let ϵ, ζ > 0 and A ∈ Cn×n. If Λϵ(A) is
ζ-shattered, then

i) κV (A) ≤ nζ
ϵ
.
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ii) gap(A) ≥ ζ.

Proof. First note that ii) follows from the fact that Spec(A) ⊂ Λϵ(A) and the definition of
ζ-shattering. To show i) let λ1, . . . , λn be the eigenvalues of A. A trivial modification of the
proof of Lemma 3.3.4 yields that κ(λi) ≤ ζ

ϵ
. Then, by (1.8) we have

κV (A) ≤

√√√√n
n∑
i=1

κ(λi)2 ≤
nζ

ϵ
.

4.3.4 The Shifting Strategy

Analysis of distSpec

We define the subroutine distSpec(H, s,m) as follows and prove its guarantees below.

distSpec

Input: Hessenberg H ∈ Cn×n, s ∈ C, m ∈ N
Output: τ ≥ 0

Ensures: 0.998

κV (H)
1
m
dist(s, SpecH) ≤ τ ≤ 1.003κV (H)

1
m

P
[
|ZH−s|=dist(s,SpecH)

] 1
2m

dist(s, SpecH)

1. τ̃ k ← Taum(H, (z − s)m)

2. τ ← fl
(
(τ̃ k)

1
m

)

Proposition 4.3.12 (Guarantees for distSpec). Let C > 0 and assume that s ∈ D(0, C∥H∥).
Then, the algorithm distSpec runs in

TdistSpec(n,m) := TTau(n,m) + Troot(m, 10
−3) = O(mn2 +m logm)

arithmetic operations and satisfies its guarantees provided that

u ≤ udistSpec(n,m,C, ∥H∥, κV (H), dist(s, SpecH)) (4.60)

:=
1

croot
uTau(n,m,C, ∥H∥, κV (H), dist(s, SpecH)).

Proof. First note that

τ(z−s)m(H) = ∥e∗n(H − s)−m∥−
1
m
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≤ κV (H)
1
m

E [|ZH − r|−2m]
1

2m

Lemma 4.1.5

≤ κV (H)
1
mdist(r, SpecH)

P
[
|ZH − r| = dist(r, SpecH)

] 1
2m

. (4.61)

Similarly, to lower bound τ(z−s)m(H) use Lemma 4.1.5 again to obtain

τ(z−s)m(H) = ∥e∗n(H − s)−m∥−1/m ≥ 1

κV (H)
1
mE[|ZH − s|−2m]

1
2m

≥ dist(s, SpecH)

κV (H)
1
m

.

So, it only remains to control |τ − τ(z−s)m(H)|, where τ is the output of distSpec. Since by
assumption (4.60) holds, we can apply Lemma 4.2.12 to get

0.999τ(z−s)m(H)m ≤ τ̃ k ≤ 1.001τ(z−s)m(H)m.

Similarly, we can apply Lemma 4.2.2 to get that fl((τ̃ k)
1
m ) can be computed to relative

accuracy ϵ = 10−3, using at most Troot(m, 10
−3) arithmetic operations. Hence

0.999(τ̃ k)
1
m ≤ fl((τ̃ k)

1
m ) ≤ 1.001(τ̃ k)

1
m ,

which combined with all of the above yields the advertised guarantees. To compute the final
running time, add to Troot(m, 10

−3) the TTau(n,m) arithmetic operations needed to compute
Taum.

Analysis of findOne

For every s ∈ C and τ > 0, on the annulus As,τ = {z ∈ C : 0.9τ ≤ |z − s| ≤ 1.12τ} we will
define the set Ns,τ of six points given by

Ns,τ :=
{
s+ τeiπℓ/3 : ℓ = 1, . . . , 6

}
.

As explained in Section 4.3.1, at time t, findOne will call distSpec on the the locations given
by the points in a net on Ast,τt for some st and τt. So, to give accuracy guarantees on the
output provided by distSpec, we will choose the net to be the randomly perturbed set

Ňst,τt := {st + w : st ∈ Nst,τt}, where w ∼ Unif(D(0, η2)),

(cf. the discussion on shift regularization in Section 4.2.4).
We begin by noting that for any s ∈ C and τ > 0, Ňs,τ is a net on As,τ in the following

sense.

Observation 4.3.13. Using the above notation, if η2 ≤ .03τ then for any realization of Ňs,τ
we have

sup
z∈As,τ

dist
(
z, Ňs,τ

)
≤ 0.6τ.
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Proof. Basic trigonometry shows that because z ∈ As,τ we can guarantee dist(z,Ns,τ ) ≤ .57τ.
Then, because any realization of w ∼ D(0, η2) (which yields a realization of Ňs,τ ) satisfies
|w| ≤ η2 ≤ .03τ , the result follows from the triangle inequality.

We can now define the algorithm.

findOne

Input: H ∈ Cn×n Hessenberg, accuracy β > 0, failure probability tolerance φ, eigenvalue
mass lower bound p
Global Data: Norm bound Σ, pseudospectral parameter ϵ, shattering parameter ζ
Output: [λ̃, correctness] with λ̃ ∈ C and correctness ∈ {true, false}
Requires: β ≤ 1/2, Λϵ(H) is ζ-shattered, P[ZH = λ] ≥ p for all λ ∈ SpecH,
10β ≤ ∥H∥ ≤ 2Σ
Ensures: With probability at least 1 − φ, findOne terminates successfully, that is
correctness = true and λ̃ satisfies η1 ≤ dist(λ̃, SpecH) ≤ β, where η1 is defined in line 1

1. m←
⌈
12
(
log
(
nζ
ϵ

)
+ 1

2
log
(

1
p

))⌉
, η2 ← β

5
∧ ζ

3
, η1 ← η2

(
φ

12 log(3Σ/10β)

)1/2
2. w ∼ Unif(D(0, η2)), š← Hnn + w, τ ← distSpec(š, H,m)

3. While τ > 0.9β

a) w ∼ Unif(D(0, η2)), Ň ← {š(1), . . . , š(6)} = Nš,τ + w

b) τ ′ ← minj∈[6] distSpec(š
(j), H,m)

c) If τ ′ ≤ 0.66τ
š← š(j), τ ← τ ′, correctness← true

d) Else correctness← false, terminate findOne and output [š, false].

4. λ̃← š, output [λ̃, true]

Remark 4.3.14 (About the correctness Flag). Although small, there is a positive probability
that while running findOne the subroutine distSpec is called on a complex number s ∈ C for
which dist(s, SpecH) < η1. When this happens there will be no guarantee that the output
of distSpec is relatively accurate, and the information provided by it might be misleading,
giving rise to an update of š for which the distance to SpecH might be even larger than what
it was for its previous value. In view of this, the purpose of the flag correctness is to identify
when as a consequence of an inaccurate output of distSpec it is no longer possible to decrease
the variable τ at a geometric rate, in which case the algorithm halts and outputs error6.

6Of course, one could try to formulate a dichotomy as in Section 4.2 in which one leverages that errors
can only be made once the shifts that are being used are very close to SpecH, and have a mechanism that
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Before proving the main result about findOne, we observe that in line 1 of this algorithm,
m is set so that distSpec(s,H,m) will yield an accurate approximation of dist(s, SpecH) all
throughout the iteration (provided that s is not too close to SpecH).

Observation 4.3.15 (m is large enough). Let C > 0, s ∈ D(0, C∥H∥) and m be as in line 1
of findOne. Assume that the requirements of findOne are satisfied and that

u ≤ udistSpec(n,m,C, ∥H∥, κV (H), dist(s, SpecH)). (4.62)

Then
0.9dist(s, SpecH) ≤ distSpec(H, s,m) ≤ 1.1dist(s, SpecH).

Proof. Let τ = distSpec(H, s,m). Since u ≤ udistSpec we can apply Proposition 4.3.12 to get

0.998

κV (H)
1
m

dist(s, SpecH) ≤ τ ≤ 1.003κV (H)
1
mdist(s, SpecH)

P
[
|ZH − s| = dist(s, SpecH)

] 1
2m

.

Then, it suffices to show that

0.9 ≤ 0.998

κV (H)
1
m

and
1.003κV (H)

1
m

P
[
|ZH − s| = dist(s, SpecH)

] 1
2m

≤ 1.1,

or equivalently

m ≥ log(κV (H))

log (0.998/0.9)
and m ≥

log(κV (H)) + 1
2
log(1/P

[
|ZH − s| = dist(s, SpecH)

]
)

log(1.1/1.003)
.

Finally, using that

P
[
|ZH − s| = dist(s, SpecH)

]
≥ min

λ∈SpecH
P[ZH = λ] ≥ p

and κV (H) ≤ nζ
ϵ
(which follows from Lemma 4.3.11), it is clear that this m satisfies the above

inequalities.

Now we observe that in line 1 of findOne, the parameters η1 and η2 are set to be small
enough that we can apply Lemma 4.2.13.

Observation 4.3.16. Let η1, η2 be as in line 1 and assume that the requirements of findOne
are satisfied. Then

η1 + η2 ≤
gap(H)

2
and η2 ≤ 0.02∥H∥.

outputs a forward approximate eigenvalue even when distSpec provides inaccurate answers. Since this proved
to be intricate, for the sake of clarity we have decided to settle for this simpler, but efficient enough, version
of the algorithm.



CHAPTER 4. HESSENBERG QR ALGORITHM 183

Proof. Since Λϵ(H) is ζ-shattered we have ζ ≤ gap(H), and by definition of the parameters
we have 2η1 ≤ η2 ≤ ζ/3, from where η1 + η2 ≤ gap(H)/2. To prove the other assertion, note
that the requirements of findOne imply that β ≤ 0.1∥H∥, on the other hand by definition
η1 ≤ β/5, so the proof is concluded by combining both bounds.

We now state the main result of this section.

Proposition 4.3.17 (Guarantees for findOne). Assume that the requirements of findOne are
satisfied, let m and η1 be as defined in line 1 of findOne and assume that

u ≤ ufindOne(n,Σ, ϵ, ζ, p, β, φ) (4.63)

:= udistSpec

(
n,m, 10, 2Σ, nζ/ϵ, η1

)
.

Then, with probability at least 1− φ, findOne outputs a λ̃ ∈ C satisfying

η1 ≤ dist(λ̃, SpecH) ≤ β, (4.64)

using at most

TfindOne(n,Σ, ϵ, ζ, p, β)

:=(6⌈2 log(Σ/5β)⌉+ 1)TdistSpec(n,m) + ⌈2 log(Σ/5β)⌉(CD + 16) +O(1)

=O
(
log(Σ/β) log(nζ/ϵp)(n2 + log log(nζ/ϵp))

)
arithmetic operations.

Proving Proposition 4.3.17. It is clear that the exact arithmetic version of findOne would
satisfy the advertised guarantees. The challenge is in arguing that in finite arithmetic,
with high probability, each call to distSpec yields an accurate enough answer, and that the
aggregate roundoff errors and failure probabilities is not too large. Since distSpec is based on
the subroutine IQR, inaccuracies can only arise when the input s ∈ C is either too close to
SpecH or |s| is too large. This is quantified in the following observation, which we will use
repeatedly throughout the proof.

Observation 4.3.18 (Conditions for accuracy). For any s ∈ D(0, 10∥H∥) with

dist(s, SpecH) ≥ η1

the following guarantee holds

0.9dist(s, SpecH) ≤ distSpec(H, s,m) ≤ 1.1dist(s, SpecH).

Proof. Since Λϵ(H) is ζ-shattered by assumption, Lemma 4.3.11 shows that κV (H) ≤ nζ
ϵ
,

and using the assumption ∥H∥ ≤ 2Σ, we get that (4.63) implies

u ≤ udistSpec

(
n,m, 10, ∥H∥, κV (H), η1

)
.

So, for any s ∈ D(0, 10∥H∥) with dist(s, SpecH) ≥ η1, u will satisfy inequality (4.62), which
by Observation 4.3.15 yields the desired inequalities.
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Let s0, s1, . . . be the values acquired by the variable š throughout the algorithm, τ0, τ1, . . .
be the values acquired by τ , and w0, w1, . . . be the values acquired by w. We will now show
that, by the structure of the algorithm, the only real obstruction to obtaining accuracy is the
possibility of the si being to close to SpecH.

Lemma 4.3.19 (Accuracy of the τi). Let t ≥ 0 and assume that findOne does not terminate
in the first t while loops7, and that dist(si, SpecH) ≥ η1 for all i = 0, . . . , t. Then, for all
i = 0, . . . , t we have that

0.9dist(si, SpecH) ≤ τi ≤ 1.1dist(si, SpecH), (4.65)

si ∈ D(0, 10∥H∥), and moreover Ňsi,τi ⊂ D(0, 10∥H∥).

Proof. We proceed by induction. First we will prove the statement for t = 0. In this case,
because of the way š is initialized (see line 2 of findOne), s0 = Hnn + w0 for w0 ∼ D(0, η2).
So, by definition, |s0| ≤ ∥H∥ + η2, and by Observation 4.3.16 we have s0 ∈ D(0, C∥H∥)
for C = 1.02. It follows, by Observation 4.3.18, that τ0 satisfies the inequalities in (4.65).
Therefore

τ0 ≤ 1.1dist(s0, SpecH) ≤ 1.1 · 2.02∥H∥ ≤ 2.3∥H∥
which we record for later use.

Now take k ≤ t and assume that (4.65) holds for i = 0, . . . , k, we will then show that it
also holds for k + 1. First note that by the assumption that findOne does not terminate in
the first t while loops, we have that τi+1 ≤ .66τi and .9β ≤ τi for all i = 0, . . . , k. Hence, by
construction of the sequence s0, s1, . . . , for any s ∈ Ňsk,τk we can obtain∣∣s∣∣ ≤ |s0|+ |s1 − s0|+ · · ·+ |sk − sk−1|+ |s− sk|

≤ |s0|+ τ0 + |w1|+ · · ·+ τk + |wk+1| since si+1 ∈ Ňsi,τi , s ∈ Ňsk,τk

≤ |s0|+ 1.3(τ0 + · · ·+ τk) τi ≥ 0.9β and η2 ≤
β

5
≤ |s0|+ 1.3 · 2.3∥H∥(1 + 0.66 + 0.662 + · · · ) τi+1 ≤ 0.66iτ0 ≤ 0.66i2.3∥H∥
≤ |s0|+ 8.8∥H∥
≤ 10∥H∥ |s0| ≤ 1.02∥H∥.

This proves that Ňsk,τk ⊂ D(0, 10∥H∥). So, when k ≤ t−1 we get get that sk+1 ∈ D(0, 10∥H∥),
and because we also know that dist(sk+1, SpecH) ≥ η1, we can apply Observation 4.3.18 to
show that (4.65) holds for i = k + 1.

In the above lemma we assumed that findOne did not terminate in the first t calls to the
while loop, which tacitly assumes that the the flag correctness was set back to true in each
of those loops. We now show that if τt is sufficiently accurate and the elements in Ňst,τt
are far enough from SpecH, then there is a guarantee that in the while loop t+ 1 the flag
correctness will be set back to true.

7Here, terminating in the while loop t = 0 means that that the first while loop was never started.
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Lemma 4.3.20 (Guaranteeing correctness = true). Assume that dist(si, SpecH) for i =
1, . . . , t and moreover that each s ∈ Ňst,τt satisfies that dist(s, SpecH) ≥ η1. Then

min
s∈Ňst,τt

distSpec(s,H,m) ≤ .66τt,

where m is defined as in line 1 of findOne.

Proof. Because τt satisfies (4.65) we know that there is at least one eigenvalue of H in Ast,τt .
By Observation 4.3.13 there is at least one s ∈ Ňst+1,τt+1 for which dist(s, SpecH) ≤ 0.6τt.
Moreover, by assumption, for such s we know that dist(s, SpecH) ≥ η1, and by Lemma
4.3.19 we also know that s ∈ D(0, 10∥H∥). Hence Observation 4.3.18 implies that

distSpec(H, s,m) ≤ 1.1dist(s, SpecH) ≤ 0.66τt,

as we wanted to show.

Lemmas 4.3.19 and 4.3.20 imply that as long as all of the values of š and š(j) for j = 1, . . . , 6
satisfy that dist(š, SpecH) ≥ η1 and dist(š(j), SpecH) ≥ η1, we will have accurate τi and the
flag correctness will always be set back to true. We can now conclude the proof.

Probability of success. Take t = ⌈2 log(Σ/5β)⌉, which is set so that 4.6 · 0.66t/0.9 ≤ β/Σ.

For i = 1, . . . , t and j = 1, . . . , 6 let s
(j)
i be the value acquired by the variable š(j) during

the while loop i. Using Lemma 4.2.13 and taking a union bound we have that the probability
that

dist(s0, SpecH) ≥ η1 and dist(s
(j)
i , SpecH) ≥ η1, ∀i ∈ [t]∀j ∈ [6]

is at least 1− (6t+ 1)(η1/η2)
2. And from the above discussion we know that under this event

findOne will not terminate in the first t while loops with correctness = false, and moreover
τ0 ≤ 2.3∥H∥ and τi+1 ≤ .66τi. Therefore, because ∥H∥ ≤ 2Σ and the way we have chosen t,

τt ≤ 0.66tτ0 ≤ 0.66t2.3∥H∥ ≤ 0.66t · 4.6Σ ≤ 0.9β.

This ensures that the algorithm terminates with correctness = true sometime in the first t
while loops with probability at least 1− (6t+ 1)(η1/η2)

2. Moreover, when it terminates, say
at time t0, we are guaranteed that dist(st0 , SpecH) ≥ η1, and because τt0 is accurate we have
that

.9dist(st0 , SpecH) ≤ τt0 ≤ .9β,

which implies that dist(st0 , SpecH) ≤ β.
On the other hand

(6t+ 1)(η1/η2)
2 = (6⌈2 log(Σ/5β)⌉+ 1)(η1/η2)

2 ≤ 12 log(3Σ/10β)(η1/η2)
2 = φ,

that is, the failure probability is upper bounded by φ.
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Running time. Finally, we give an upper bound on the running time. First note that each
iteration of the while loop calls distSpec six times, draws one sample from Unif(D(0, η2)),
and at most other 16 arithmetic operations are done. Since, in the successful event, there are
at most ⌈2 log(Σ/5β)⌉ while loops, this gives us the count of

⌈2 log(Σ/5β)⌉(TdistSpec(n,m) + CD + 16).

Before the while loops distSpec is called once, and other than that at most O(1) operations
are done. This yields the advertised result.

4.3.5 Decoupling via Inverse Iteration

The following results are the basis of the subroutine we use to decouple a Hessenberg matrix
once a forward approximate eigenvalue of H is obtained.

Lemma 4.3.21 (Decoupling in Exact Arithmetic). Let s ∈ C and H ∈ Cn×n be a Hessenberg
matrix. Consider the sequence given by H0 := H and Hℓ+1 := RℓQℓ + s for [Qℓ, Rℓ] :=
QR(Hℓ − s). Then, for any m ≥ 1 there is some 1 ≤ ℓ ≤ m for which

|(Hℓ)n,n−1| ≤
κV (H)

1
mdist(s, SpecH)

P
[
|ZH − s| = dist(s, SpecH)

] 1
2m

. (4.66)

Proof. Because by definition: Rℓ is upper triangular, all the entries of Qℓ are bounded by 1,
and Hℓ+1 = RℓQℓ + s, we know that

|(Hℓ+1)n,n−1| ≤ |(Rℓ)n,n|. (4.67)

On the other hand

|(R0)n,n · · · (Rm−1)n,n|
1
m = ∥e∗n(H − s)−m∥−

1
m by (4.16)

≤ κV (H)
1
m

E [|ZH − s|−2m]
1

2m

Lemma 4.1.5

≤ κV (H)
1
mdist(s, SpecH)

P
[
|ZH − s| = dist(s, SpecH)

] 1
2m

. (4.68)

So, combining (4.67) and (4.68) we get that (4.66) holds for some 1 ≤ ℓ ≤ m.

Using the forward error guarantees for IQR given in Lemma 4.2.11 we can easily get a
finite arithmetic version of the above result.
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Lemma 4.3.22 (Decoupling in Finite Arithmetic). Let H ∈ Cn×n be a Hessenberg matrix

and s ∈ D(0, C∥H∥). For every ℓ define H̃ℓ = IQR(H, (z − s)ℓ) . Then, for each m ≥ 1, if

u ≤ min
ℓ∈[m]

uIQR

(
n, ℓ, ∥H∥, κV (H), dist(s, SpecH)

)
(4.69)

there is some ℓ ∈ [m] for which

|(H̃ℓ)n,n−1|

≤ κV (H)
1
mdist(s, SpecH)

P
[
|ZH − s| = dist(s, SpecH)

] 1
2m

+ 32κV (H)∥H∥
(

(2 + 2C)∥H∥
dist(s, SpecH)

)ℓ
n1/2νIQR(n)u.

Proof. Let H0, . . . , Hm be as in the statement of Lemma 4.3.21, and let ℓ ∈ [m] be such that
(4.66) holds. Now, (4.69) ensures that we can apply Lemma 4.2.11 for the ℓ we have specified,
yielding∣∣∣(Hℓ)n,n−1 − (H̃ℓ)n,n−1

∣∣∣ ≤ ∥∥∥Hℓ − H̃ℓ

∥∥∥
F
≤ 32κV (H)∥H∥

(
(2 + 2C)∥H∥
dist(s, SpecH)

)ℓ
n1/2νIQR(n)u.

Combining this with (4.66) the advertised bound follows.

Analysis of dec

In view of the above results we define the subroutine dec as follows.

dec

Input: Hessenberg H ∈ Cn×n, λ̃ ∈ C, and decoupling parameter ϵ > 0
Output: H ∈ Cn×n Hessenberg matrix
Requires: 0 < dist(λ̃, SpecH) ≤ ω/2
Ensures: |Hn,n−1| ≤ ϵ and there exists a unitary Q with ∥Ĥ−Q∗HQ∥ ≤ 3.5m∥H∥νIQR(n)u,
for m defined as in the statement of Proposition 4.3.23

1. Ĥ ← H

2. While |Hn,n−1| > ω

(i) H ← IQR(H, z − λ̃)

3. Output Ĥ

Proposition 4.3.23 (Guarantees for dec). Assume that the requirements of dec are satisfied,

that H is diagonalizable, and that d := dist(λ̃, SpecH) and p := P
[
|ZH − λ̃| = d

]
are positive.

If

u ≤ udec

(
n, ∥H∥, κV (H), p, d

)
(4.70)
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:=
uIQR(n,m, ∥H∥, κV (H), d)ω

16 · 5m · n1/2∥H∥
,

for m =
⌈
log(κV (H)2/p)
2 log(3ω/4d)

⌉
, then dec satisfies its guarantees and halts after at most m calls to

IQR. Hence, it runs in at most

Tdec(n, κV (H), p, d) := mTIQR(n,m) = O
(
log(κV (H)/p)2n2

)
arithmetic operations.

Proof. First, if ω ≥ ∥H∥ the while loop in line 2 terminates immediately and dec satisfies its
guarantees after one arithmetic operation. Hence, we can assume ω ≤ ∥H∥, which combined

with the assumption d ≤ ω/2 gives d ≤ ∥H∥/2 and λ̃ ∈ D(0, 1.5∥H∥) .
Now, for every ℓ define H̃ℓ := IQR

(
H, (z − λ̃)ℓ

)
, and note that (4.70) implies that

u ≤ uIQR(n,m, ∥H∥, κV (H), d) = min
ℓ∈[m]

uIQR

(
n, ℓ, ∥H∥, κV (H), d

)
,

where the last equality follows from d ≤ ∥H∥/2. Therefore, we can apply Lemma 4.3.22 to
get that there is some ℓ ∈ [m] for which

|(H̃ℓ)n,n−1| ≤
(
κV (H)2

p

) 1
2m

d+ 32κV (H)∥H∥
(
5∥H∥
d

)ℓ
n1/2νIQR(n)u.

Now, by our choice of m we have that(
κV (H)2

p

) 1
2m

d ≤ 3ω

4
,

and by (4.70), because ℓ ≤ m and ω ≤ ∥H∥, we have that

32κV (H)∥H∥
(
5∥H∥
d

)ℓ
n1/2νIQR(n)u ≤

ω

4
.

Combining the above inequalities we get that |(H̃ℓ)n,n−1| ≤ ω as we wanted to show. To

prove the remaining claim use again that λ̃ ∈ D(0, C∥H∥) for C = 1.5, and apply Lemma
4.2.9 to get that there is a unitary Q for which

∥H̃ℓ −Q∗HQ∥ ≤ 1.4ℓ(1 + C)∥H∥νIQR(n)u ≤ 3.5m∥H∥νIQR(n)u,

as we wanted to show.
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4.3.6 Randomized Hessenberg Form

Some of the most common and well understood subroutines in numerical linear algebra are
those used to put an arbitrary matrix A ∈ Cn×n into a Hessenberg form H (e.g. see [55, 85]).
The only reason why we have decided to include this section is that we were not able to find
in the literature a rigorous result about the effect of randomizing the Hessenberg form H that
could allow us to conclude an explicit probabilistic lower bound on minλ∈Spec(H) P[ZH = λ].
Here, in our analysis we assume access to a deterministic algorithm that uses Householder
reflectors to obtain the Hessenberg form (see Definition 4.3.24 below for details), and to a
random unit vector generator satisfying the assumptions from Definition 4.3.7 above.

Householder Reflectors

Computing Householder reflectors is essential to many numerical linear algebra algorithms
and a thorough analysis of the numerical errors involved can be found in [85, Section 19.3].
In short, Householder reflectors are matrices P ∈ Cn×n of the form P = I − βvv∗ with
v ∈ Cn \ {0} and β := 2

v∗v
.8 In practice, given v, instead of computing P it is more convenient

to simply store v, which for any vector x allows to compute Px by just computing x−β(v∗x)v
and this takes

Thous(n) = O(n)

arithmetic operations.
With this in mind, given x, v ∈ Cn we will use hous(v, x) to denote the finite arithmetic

computation of Px following the procedure outlined above. Similarly, given A ∈ Cn×n we
will use hous(v,A) to denote the finite arithmetic computation of PA, where the i-th column
of PA is computed as hous(v, A(i)) where A(i) denotes the i-th column of A.

In [85, Lemma 19.2] it was shown that there exists a small universal constant ch for which,
provided that chnu < 1/2, one has

hous(v, x) = (P + E)x for ∥E∥F ≤ 2chnu, (4.71)

for any x ∈ Cn. This will be used later in the analysis of RHess.

Hessenberg Form

The standard way in which a matrix A ∈ Cn×n is put into Hessenberg form using Householder
reflectors is by using a left-to-right approach, where one generates a sequence of Householder
reflectors P1, . . . , Pn−2, that ensure that H := Pn−2 · · ·P1AP1 · · ·Pn−2 is Hessenberg, and
where each Pi is used to set to zero the entries in column i of the working matrix that are
below the subdiagonal.

However, since we will be interested in randomizing the relative position of en with respect
to the eigenbasis of H, it will be convenient to instead use a bottom-up approach, and choose

8It is easy to see that P is a reflection over the hyperplane {v}⊥.
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each Pi to set to zero the entries in row i that are to the left of the corresponding subdiagonal.
In this way, when acting on the left of the matrix, the Pi leave the n-th row of the working
matrix invariant and, in particular, we will have e∗nPi = e∗n. Since the left-to-right and
bottom-up approaches are essentially equivalent, the results from [156, Theorem 2] and [55,
Section 4.4.6] apply in both situations, and in particular imply the existence of an efficient
and backward stable algorithm in the following sense.

Definition 4.3.24 (Bottom-up Hessenberg Form Algorithm). A cH-stable bottom-up Hes-
senberg form algorithm HessBU, is an algorithm that takes as input a matrix A ∈ Cn×n and
outputs a Hessenberg matrix H ∈ Cn×n satisfying that there exists a unitary Q with

∥H −Q∗AQ∥ ≤ cH∥A∥n5/2u

and such that Qen = en. We say that HessBU is efficient if it runs in at most

THessBU(n) :=
10

3
n3 +O(n2)

arithmetic operations.

Analysis of RHess

As mentioned above, the only source of randomness for HessBU is a random vector uniformly
sampled from the complex unit sphere. Our main technical tool for the analysis will be the
following standard anti-concentration result.

Lemma 4.3.25 (Anti-Concentration for Random Vectors). Let u ∼ Unif(Sn−1
C ) and v ∈ C

with ∥v∥ = 1. Then for all t ∈ [0, 1]

P
[
|u∗v| ≤ t√

n− 1

]
≤ t2.

Proof. Because the distribution of u is unitarily invariant and ∥v∥ = 1, we have u∗v =d

u∗ei = u(i)9 for every i ∈ [n]. So, for concreteness we will take i = 1 and bound P[|u(1)| ≤ t]
for any t ≥ 0.

Now recall that if X1, . . . , Xn, Y1, . . . , Yn are independent real standard Gaussians, then

u =d
(X1 + iY1, . . . , Xk + iYn)√
X2

1 + Y 2
1 + · · ·+X2

k + Y 2
n

and in particular |u(1)|2 = Z1

Z1+Z2
where Z1 ∼ χ2(2) and Z2 ∼ χ2(2n − 2) are independent.

Then, we use the well known fact that Z1

Z1+Z2
has a Beta(1, n− 1) distribution, and hence its

9Given two random variables X and Y , we use X =d Y to denote that they have the same distribution.
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probability density function is given fBeta(1,n−1)(s) = (n− 1)(1− s)n−2 · 1{0≤s≤1}. It follows
that, for t ∈ [0, 1]

P[|u(1)| ≤ t] = P[|u(1)|2 ≤ t2] = (n− 1)

∫ t2

0

(1− s)n−2ds = 1− (1− t2)n−1 ≤ (n− 1)t2,

where the last inequality follows from Bernoulli’s inequality.

We can now define the algorithm and proof its guarantees.

RHess

Input: A ∈ Cn×n

Output: H ∈ Cn×n

Requires: Λϵ(A) is ζ-shattered
Ensures: H is Hessenberg, ∥H −Q∗AQ∥ ≤ cRH∥A∥n5/2u for some unitary Q, Λϵ′(H) is
ζ-shattered for ϵ′ = ϵ− cRH∥A∥n5/2u. Moreover, for any t, with probability at least 1− nt2

it holds that P[ZH = λ] ≥
(

ϵ′t
n3/2ζ

)2
for all λ ∈ SpecH

1. u ∼ Unif(Sn−1
C )

2. H ← hous(u− en, A)

3. H ← hous(u− en, H∗)∗

4. H ← HessBU
(
H
)

Proposition 4.3.26 (Guarantees for randomized Hessenberg form). Assume that

u ≤ uRHess(n) :=
1

20chn3/2
. (4.72)

Then, RHess satisfies its guarantees for cRH = 3(cH+ ch) and can be instantiated using at most

TRHess(n) := THessBU(n) + 2nThous(n) + CUn = O(n3).

arithmetic operations.

Proof. The case n = 1 is trivial so we assume n ≥ 2. Let H be the output of RHess(A), A1

and A2 be the matrices computed in lines 2 and 3 of RHess, P = I−βvv∗ for v = u− en (and
β = 2

v∗v
), and define E1 := A1 − PA and E2 := A2 − A1P . From (4.71) it is easy to see that

∥E1∥ ≤ 2ch∥A∥n3/2u and ∥E2∥ ≤ 2ch∥A1∥n3/2u.
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Using the first inequality and (4.72) we get that ∥A1∥ ≤ ∥E1∥ + ∥A∥ ≤ 1.1∥A∥. Then,
combining this with the second inequality we get ∥E2∥ ≤ 2.2ch∥A∥n3/2u. Hence

∥A2 − PAP∥ ≤ ∥A2 − A1P∥+ ∥A1P − PAP∥ = ∥E1∥+ ∥E2∥ ≤ 4.2ch∥A∥n3/2u. (4.73)

Again because of (4.72) the above inequality implies that ∥A2∥ ≤ 1.3∥A∥. So, by Definition
4.3.24 we get that ∥H −Q∗A2Q∥ ≤ 1.3cH∥A∥n5/2u, for some unitary Q satisfying Qen = en,
which combined with (4.73) yields

∥H −Q∗PAPQ∥ ≤ (1.3cHn
5/2 + 4.2chn

3/2)∥A∥u ≤ cRH∥A∥n5/2u,

proving the first claim. Now, because Λϵ(A) is ζ-shattered, the above inequality and Lemma
1.1.7 imply that Λϵ′(H) is ζ-shattered for ϵ′ = ϵ− cRH∥A∥n5/2u.

It remains to prove the anti-concentration statement for ZH . To do this let E ∈ Cn×n be
such that H = Q∗P (A+ E)PQ, and let A+ E = V DV −1 with D = diag(λ1, . . . , λn) and V
chosen so that ∥V ∥ = ∥V −1∥ =

√
κV (A+ E). Now note that Q∗PV is an eigenvector matrix

for H, and because P and Q are unitary ∥Q∗PV ∥ = ∥V ∥ =
√
κV (A+ E) =

√
κV (H). So

P[ZH = λi] =
|e∗nQ∗PV ei|2

∥e∗nQ∗PV ∥2
definition of P[ZH = λi]

=
|e∗nPV ei|2

∥e∗nPV ∥2
e∗nQ

∗ = e∗n

=
|u∗V ei|2

∥u∗V ∥2
u = Pen by definition of P.

To simplify notation define vi :=
V ei

∥V ei∥ . We then have

|u∗V ei|2

∥u∗V ∥2
=
|u∗vi|2∥V ei∥2

∥u∗V ∥2

≥ |u∗vi|2

∥V ∥2∥V −1∥2
∥V ei∥ ≥

1

∥V −1∥
and ∥u∗V ∥ ≤ ∥V ∥

=
|u∗vi|2

κV (H)2
κV (A+ E) = κV (H)

≥
(
ϵ′|u∗vi|
nζ

)2

Λϵ′(H) is ζ-shattered and Lemma 4.3.11.

Now, because ∥vi∥ = 1, we can apply Lemma 4.3.25 to get that for any t ≥ 0

P
[
|u∗vi| ≥

t√
n− 1

]
≥ 1− t2.

Which, in conjunction with the above gives that

P[ZH = λi] ≥
(

ϵ′t

n3/2ζ

)2

,



CHAPTER 4. HESSENBERG QR ALGORITHM 193

with probability at least 1− t2. The advertised claim then follows from taking a union bound
over all vi. The claim about the running tie follows trivially.

4.3.7 The Main Algorithm

So far, all but one of the subroutines required to define SmallEig have been discussed. The
remaining subroutine that will be needed is the one used for deflation, denoted here by
deflate(H,ω), which on a Hessenberg input H ∈ Cn×n sets to zero any of the n − 1
subdiagonals of H that are less or equal (in absolute value) to ω, and returns the diagonal
blocks H1, H2, . . . of the resulting matrix.

We are now ready to define the main algorithm and prove its guarantees. Note that
n refers to the dimension of the original input matrix, which is used to set parameters
throughout the recursive calls to findRitz.

findRitz

Input: Complex matrix A, accuracy δ, failure probability tolerance ϕ
Global Data: Dimension n, norm estimate Σ, pseudospectral parameter ϵ, shattering
parameter ζ
Output: A multiset Λ ⊂ C
Ensures: Λ is the spectrum of a matrix Ã with ∥A− Ã∥ ≤ δ.

1. ∆← δΣ
2
, ω ← ϵ∧∆

3n
, β ← ω

20
, p← ϕϵ2

2n5ζ2
, φ← ϕ

2n
, correctness← false

2. H ← RHess(A)

3. While correctness = false

[λ̃, correctness]← findOne(H, β, φ, p)

4. H ← dec(H, λ̃, ω)

5. [A1, A2, . . . ]← deflate(H,ω)

6. Λ←
⊔
i findRitz

(
Ai, δ, ϕ

)
Theorem 4.3.27. Let A be the input matrix and δ ∈ (0, 1). Let β,∆ and p be as in line 1
of SmallEig. Assume that the global data satisfies n = dim(A), Σ/2 ≤ ∥A∥ ≤ Σ, and that
Λ2ϵ(A) is ζ-shattered. If

u ≤ uSmallEig(n,Σ, ϵ, ζ, δ, ϕ) (4.74)

:=
ϵ

6 · 103(ch ∨ cH ∨ croot)νIQR(n)nζ

( η1
44Σ

)2m1
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where

m1 = ⌈12 log(nζ/ϵ) + 6 log(1/p)⌉ = O
(
log(nζ/ϵϕ)

)
and η1 =

(
ϵ ∧∆

300n

)(
ϕ

24n log(18Σn/(ϵ ∧∆))

)1/2

= O

(
(ϵ ∧∆)ϕ1/2

n log(Σn/(ϵ ∧∆))1/2

)
(4.75)

Then, with probability at least 1− ϕ SmallEig satisfies its guarantees, and in this event runs
in at most

TSmallEig(n, ϵ, ζ, δ) = (n− 1)(TRHess(n) + TfindOne(n,Σ, ϵ, ζ, p, β) + Tdec(n, ζn/ϵ, p, β))

= O
(
n4 + n3 log(ζn/ϵϕ)

(
log(Σn/(ϵ ∧∆)) + log(ζn/ϵϕ)

)
+ log(Σn/(ϵ ∧∆)) log(ζn/ϵϕ) log log(ζn/ϵϕ)

)
arithmetic operations.

Preservation of the Norm and Pseudospectral Parameters

Before delving into the analysis of SmallEig we will show that the global data provides valuable
information throughout the execution of the algorithm. The first observation here is that the
only subroutine of SmallEig that accesses the global data is findOne, so, to ensure correctness,
the only requirements regarding the global data that need to be fulfilled are the ones ensured
by the following lemma.

Lemma 4.3.28. Suppose that the assumptions of Theorem 4.3.27 are satisfied and let H ′

and A′ be any values acquired by the variables H and A. If every while loop (line 3) involved
in the production of H ′ and A′ ended with findOne being terminated successfully, then:

i) ω
2
≤ min{∥H ′∥, ∥A′∥} ≤ max{∥H ′∥, ∥A′∥} ≤ 2Σ.

ii) Λϵ(H
′) and Λϵ(A

′) are ζ-shattered.

To prove the above lemma we will need the following result, whose proof consists of
combining Lemmas 1.1.7 and 3.5.8, to control the pseudospectral parameters after each
deflation step.

Lemma 4.3.29 (Pseudospectrum After Deflation). Let H ∈ Cn×n be a Hessenberg matrix and
and 1 ≤ r ≤ n−1 . Let H− and H+ be its upper-left and lower-right r×r and (n−r)× (n−r)
corners respectively. If |Hr+1,r| ≤ ϵ′ then

Λϵ−ϵ′(H−) ∪ Λϵ−ϵ′(H+) ⊂ Λϵ(H).

Proof. Let H0 be the matrix obtained by zeroing out the (r + 1, r) entry of H. By Lemma
1.1.7 and the assumption |Hr+1,r| ≤ ϵ′ we get Λϵ−ϵ′(H0) ⊂ Λϵ(H).
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We will begin by showing that Λϵ−ϵ′(H+) ⊂ Λ(H0). Let w ∈ Cr be any left eigenvector of
H+ and note that, since H0 is block upper triangular, 0n−r⊕w ∈ Cn×n is a left eigenvector of
H0. Hence, there is a spectral projector P of H0 for which its left eigenvectors (equivalently its
rows) span the space span{en−r+1, . . . , en}. Hence the span of the columns of the n× (n− r)
matrix

S =

(
0

In−r

)
coincides the span of the rows of P . So, by Lemma 3.5.8, Λϵ−ϵ′(H+) = Λϵ−ϵ′(SHS

∗) ⊂
Λϵ−ϵ′(H0).

The proof that Λϵ−ϵ′(H−) ⊂ Λϵ−ϵ′(H0) is very similar, with the sole difference that this
time one should look at the right eigenvectors of H−, and work with columns (rather than
rows) of the spectral projector.

We can now proceed to the proof of the lemma.

Proof of Lemma 4.3.28. First note that in each call to SmallEig the working matrix gets
modified exactly once by each of the subroutines RHess, dec and deflate. So, there is a
sequence of the form

A = A1, F1, F
′
1, A2, F2, F

′
2 . . .

that ends in H ′ (respectively A′), and such that Fi = RHess(Ai), F
′
i = dec(Fi, , λ̃i, ω) and

Ai+1 is one of the matrices in the output of deflate(F ′
i ). Moreover, by the assumption that

findOne terminated successfully at the end of each while loop, we have that

η1 ≤ dist(λ̃i, SpecFi) ≤ β. (4.76)

We will show by induction that for every i ≤ n the pseudospectra Λ2ϵ−ϵi,0(Ai),Λ2ϵ−ϵi,1(Fi)
and Λ2ϵ−ϵi,2(F

′
i ) are ζ-shattered, where

ϵi,j := (3(i− 1) + j)ω =
3(i− 1) + j

3n
(∆ ∧ ϵ),

and that ∥Ai∥ ≤ Σ + ϵi,0, ∥Fi∥ ≤ Σ + ϵi,1 and ∥F ′
i∥ ≤ Σ + ϵi,2. Note that in particular this

will imply that ϵ-pseudospectra of the Ai, Fi and F
′
i are ζ-shattered, and their norms are

bounded by 2Σ (since ϵ ≤ Σ).
That A1 = A has the advertised pseudospectral and norm properties follows from the

assumption about the global data. We can then induct:

• Effect of RHess. Assume that Λ2ϵ−ϵi,0(Ai) is ζ-shattered and ∥Ai∥ ≤ Σ + ϵi,0. Because
Fi = RHess(Ai), and since (4.63) implies that

u ≤ uRHess(n) ≤ uRHess(dim(Ai)),

we can apply Proposition 4.3.26 to get that Λ2ϵ−ϵi,0−ϵ′(Fi) is ζ-shattered for

ϵ′ = cRH∥Ai∥ dim(Ai)
5/2u
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≤ 2cRHΣn
5/2u dim(Ai) ≤ n, ∥Ai∥ ≤ 2Σ

≤ ω by (4.74).

So, it follows that Λ2ϵ−ϵi,1(F1) is ζ-shattered. And in the same way we can get ∥Fi∥ ≤
Σ + ϵi,1.

• Effect of dec. Now assume that Λ2ϵ−ϵi,1(Fi) is ζ-shattered and ∥Fi∥ ≤ Σ+ ϵi,1. Let p
and β be as in line 1 of SmallEig and define

m2 :=

⌈
log(ζ2n2/pϵ2)

2 log(3ω/4β)

⌉
=

⌈
log(ζ2n2/pϵ2)

2 log(15)

⌉
. (4.77)

Now, because m2 ≤ ⌈.3 log(ζn/ϵ) + .15 log(1/p)⌉, it is clear that m2 ≤ m1, and then it
is easy to see that (4.74) implies

u ≤ udec(2Σ, ζn/ϵ, p, η1).

So, because ∥Fi∥ ≤ 2Σ (by assumption), κV (Fi) ≤ ζϵ/n (since Λϵ(Fi) is ζ-shattered

and by Lemma 4.3.11), and dist(λ̃, SpecFi) ≥ η1 (by the assumption in (4.76)), we can
apply Proposition 4.3.23 to get that there exists a unitary matrix Q for which

∥F ′
i −Q∗FiQ∥ ≤ 3.5m1∥Fi∥νIQR(n)u

≤ 7m1ΣνIQR(n)u ∥Fi∥ ≤ 2Σ

≤ ω by (4.74).

Then, by Lemma 1.1.7 and the assumption that Λ2ϵ−ϵi,1(Fi) is ζ-shattered, it follows
that Λ2ϵ−ϵi,2(F

′
i ) is ζ-shattered. And because the norm is preserved under unitary

conjugation we also get that ∥F ′
i∥ ≤ Σ + ϵi,2.

• Effect of deflate. Assume that Λ2ϵ−ϵi,2(F
′
i ) is ζ-shattered, and recall that Ai+1 is an

output of deflate(F ′
i , ω). Then, by Lemma 4.3.29 we have that

Λ2ϵ−ϵi+1,0
(Ai+1) = Λ2ϵ−ϵi,2−ω(Ai+1) ⊂ Λ2ϵ−ϵi,2(F

′
i )

and hence Λ2ϵ−ϵi+1,0
(Ai+1) is ζ-shattered. Similarly, we can note that ∥Ai+1∥ ≤ ∥F ′′

i ∥+
ω ≤ Σ + ϵi+1,0, which concludes the induction.

Now, since the depth of the recursion tree of SmallEig is at most n, and we have proven the
above claim for any Ai, Fi, F

′′
i with i ≤ n, we can conclude that Λϵ(H

′) is ζ-shattered (resp.
Λϵ(A

′)) and ∥H ′∥ ≤ 2Σ (resp. ∥A′∥ ≤ 2Σ), as we wanted to show.
Finally, to show that ω/2 ≤ ∥H ′∥ (resp. ω/2 ≤ ∥A′∥), first note that ω ≤ ∥Ai∥ for every

i. Indeed, when i = 1 we can use the assumption δ ≤ 1, which yields ∆ ≤ ∥A∥, and combine
this with ω ≤ ∆. For i > 1 note that Ai is an output of deflate(F ′′

i−1, ω), and hence its
subdiagonals are guaranteed to have absolute value at least ω, which implies that ω ≤ ∥Ai∥.
We can then proceed as above (using slightly stronger bounds) to show that ∥Ai−Fi∥ ≤ ω/2
and ∥Ai − F ′′

i ∥ ≤ ω/2. So the proof is concluded.
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Analysis of SmallEig

We are now ready to prove Theorem 4.3.27. For clarity, let us divide the proof in several
parts.

Backward stability. Assume that SmallEig terminates and outputs Λ. Moreover, assume
that when running SmallEig, at the end of all the while loops from line 3, the subroutine
findOne terminated successfully (later we will prove that this occurs with probability at least
1− ϕ).

We will show that Λ is the spectrum of a matrix Ã with ∥Ã− A∥ ≤ ∆ (which combined

with the assumption about the global data gives ∥Ã−A∥ ≤ δ∥A∥). To be precise we will show
an equivalent statement, namely that Λ is the spectrum of a matrix that is at distance at most
∆ from the class of matrices that are unitarily equivalent to A. To do this, for the purpose of
the analysis, it will be convenient to imagine that during the deflation process (after setting to
zero the small subdiagonals) instead of cutting out the blocks on the diagonal and considering
them as separate subproblems, one keeps the full n× n matrix and continues to operate on
the full matrix in the obvious way. With this view point the algorithm terminates when the
working matrix becomes an upper triangular matrix, and its diagonal elements are precisely
the elements of Λ.

In the proof of Lemma 4.3.28 it was shown that the only subroutines that deviate the
working matrix from the unitary orbit of the original matrix are RHess, dec and deflate.
Moreover, it was shown that when each of these subroutines is applied, the corresponding
backward error incurred is at most of size ω. So we need only to give an upper bound for the
number of times these subroutines are called. To do this consider Tn(A), the recursion tree of
SmallEig, where the input matrix A is placed at the root, and then the children of any vertex
v are in one-to-one correspondence with the matrices outputted after running deflate on the
matrix associated to v. It is clear from the construction that leaves correspond to matrices
of dimension 1, and internal vertices (vertices that are not leaves) correspond to higher
dimensional matrices. Now note that for any internal vertex v it holds that the sum of the
dimensions of the matrices associated to the children of v equals the dimension of the matrix
associated to v. Then, by induction on n it follows that Tn(A) has at most n− 1 internal
vertices. And, since the relevant subroutines are only called once at times corresponding to
internal leaves, we conclude that each of these subroutines was called at most n− 1 times.
Hence, the ultimate deviation from the original unitary equivalence class is at most

3(n− 1)ω =
3(n− 1)

3n
(ϵ ∧∆) ≤ ∆,

as we wanted to show.

Precision requirements. To ensure that the precision has been set to be small enough, so
that the precision requirements of each subroutine are satisfied throughout the iteration, we
will show that

uSmallEig(n,Σ, ϵ, ζ, δ, ϕ, n) ≤ min{uRHess(n),ufindOne(n, 2Σ, ϵ, ζ, p, β, φ),udec(n, 2Σ, ζn/ϵ, p, η1)}.
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First, that uSmallEig(n,Σ, ϵ, ζ, δ, ϕ, n) ≤ uRHess(n) is trivial. On the other hand, by definition
we have

ufindOne(n,Σ, ϵ, ζ, p, β, ϕ) = udistSpec

(
n,m1, 10, 2Σ, nζ/ϵ, η1

)
for m1, η1 as in (4.75)

≥ ϵ

6 · 103croot · νIQR(n)nζ

( η1
44Σ

)2m1

(4.63) and (4.27)

So from the (4.74) it is clear that uSmallEig(n,Σ, ϵ, ζ, δ, ϕ, n) ≤ ufindOne(n, 2Σ, ϵ, ζ, p, β, ϕ).
Finally

udec

(
n, 2Σ, ζn/ϵ, p, d

)
=

uIQR(n,m2, 2Σ, ζn/ϵ, η1)ω

16 · 5m2 · n1/22Σ
for m2 as in (4.77)

=
ωϵ

16 · 8νIQR(n)n3/2ζ · 2Σ

( η1
5 · 2Σ

)m2

from (4.23)

And because m2 ≤ m2, from (4.74) it is clear that

uSmallEig(n,Σ, ϵ, ζ, δ, ϕ, n) ≤ udec

(
n, 2Σ, ζn/ϵ, p, d

)
.

Probability of success. Observe that the only randomized subroutines of SmallEig are
RHess and findOne. First we will provide a lower bound for the probability that the guarantees
of RHess and findOne are satisfied every time these subroutines are called.

Combining Lemma 4.3.28 and Proposition 4.3.26 we get that, if findOne has succeeded
every time it has been called, then for any value H ′ acquired by the variable H in line 2 of
SmallEig we have for any t > 0, with probability 1− nt2, that

min
λ∈SpecH′

P[ZH′ = λ] ≥
(

ϵt

n3/2ζ

)2

.

In particular (for t2 = ϕ/2n2) we get that with probability at least 1− ϕ/2n it holds that

min
λ∈SpecH′

P[ZH′ = λ] ≥ p

for p defined as in line 1. Under this event, and because of Lemma 4.3.28 and because the
precision is high enough, the requirements of findOne will be met in line 3, and hence (for
this call) findOne will succeed with probability at least 1− φ = 1− ϕ/2n.

Therefore, every time SmallEig is called, both RHess and findOne will satisfy their guaran-
tees with probability at least 1− ϕ/n. Moreover, from the backward stability proof we know
that the recursion tree for SmallEig has at most n− 1 internal vertices. Therefore, we can
conclude that all the calls to RHess and findOne will succeed with probability at least 1− ϕ,
as we wanted to show.

Now, under the assumption that RHess and findOne succeed every time, we have that the
values of the variables H and λ̃ that are passed every time to dec satisfy the requirements of
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this subroutine, and by our previous discussion we know that the precision requirements for
dec are also met. Therefore, we can apply Proposition 4.3.23 to argue that the matrix H will
be decouple in a finite amount of time, and by Lemma 4.3.28 we know that the pseudospectral
parameters and norm guarantees will also be maintained.

Running time. From the above discussion we know that with probability at least 1− ϕ,
SmallEig terminates successfully and moreover, throughout the algorithm, every call to
RHess, findOne and dec will be successful, and the requirements of these subroutines will
always be met. Under this event (recalling that each subroutine is called at most n− 1 times)
by Propositions 4.3.26, 4.3.17 and 4.3.23 and using the the running times of the subroutine
are monotone in the dimension of the input, we get that the running time of SmallEig is at
most

(n− 1)(TRHess(n) + TfindOne(n,Σ, ϵ, ζ, p, β) + Tdec(n, ζn/ϵ, p, β)).

The proof is concluded by writing p, β and η1 as a function of ϵ, ζ, Σ and δ, and using the
big-O bounds provided in Propositions 4.3.26, 4.3.17 and 4.3.23.

Pseudospectral Shattering and Proof of the Main Result

Note that Theorem 4.3.27 assumes that SmallEig has access to the parameters ϵ and ζ in the
global data, which control both the minimum eigenvalue gap and the eigenvector condition
number of the input matrix A ∈ Cn×n. In order to ensure that SmallEig works on every input
(without having access to ϵ and ζ), instead of running the algorithm on A we will run it on
A + γGn (for γ = Θ(δ) and Gn a normalized complex Ginibre matrix10), and exploit the
following result, whose proof we defer to Section C.2 in Appendix C.11

Lemma 4.3.30 (Shattering). For any A ∈ Cn×n and φ ∈ (0, 1/2), γ ∈ (0, ∥A∥/2), we have
that, with probability at least 1− φ, Λϵ(A+ γGn) is ζ-shattered for

ζ :=
φ1/2γ

2
√
3n3/2

and ϵ :=
γ2φ

180
√
2∥A∥ log(1/φ)n3

The main result of this section then follows from combining Lemma 4.3.30 with Theorem
4.3.27.

Proof of Theorem 4.3.1. Start by recalling the following the well-known tail bound for the
norm of a Ginibre matrix (e.g. see [15, Lemma 2.2])

P[∥Gn∥ ≥ t] ≤ 2 exp
(
− n(t− 2

√
2)2
)
, ∀t ≥ 2

√
2. (4.78)

10That is, an n× n random matrix with independent centered complex Gaussian entries of variance 1/n.
11Note that a version of this result has already been proven and used in a similar context in Chapter 3.

However, since the notion of shattered pseudospectrum from that chapter differs from the one used here, we
cannot directly apply it.
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Then, for W := 2
√
2 + 1

n1/2 log(6/ϕ)
1/2 we have that

P[∥Gn∥ ≤ W ] ≥ 1− ϕ/3.

Then, given a norm estimate Σ satisfying Σ/2 ≤ ∥A∥(1± δ/2) ≤ Σ, we will choose γ := δΣ
4W

,
so that

P
[
γ∥Gn∥ ≤

δ∥A∥
2

]
= P

[
∥Gn∥ ≤

2∥A∥W
Σ

]
≥ P [∥Gn∥ ≤ W ] Σ/2 ≤ ∥A∥
≥ 1− ϕ/3.

Moreover, for this choice of γ, by Lemma 4.3.30 we have that, with probability at least
1− ϕ/3, Λϵ(A+ γGn) is ζ-shattered for

ζ :=
ϕ1/2γ

2
√
6n3/2

and ϵ :=
γ2ϕ

540
√
2∥A∥ log(1/ϕ)n3

.

On the other hand, conditioning on ∥Gn∥ ≤ W and Λϵ(A+ γGn) being ζ-shattered, we have
that SmallEig(A+ γGn, δ/2, ϕ/3) succeeds with probability at least 1−ϕ/3 when using n, ϵ, ζ
and Σ as global data and provided that u satisfies (4.74)), in which case the output Λ will be
a δ-backward approximation of the spectrum of A.

Hence, using a union bound we get that with probability 1−ϕ, SmallEig(A+γGn, δ/2, ϕ/3)
provides a δ-accurate answer, and from Theorem 4.3.27 we have that the running time and
required bits of precision are as in the statement of of Theorem 4.3.1.
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Chapter 5

The Lanczos Algorithm Under Few
Iterations

5.1 Preliminaries

Throughout this chapter only elementary facts about orthogonal polynomials are used. For
the convenience of the reader below we include a succinct summary of the results that will
be used throughout the chapter. We refer the reader to Chapter 2 in [149] and Chapters 2
and 3 in [48] for a more detailed discussion of these tools.

In order to establish context and notation, we will also explicitly define the Lanczos
algorithm and its interpretation in terms of orthogonal polynomials. Some standard references
for this matter are Chapter 6 in [157] and Chapter 6 in [134].

5.1.1 Orthogonal Polynomials

For now, let µ be a finite Borel measure on R and assume that its support, which we denote
as supp(µ), is compact and has infinitely many points. The set of square integrable functions
L2(R, dµ) becomes a Hilbert space (after quotienting by the functions that are essentially
zero) when endowed with the inner product

⟨f, g⟩ =
∫
R
f(x)g(x)dµ(x).

The hypothesis that |supp(µ)| = ∞ implies that the monomials {1, x, x2, . . . } are linearly
independent in L2(R, dµ). Hence, we can use the Gram-Schmidt procedure to obtain an
infinite sequence of polynomials pk(x) with deg(pk(x)) = k and∫

pk(x)pl(x)dµ(x) = δkl.
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The leading coefficient of pk(x) is a quantity of interest in this chapter and will be denoted
by γk. We will denote the monic orthogonal polynomials by πk(x). That is, πk(x) = γ−1

k pk(x)
and clearly

γk =

(∫
R
π2
k(x)dµ(x)

)− 1
2

. (5.1)

Since πk(x) is orthogonal to all polynomials with degree less than k, the polynomial
xk − πk(x) is the orthogonal projection of xk onto the span of {1, . . . , xk−1}. Hence,∫

R
π2
k(x)dµ(x) = min

q∈Pk

∫
R
q2(x)dµ(x),

where Pk denotes the space of monic polynomials of degree k.
Favard’s theorem ensures that there is a sequence of real numbers αk and a sequence of

positive real numbers βk such that the following three-term recurrence holds:

xpk(x) = βk−1pk−1(x) + αkpk(x) + βkpk+1(x), k ≥ 1,

and xp0(x) = α0p0(x) + β0p1(x), k = 0.

It is clear from the three-term recurrence that the following identity holds:

γk =

(
k−1∏
i=0

βi

)−1

. (5.2)

These so-called Jacobi coefficients αk and βk encode all the information of the measure µ. In
fact, since the Stieltjes transform of µ has a continued fraction expansion in terms of its Jacobi
coefficients, knowing the few first elements in these sequences allows one to approximate the
measure. See Chapter 4.3 in [48] for an example.

We denote by Jk the k × k Jacobi matrix of µ; that is, Jk is the tridiagonal symmetric
matrix with (Jk)ii = αi−1 and (Jk)i+1,i = (Jk)i,i+1 = βi−1. It is a standard fact that
πk(x) = det(xI − Jk) and that in particular, the roots of pk(x) are exactly the eigenvalues of
Jk, which are real since Jk is symmetric.

Another object of importance in this theory is the Hankel matrix of a measure. We will
denote Mk the (k + 1)× (k + 1) Hankel matrix of µ; in other words, if mi denotes the ith
moment of µ, then (Mk)ij = mi+j−2 for every 1 ≤ i, j ≤ k + 1. From the elementary theory
it is known (see [48], Section 3.1) that if we define Dk = detMk, then

βk =

√
Dk−1Dk+1

Dk

and γk =

√
Dk−1

Dk

, k ≥ 0, (5.3)

where we define D−1 = 1. Note that the second identity in (5.3) implies

Dk =
k∏
i=0

γ−2
i . (5.4)
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Moreover, if M̃k(x) denotes the matrix obtained by replacing the last row of Mk by the row
(1 x x2 · · · xk), we have the following useful identity:

pk(x) =
det M̃k(x)√
Dk−1Dk

. (5.5)

Note that in the case in which supp(µ) has n points, for n a positive integer, the set of
monomials {1, x, x2, . . . } is not linearly independent in L2(R, dµ). Moreover, the Gram-
Schmidt procedure stops after n iterations, and hence it only makes sense to talk about the
orthogonal polynomials pk(x) for k ≤ n− 1. However, sometimes it is convenient to define
the nth monic orthogonal polynomial as the unique monic polynomial of degree n whose
roots are the elements of supp(µ). In this case, the facts mentioned previously still hold for
k ≤ n.

5.1.2 The Lanczos Algorithm

As discussed in Section 1.5 we understand the Lanczos algorithm as a randomized procedure
that takes three inputs: an n×n Hermitian matrix A, a random vector u distributed uniformly
in Sn−1, and an integer 1 ≤ k ≤ n. Then, the procedure outputs a k×k symmetric tridiagonal
matrix Jk whose diagonal entries will be denoted by αi for i = 0, . . . , k − 1 and whose subdi-
agonal and superdiagonal entries will be denoted by βi, for i = 0, . . . , k − 2. The eigenvalues
of Jk are called the Ritz values and we will usually denote them as r1 ≥ · · · ≥ rk. On the
other hand, the eigenvectors of Jk give rise (after an orthonormal change of basis determined
by the vj below) to the Ritz vectors, that is, the approximations for the eigenvectors of A.
We now describe how the procedure generates the Jacobi coefficients αi and βi.

Lanczos

Input: Hermitian A ∈ Cn×n, integer k ∈ [n], u ∈ Sn−1.
Output: Jk ∈ Ck×k

1. Initialize: v0 = u.

2. For j = 0, . . . , k − 1

a) Wj = span{v0, . . . , vj}.
b) αj = ⟨Avj, vj⟩.
c) βj = ∥ProjW⊥

j
(Avj)∥2.

d) If βj = 0 Halt.

e) Else vj+1 =
Proj

W⊥
j
(Avj)

∥Proj
W⊥

j
(Avj)∥2 .

3. Store the αi and βi in the tridiagonal matrix Jk in the standard way.
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This algorithm has a natural interpretation in terms of orthogonal polynomials. To
every u ∈ Sn−1 we can associate a measure supported on the spectrum of A as follows. Let
λ1 ≥ · · · ≥ λn be the eigenvalues of A and u1, . . . , un be the coordinates of u when written in
the eigenbasis of A. We define the probability measure

µu =
n∑
i=1

u2i δλi . (5.6)

In the language of functional analysis, µu is the spectral measure of the operator A induced
by the vector state u; that is, ⟨f(A)u, u⟩ =

∫
f(x) dµu(x) for all (say) continuous functions f .

Note that the expectation of the random measure µu is just the empirical spectral distribution
of A, namely,

1

n

n∑
i=1

δλi .

It is not hard to see that if pj(x) are the orthogonal polynomials with respect to µu, then
vj = pj(A)u. Hence, the coefficients αj and βj outputed by the Lanczos algorithm are the
Jacobi coefficients of the measure µu, and the Ritz values after k iterations are the roots of
pk(x).

Note that this algorithm scales linearly in the input A, so to simplify notation, in some of
the proofs below we will assume that ∥A∥ = 1.

5.2 Applying the Local Lévy Lemma

5.2.1 Strategy

As discussed in Section 1.5 we will identify a region of Sn−1 on which the functions αi and βi
have a controlled Lipschitz constant. For this, we first introduce a local version of the notion
of Lipschitz constant. In what might be a slight departure from standard definitions, we will
define local Lipschitz continuity as follows.

Definition 5.2.1. Let (X1, d1) and (X2, d2) be metric spaces. A function f : X1 → X2 is
said to be locally Lipschitz continuous with constant c at x0 ∈ X1 if for every c′ > c there is
a neighborhood U ⊂ X1 of x0 such that

d2(f(x), f(y)) ≤ c′d1(x, y) ∀x, y ∈ U.

Remark 5.2.2. For f defined on an open subset of Sn−1, we have that f is locally Lipschitz
continuous with constant c with respect to the geodesic metric if and only if it is locally
Lipschitz continuous with the same constant with respect to the Euclidean (“chordal”) metric.

It is obvious that if a function is locally Lipschitz with constant c on every point of
a convex set, then the function is globally Lipschitz on the set with the same constant c.
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However, if the convexity assumption is dropped, a similar conclusion is not guaranteed in
general and in order to obtain a global Lipschitz constant the geometry of the set should be
analyzed.

Definition 5.2.3. Let K > 0 and (X, d) be a metric space. We say that S1 ⊂ X is K-
connected in S2 with S1 ⊂ S2 ⊂ X if for every x, y ∈ S1 there is a rectifiable Jordan arc
α : [0, 1]→ S2 with α(0) = x and α(1) = y, such that the length of the trace of α is less than
or equal to Kd(x, y).

Now that we have introduced the notion of K-connected set we can generalize what we
observed for convex sets.

Lemma 5.2.4. Let (X1, d1) and (X2, d2) be metric spaces. Assume that S1 ⊂ X1 is K-
connected in S2 ⊂ X1 and let f : X1 → X2 satisfy that for every x0 ∈ S2, f is locally Lipschitz
at x0 with constant c. Then f is globally Lipschitz on S1 with constant cK.

Proof. Fix x, y ∈ S1 and ε > 0. We will show that d2(f(x), f(y)) ≤ (c+ε)Kd1(x, y). Consider
a rectifiable Jordan arc α : [0, 1]→ X1, such that α(0) = x, α(1) = y, α([0, 1]) ⊂ S2 and the
length of α is at most Kd1(x, y).

Since the trace of α is contained in S2, for every w ∈ α([0, 1]) we can take an open ball
Uw containing w such that f is (c+ ε)-Lipschitz on Uw. Moreover, observe that since α is
continuous and injective, for every w ∈ α([0, 1]) we can take Uw small enough such that
α−1(Uw) is connected and hence an open interval in [0, 1].

By compactness of α([0, 1]) we may take w1, . . . , wn ∈ α([0, 1]) such that {Uwi
}ni=1 is a

minimal cover for α([0, 1]). Now, since each α−1(Uwi
) is connected, and the cover is minimal,

we have that α−1(Uwi
) ∩ α−1(Uwi+1

) ̸= ∅ for every 1 . . . , n− 1.
Furthermore, we will now see that we can modify the sequence of wi such that wi+1 ∈ Uwi

for every i = 1, . . . , n− 1. Assume that this does not hold and let i be the smallest index
for which wi+1 /∈ Uwi

. Now take some t ∈ α−1(Uwi
) ∩ α−1(Uwi+1

) and define w′ = α(t). We
construct a new sequence w̃1, . . . , w̃n+1 ∈ α([0, 1]) by taking w̃j = wj for j < i, w̃i = w′,
w̃j+1 = wj for j ≥ i, and Uw̃i

to be equal to Uwi+1
. Observe that for the new sequence of

points (w̃i)
n+1
i=1 in α([0, 1]) and sequence of open balls Uw̃i

it holds that w̃j+1 ∈ Uw̃j
for all

j ≤ i. By iterating this process we will obtain a finite sequence with the desired property.
So, in what follows we can assume without loss of generality that wi+1 ∈ Uwi

for every
i = 1, . . . , n− 1. We then will have

d2(f(wi), f(wi+1)) ≤ (c+ ε)d1(wi, wi + 1).

Using the triangle inequality and the fact that
∑

i d1(wi, wi+1) is bounded by the length of
the trace of α the result follows.

In the following section the local Lipschitz constants of the functions αi(u) and βi(u) are
shown to be related to the orthogonal polynomials of the measure µu.
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5.2.2 Local Lipschitz Constants for Jacobi Coefficients

As can be seen from the definition of the Lanczos algorithm, the dependence of the quantities
αi(u), βi(u), and vj(u) on u is highly nonlinear, which makes it complicated to show that
such quantities are stable under perturbations of the input vector u. Here we exploit the fact
that during every iteration of the Lanczos algorithm only locally Lipschitz operations are
performed. The analysis of the compound effect of iterating the procedure yields a bound
on the local Lipschitz constant of the quantities of interests. This bound is exponential in
the number of iterations, which is enough to obtain concentration results when O(log(n))
iterations are performed. In what follows, recall that γi(u) denotes the leading coefficient of
the ith orthonormal polynomial with respect to the measure µu defined in (5.6).

Proposition 5.2.5. Fix ũ ∈ Sn−1 and let vj(u) be as above. Then, for any 0 ≤ j ≤ n− 1,
the functions vj(u) are locally Lipschitz at ũ with constant (4∥A∥)jγj(ũ).

Proof. We proceed by induction. For j = 0, recall v0(u) = u and γ0(ũ) = 1; the statement
follows. Now assume the proposition is true for some j ≥ 0. For every x ∈ Sn−1 denote
Wx = span{v0(x) = x, v1(x), . . . , vj(x)} and for any subspace W ≤ Rn by ProjW we mean
the orthogonal projection onto W .

Take x, y ∈ Sn−1 in a neighborhood U of ũ to be determined and note that

∥ProjW⊥
x
(Avj(x))− ProjW⊥

y
(Avj(y))∥

≤ ∥ProjW⊥
x
(A(vj(x)− vj(y)))∥+ ∥(ProjW⊥

x
− ProjWy⊥)(Avj(y))∥

= ∥ProjW⊥
x
(A(vj(x)− vj(y)))∥+ ∥(ProjWx

− ProjWy
)(Avj(y))∥. (5.7)

From the induction hypothesis we have that, for any ε > 0, we can choose U small enough
so that

∥ProjW⊥
x
(A(vj(x)− vj(y)))∥ ≤ ∥A∥∥vj(x)− vj(y)∥ ≤ ∥A∥((4∥A∥)jγj(ũ) + ε)∥x− y∥. (5.8)

On the other hand, from the definition of the Lanczos algorithm it follows that βi(ũ) ≤ ∥A∥
for every i = 0, . . . , n− 1, so in view of (5.2), the ∥A∥iγi(ũ) form an increasing sequence. It
then follows that

j∑
i=0

(4∥A∥)iγi(ũ) ≤
j∑
i=0

4i∥A∥jγj(ũ) ≤
4j+1∥A∥jγj(ũ)

3
.

For any unit vector w, by the triangle inequality, we have that

∥ProjWx
(w)− ProjWy

(w)∥ ≤
j∑
i=0

∥⟨vi(x), w⟩vi(x)− ⟨vi(y), w⟩vi(y)∥ (5.9)

and we can bound each term on the right-hand side of (5.9) as follows:

∥⟨vi(x), w⟩vi(x)− ⟨vi(y), w⟩vi(y)∥ ≤ |⟨vi(x)− vi(y), w⟩|+ ∥vi(x)− vi(y)∥|⟨vi(y), w⟩|
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≤ ∥vi(x)− vi(y)∥∥w∥+ ∥vi(x)− vi(y)∥∥vi(y)∥∥w∥
≤ 2(4∥A∥)iγi(ũ)∥x− y∥.

Hence, adding over i we obtain

∥ProjWx
(w)− ProjWy

(w)∥ ≤ 2

3
· 4j+1∥A∥jγj(ũ)∥x− y∥,

which implies that ∥ProjWx
− ProjWy

∥ ≤ 2
3
· 4j+1∥A∥jγj(ũ)∥x− y∥ and hence

∥(ProjWx
− ProjWy

)(Avj(y))∥ ≤
2

3
· (4∥A∥)j+1γj(ũ)∥x− y∥. (5.10)

Putting together inequalities (5.7), (5.8), and (5.10), we get for any x, y ∈ U that

∥ProjW⊥
x
(Avj(x))− ProjW⊥

y
(Avj(y))∥ ≤ (4∥A∥)j+1γj(ũ)∥x− y∥.

With this we have established that the function u 7→ ProjW⊥
u
(Avj(u)) is locally Lipschitz

at ũ with constant (4∥A∥)j+1γj(ũ). Now consider the function f : Rn → Rn defined by
f(x) = x/∥x∥. It is easy to show that for any x0 ̸= 0, f is locally Lipschitz at x0 with constant
1/∥x0∥. Now recall that by definition βj(ũ) = ∥ProjW⊥

ũ
(Avj(ũ))∥. Since the composition of

locally Lipschitz functions is locally Lipschitz with the constant being the product of the
constants of each of the functions in the composition, we have that the function

u 7→ vj+1(u) = f(ProjW⊥
u
(Avj(u)))

is locally Lipschitz at ũ with constant
(4∥A∥)j+1γj(ũ)

βj(ũ)
= (4∥A∥)j+1γj+1(ũ), where this equality

follows from (5.2).

Proposition 5.2.6. For any 0 ≤ j ≤ n− 1 and any ũ ∈ Sn−1, the function αj(u) is locally
Lipschitz at ũ with constant 1

2
· (4∥A∥)j+1γj(ũ), while βj(u) is locally Lipschitz at ũ with

constant (4∥A∥)j+1γj(ũ).

Proof. Recall that αj(u) = ⟨Avj(u), vj(u)⟩. Note that the local Lipschitz constant of the
function u 7→ Avj(u) is obtained by multiplying the local Lipschitz constant of vj(u) by ∥A∥
. Then, for any ε we can pick U to be a small enough neighborhood of ũ such that for any
x, y ∈ U we have

|αj(x)− αj(y)| = |⟨Avj(x), vj(x)⟩ − ⟨Avj(y), vj(y)⟩|
≤ |⟨A(vj(x)− vj(y)), vj(x)⟩|+ |⟨Avj(y), vj(x)− vj(y)⟩|
≤ 2 · (4j∥A∥j+1γi(ũ) + ε)∥x− y∥.

On the other hand, since βj(u) = ∥ProjW⊥
u
(Avj(u)))∥ and we established in the proof of

Proposition 5.2.5 that this function is locally Lipschitz with constant (4∥A∥)j+1γj(ũ), the
proof is concluded.
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Remark 5.2.7. The local Lipschitz constants presented in the above statements can be
improved; the term 4j next to ∥A∥jγj(ũ) was chosen for the sake of exposition. Nevertheless, it
seems complicated to show that the quantities vj(u) are locally Lipschitz at ũ with a constant
of the form Cj∥A∥jγj and Cj subexponential. In any case, the term ∥A∥jγj is typically
exponential in j, so an improvement on Cj would not yield an asymptotic improvement to
the final result if the same level of generality is considered. However, as we point out in
Section 6, sharpening our constants is of relevance for applications.

5.2.3 Incompressibility

In Section 5.3, we will see that our upper bounds for the local Lipschitz constants of the
Jacobi coefficients go to infinity if u becomes too close to a sparse vector, roughly speaking.
So we only have a good local Lipschitz constant in a certain region of the unit sphere that
avoids sparse vectors. In order to upgrade our local Lipschitz constant to a global Lipschitz
constant, we must prove:

1. That the measure of this region is large enough to apply the local Lévy lemma (Lemma
1.5.11).

2. That this region is K-connected for a small enough K.

First we give this region a name. Loosely inspired by the random matrix literature (see, for
example, [164]), we say that a vector u in Sn−1 is (δ, ε)-incompressible if each set of at least δn
coordinates carries at least ε of its “ℓ2 mass.” Otherwise, we say that u is (δ, ε)-compressible.
We denote the set of (δ, ε)-incompressible vectors in Sn−1 by In(δ, ε) and record the formal
definition below.

Definition 5.2.8.

In(δ, ε) =

{
u ∈ Sn−1 :

∑
i∈S

u2i > ε for all S ⊆ {1, 2, . . . , n}, |S| ≥ δn

}
.

For incompressible u we will prove an adequate bound on the local Lipschitz constant in
Proposition 5.3.1. Fortunately, a uniform random unit vector u is incompressible with high
probability, as we will now show.

Proposition 5.2.9. Let u ∈ Sn−1 be a uniform random unit vector, and let 0 < ε < δ. Then

P[u ̸∈ In(δ, ε)] ≤ exp

{
2δ(1 + log 1/δ)n−

(ε
δ
− 1
)2
n

}
+ exp{−ε2n/8}.

Corollary 5.2.10. Let u ∈ Sn−1 be a uniform random unit vector, and let 0 < δ ≤ 1/50.
Then

P[u ̸∈ In(δ, δ/2)] ≤ 2 exp{−δ2n/32}.
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Proof. Set ε = δ/2 in Proposition 5.2.9. Note that ε2/8 = δ2/32 and 2δ(1+log 1/δ)−(1/2)2 <
−1/32 for 0 < δ ≤ 1/50.

The proof of the Proposition 5.2.9 consists of two parts. First, we prove a similar
proposition where instead of the ui we have independent Gaussian random variables with the
same variance 1/n. We then use a coupling argument to conclude the desired bound for u
drawn uniformly from the unit sphere.

We will need upper and lower tail bounds on the χ2 distribution. One can get good
enough bounds using the Chernoff method, but rather than develop these from scratch we
will cite the following corollary of Lemma 1 from Section 4.1 of [101].

Lemma 5.2.11. Let Y be distributed as χ2(k) for a positive integer k. Then the following
upper and lower tail bounds hold for any t ≥ 0:

P
[
Y ≤ k − 2

√
kt
]
≤ e−t,

P
[
Y ≥ k + 2

√
kt+ 2t

]
≤ e−t.

Proof of Proposition 5.2.9. Let X1, . . . , Xn denote independent Gaussian random variables
each with variance 1/n, and let X = (X1, . . . , Xn). If we set u = X/∥X∥, then u is uniformly
distributed on the unit sphere; see e.g. [111].

We seek to upper bound the probability of compressibility {u ̸∈ In(δ, ε)}, which is the
event that

∑
i∈S u

2
i < ε for some subset S of coordinates with |S| ≥ δn. This event is

contained in the union of the following two events:

1. E, the event that
∑

i∈S X
2
i ≤ 2ε for some |S| ≥ δn, and

2. F , the event that
∑

i∈S X
2
i ≥ ε+

∑
i∈S u

2
i for some |S| ≥ δn.

Indeed, if neither of these events hold, then for all |S| ≥ δn we have

2ε <
∑
i∈S

X2
i < ε+

∑
i∈S

u2i ,

so u is incompressible.
To upper bound the probability of E, we use the union bound over all sets of size k = ⌈nδ⌉:

P[E] ≤
(
n

k

)
P

[
k∑
i=1

X2
i ≤ 2ε

]

≤ (en/k)k exp

{
−(k − 2nε)2

4k

}
,

where in the last step we apply the lower tail bound in Lemma 5.2.11 with t being the
solution to k − 2

√
kt = 2nε. To avoid the bookkeeping of ceiling and floor functions we use
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the extremely crude inequality nδ ≤ k ≤ 2nδ (valid as long as δn ≥ 1), which will suffice for
our purposes:

P[E] ≤ exp

{
2δ(1 + log δ−1)n−

(ε
δ
− 1
)2
n

}
.

We now upper bound the probability of F :

P[F ] = P

[∑
i∈S

(
X2
i −

X2
i

∥X∥2

)
≥ ε for some |S| > δn

]

= P

[(
1− 1

∥X∥2

)∑
i∈S

X2
i ≥ ε for some |S| > δn

]

≤ P
[(

1− 1

∥X∥2

)
∥X∥2 ≥ ε

]
= P

[
∥X∥2 ≥ 1 + ε

]
.

Since Y = n∥X∥2 is distributed as χ2(n), we may apply the upper tail bound in Lemma
5.2.11 with t = nε2/8 to obtain

P[F ] ≤ exp{−nε2/8}.
To conclude, we have P[u ̸∈ In(δ, ε)] ≤ P[E] + P[F ], and substituting the bounds we just
derived, we obtain the desired inequality.

5.2.4 K -Connectedness of the Incompressible Region

Having proven that the incompressible region In(δ, ε), where we have a good local Lipschitz
constant, is almost the entire sphere, we now turn to proving that the region is K-connected
for a small enough K.

One could try to show that any two points in In(δ, ε) can be connected by a short path
contained in In(δ, ε), but for our purposes it is okay to let the path venture out into the larger
region In(4δ, ε/

√
2). When upgrading to a global Lipschitz constant, we will have to use the

slightly worse upper bound for the local Lipschitz constant in this larger region, but this will
still be good enough.

Proposition 5.2.12. In(δ, ε) is
√

2/ε-connected in In(4δ, ε/
√
2).

Proof. Let x and y be any two endpoints in In(δ, ε). The construction will proceed in two
steps. First, we will construct a path from x to y in Rn consisting of ⌈δ−1⌉ pairwise orthogonal
line segments. Then we will project this path radially onto the unit sphere and show that
the result indeed lies in In(4δ, ε/2) and has length at most (2/

√
ε)∥x− y∥, which is at most

(2/
√
ε)d(x, y), where d denotes the geodesic distance on Sn−1.

Roughly speaking, we will partition the coordinates of x into 1/δ blocks of δn coordinates
and move the entries of each block linearly from x to y in parallel, one block at a time.
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Because basic quantities such as 1/δ and δn may not be integers, we will be content to
split up Rn as the direct sum

⊕m
i=1 Rni , where δn ≤ ni ≤ 2δn for all i.1 Note also that this

implies m ≥ 1
δ
. Similarly, for any vector z ∈ Rn, we will write z =

⊕m
i=1 z

(i), where z(i) ∈ Rni .
Now we may formally define the path Pi to be the line segment

Pi(t) = x(1) ⊕ · · · ⊕ x(i−1) ⊕
(
tx(i) + (1− t)y(i)

)
⊕ y(i+1) ⊕ · · · ⊕ y(m)

and define P to be the concatenation of the segments P1, . . . , Pm. The length of P is

m∑
i=1

∥x(i) − y(i)∥ ≤
√
m∥x− y∥ ≤

√
1/δ∥x− y∥,

by the Cauchy-Schwarz inequality. Also, ∥P (t)∥ ≥
√
ε/2δ, because

∥Pi(t)∥2 ≥
i−1∑
j=1

∥x(j)∥2 +
m∑

j=i+1

∥y(j)∥2 ≥ (m− 1)ε ≥ ε

2δ
,

where we use that x and y are (δ, ε)-incompressible.
Furthermore, note that P lies inside the closed ball of radius

√
2, because for any i and t,

∥Pi(t)∥2 ≤
m∑
j=1

max{∥x(j)∥, ∥y(j)∥}2 ≤
m∑
j=1

(
∥x(j)∥2 + ∥y(j)∥2

)
= 2.

The path P currently does not lie in the unit sphere, so we project it onto the unit sphere
along radii to get our final path P ′. We now show that P ′ indeed lies in In(4δ, ε/

√
2).

At this stage, we will dispense with the direct sum decomposition and use ordinary
coordinates z = (z1, . . . , zn).

Consider any set S of at least 4δn coordinates, and consider any point Pi(t) in our path P
(before projection). The ith block of coordinates is in motion, and all of the other coordinates
are either frozen at their initial value (from x) or their final value (from y).

The ith block consists of at most 2δn coordinates. Besides these, there are at least
4δn− 2δn = 2δn remaining coordinates in our set S. At least δn of them are from x or at
least δn of them are from y. By incompressibility of x and y, the sum of the squares of these
δn coordinates is at least ε.

After projecting onto the unit sphere, the sum of the same coordinates is still at least
ε/
√
2, because as we saw, the original path had norm at most

√
2 at every point.

Finally, when projecting onto the unit sphere, the length of the path increases by at
most a factor of 1/

√
ε/2δ, because as we saw earlier, originally each segment lay outside

the smaller sphere of radius
√
ε/2δ. The verification is an exercise in plane geometry (using

the fact that tan θ > θ for 0 < θ < π/2) and also follows from the arc length formula
ds =

√
r2 + (dr/dθ)2 dθ ≥ r dθ.

1This is possible as long as n/2 ≥ δn ≥ 1, which will be true in our regime.
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Thus, finally, we have shown that the path P ′ is contained in In(4δ, ε/
√
2) and has length

at most √
1/δ∥x− y∥(1/

√
ε/2δ) =

√
2/ε∥x− y∥.

5.3 Concentration of the Output

We now analyze the local Lipschitz constant for the entries αi and βi of the Jacobi matrix.
To simplify notation, in what follows we assume that ∥A∥ = 1 by rescaling A. Recall that
this will also rescale the Ritz values and Jacobi coefficients by a factor 1/∥A∥.

By Corollary 5.2.6, the function αi(u) has local Lipschitz constant 2 · 4iγi(u), and βi(u)
has local Lipschitz constant 4i+1γi(u). Thus we are naturally led to the question of finding
upper bounds for γk(u). Recall that γk(u) is defined as the leading coefficient of the kth
orthogonal polynomial with respect to the measure µu =

∑n
i=1 u

2
i δλi and that πuk is the monic

orthogonal polynomial with respect to the same measure.
The Equations (5.1) and (5.6) imply

γk(u) =

(
n∑
i=1

u2iπ
u
k (λi)

2

)− 1
2

.

We seek to upper bound γk(u) in terms of u, so we need to lower bound the quantity

n∑
i=1

u2iπ
u
k (λi)

2 =
n∑
i=1

u2i

k∏
j=1

|λi − rj(u)|2,

where r1(u), . . . , rk(u) are the roots of πuk (z), i.e. the Ritz values.
Now, if it happens to be the case that the n eigenvalues λi are all clustered very close to

the k Ritz values rj, then we won’t get a good lower bound. However, if k ≪ n and if the λi
are reasonably spread out, we expect to get a good lower bound for most i. To make this
precise, we recur to the definition of equidistribution (Definition 1.5.1) given in Section 1.5.
Moreover, we will show in Section 5.3.1 that a wide range of spectra are equidistributed.

Now we apply the definition. Returning to our effort to upper bound γj(u), we see that if
we assume the spectrum of A is (δ, ω, k)-equidistributed, then

n∑
i=1

u2i

k∏
j=1

|λi − rj(u)|2 ≥
∑
i∈S

u2iω
2k,

where S is some subset of {1, . . . , n} of size at least δn. However, for an arbitrary unit vector
u and an arbitrary subset S, we have no lower bound on the sum

∑
i∈S u

2
i—it could even be

zero. This leads to our definition of incompressibility from Section 5.2, which is satisfied by
u with high probability.
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Indeed, if we assume that the unit vector u is (δ, ε)-incompressible, then the right hand
side expression above is greater than εω2k. Putting together the last few equations, we have
γk(u) ≤ (εω2k)−1/2. We summarize the result in the following proposition.

Proposition 5.3.1. Suppose the spectrum of A is (δ, ω, k)-equidistributed and suppose that u
is (δ, ε)-incompressible for some δ, ω, ε > 0 and k ∈ N. Then

γk(u) ≤
1

ωk
√
ε
.

5.3.1 Equidistribution

In this section we establish sufficient conditions for equidistribution that apply to a wide range
of spectra. First, we present an immediate generalization of the notion of equidistribution
which applies to measures µ instead of finite sets Λ. The definitions coincide for finite sets if
one identifies Λ with the uniform probability distribution on Λ.

Definition 5.3.2 (Equidistribution for measures). Let µ be a probability measure on R. Let
δ, ω > 0 and j be a natural number. We say that µ is (δ, ω, j)-equidistributed if for any finite
set T of at most j real numbers,

µ

({
x ∈ R :

1

|T |
∑
t∈T

log |x− t| ≥ logω

})
≥ δ.

If a measure is (δ, ω, j)-equidistributed for every j ∈ N, we will just say that it is (δ, ω)-
equidistributed.

For absolutely continuous measures, we have the following general equidistribution result.

Proposition 5.3.3 (Absolutely continuous measures are equidistributed). Let ν be a com-
pactly supported probability measure on R with a nontrivial absolutely continuous part. Then
there exist constants δ, ω > 0 such that ν is (δ, ω)-equidistributed.

Proof. By the assumption, we may write ν = ν1 + ν2, where ν1 is absolutely continuous with
respect to Lebesgue measure. By cutting off the portion where the density of ν1 is greater
than some large M > 0 and assigning that mass to ν2 instead, we may assume without loss
of generality that the density function of ν1 is bounded.

We now utilize a Markov inequality type argument. Let T be any set of j real numbers.
Define the logarithmic potential

V (x) = −1

j

∑
t∈T

log |x− t|.

Since ν1 has a bounded density function, log |x− t| is integrable against ν1 for all t, so
the integral

∫∞
−∞ Vt(x) dν1(x) is finite for each t ∈ T . Averaging over all t ∈ T , we find that
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1

ν1(R)

∫ ∞

−∞
V (x)dν1(x) ≤ a

for some constant a <∞. Then

a ≥ 1

ν1(R)

∫ ∞

−∞
V (x)dν1(x) ≥

2aν1({x ∈ R : V (x) ≥ 2a})
ν1(R)

.

Relating this back to the definition of equidistribution, we have

ν1

({
x ∈ R :

1

|T |
∑
t∈T

log |x− t| ≥ −2a

})
= ν1({x ∈ R : V (x) ≤ 2a}) ≥ 1

2
ν1(R).

Hence we may take δ = 1
2
ν1(R) and ω = e−2a.

Given our framework, it will be useful to have a statement relating the equidistribution
of an absolutely continuous measure to a discretization of that measure. If the two measures
are close in Kolmogorov distance, then we can prove such a statement.

Proposition 5.3.4. Let µ and ν be probability measures. If µ is (δ, ω, j)-equidistributed for
some δ, ω > 0 and j ∈ N, then ν is (δ − ε, ω, j)-equidistributed, where ε = 4jKol(µ, ν).

Proof. Let T be any set of at most j real numbers. Since p(x) =
∏

t∈T |x− t| is the absolute
value of a polynomial of degree j, each of its level sets is a union of at most 2j intervals.
Hence,

|µ({x ∈ R : p(x) ≥ ω|T |})− ν({x ∈ R : p(x) ≥ ω|T |})| ≤ 4jKol(µ, ν).

Thus, to prove equidistribution for an atomic measure, it suffices to prove equidistribution
for a nearby absolutely continuous measure.

The above propositions immediately yield a useful corollary for analyzing the Lanczos
procedure in the regime of O(log n) iterations.

Corollary 5.3.5. Let µ be a compactly supported probability measure with nontrivial absolutely
continuous part. Let {µn} be a sequence of probability measures such that Kol(µn, µ) ≤ C

logn

for some C > 0. Then for all n, for all j ≤ 1
2C

log n we have that µn is (δ, ω, j)-equidistributed
for some δ, ω > 0.

Remark 5.3.6. If µ is (δ, ω, j)-equidistributed and ν is the pushforward of µ under the affine
map x 7→ ax+ b, then ν is (δ, aω, j)-equidistributed.

We now compute the equidistribution for a few example measures, following the proof of
Proposition 5.3.3.
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Example 5.3.7. Let µ denote the uniform measure on [0, 1]. Then∫
V (x) dµ(x) ≤

∫
− log

∣∣∣∣x− 1

2

∣∣∣∣ dµ(x) = 1 + log 2.

Thus, µ is (1/2, 4e−2)-equidistributed.

Example 5.3.8. Let ν denote the semicircle law dν = 1
2π

√
(4− x2)+ dx. Then∫

V (x) dν(x) ≤
∫
− log |x| dν(x) = 1/2.

Thus, ν is (1/2, e−1)-equidistributed.

With the above, the claims made in the examples provided in Section 1.5 are now trivial.

Proof of Example 1.5.2 and Example 1.5.8. It is enough to put together Proposition 5.3.4
and Example 5.3.7.

Note that for a given set of points that does not resemble a discretization of an absolutely
continuous distribution, it will still be likely that the equidistribution parameters are well
behaved (relative to their scale) provided that the points are somewhat spread out. On the
other hand, if the points are clustered in a few small clusters the analysis becomes trivial.

Observation 5.3.9. Let Λ be a set (or multiset) of n points. Let a1 ≤ b1 < a2 ≤ b2 < · · · <
am ≤ bm be such that Λ ⊂

⋃m
i=1[ai, bi]. Define ni = |Λ ∩ [ai, bi]| and let g the minimal gap

between clusters, namely, g = min1≤i≤m−1 ai+1 − bi. Then Λ is (
kj
n
, g
2
, j)-distributed, where

kj = minS
∑

i∈Sc ni and S runs over all subsets of {1, . . . ,m} of size j.

Proof. The proof follows directly from the definition of equidistribution.

Remark 5.3.10. A particular case of Observation 5.3.9 is when ni ≥ ⌊ nm⌋ and g = ai+1 − bi
for every i = 1, . . . ,m, which yields Example 1.5.3 above. More generally, if each ni is roughly
n/m, then kj will be roughly m− j, and hence the δ parameter for the equidistribution of
Λ will only degrade when j ≈ m. In other words, Theorem 1.5.4 is still strong for matrices
whose spectrum consists of small clusters if the number of such clusters exceeds the number
of iterations of the Lanczos procedure. On the other hand, if the number of iterations exceeds
the number of clusters it is not hard to show that the Lanczos procedure will output (with
overwhelming probability) at least one Ritz value per cluster.

5.3.2 Jacobi Coefficients

We now have the necessary tools to prove concentration for the entries of the Jacobi matrix.

Proposition 5.3.11 (Jacobi coefficients are globally Lipschitz). Suppose the spectrum of A
is (4δ, ω, i)-equidistributed for some δ, ω > 0 and i ∈ N. Then for any 0 < ε < δ, functions

αi(u) and βi(u) are globally Lipschitz on In(δ, ε) with constant Li,ε ≤ 4i+2∥A∥i+1

ωiε
.
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Proof. Proposition 5.2.6 says that αi(u) and βi(u) both have local Lipschitz constant at most
4i+1∥A∥i+1γi(u) for all u ∈ Sn−1. Proposition 5.3.1 says that because the spectrum of A is
(4δ, ω, i)-equidistributed, γi(u) ≤ 1

ωi
√
ε/

√
2
for all u ∈ In(4δ, ε/

√
2). Combining these, we have

that αi(u) and βi(u) are locally Lipschitz with constant

4i+1∥A∥i+1

ωi
√
ε/
√
2

for all u ∈ In(4δ, ε/
√
2). Proposition 5.2.12 says that In(δ, ε) is

√
2/ε-connected in the larger

set In(4δ, ε/
√
2), so Lemma 5.2.4 implies that αi(u) and βi(u) are globally Lipschitz on In(δ, ε)

with constant

Li,ε =

√
2√
ε

4i+1∥A∥i+1

ωi
√
ε/
√
2

 ≤ 4i+2∥A∥i+1

ωiε
.

We now have the tools to prove our first main theorem, which quantifies the concentration
of the Jacobi coefficients around their medians.

Theorem 5.3.12 (Restatement of Theorem 1.5.4). Suppose the spectrum of A is (δ, ω, i)-
equidistributed for some δ, ω > 0 and i ∈ N. Let α̃i and β̃i denote the medians of the Jacobi
coefficients αi(u) and βi(u), respectively. Then for all t > 0, the quantities P[|αi(u)− α̃i| >
t∥A∥] and P[|βi(u)− β̃i| > t∥A∥]] are both bounded above by

2 exp

{
−min{δ, 1/50}2

32
n

}
+ 2 exp

{
− 1

64

(
ω

4∥A∥

)2i

δ2t2n

}
. (5.11)

Proof. The local Lévy lemma (Lemma 1.5.11) yields that P[|αi(u)−α̃i| > t∥A∥] and P[|βi(u)−
β̃i| > t∥A∥] are both at most

P[u ̸∈ In(δ, ε)] + 2 exp{−4nt2∥A∥2/L2
i,ε},

where Li,ε is the global Lipschitz constant on In(δ, ε) obtained in Proposition 5.3.11. Note
that if δ > 1/50, then A is still (1/50, ω, i)-equidistributed, so we may set ε = δ/7 and apply
Corollary 5.2.10 to bound P[u ̸∈ In(δ, ε)]. We obtain the upper bound

2 exp

{
−min{δ, 1/50}2

32
n

}
+ 2 exp

{
−4nt2∥A∥2ω2i(δ/2)2

42i+4∥A∥2i+2

}

≤ 2 exp

{
−min{δ, 1/50}2

32
n

}
+ 2 exp

{
− 1

64

(
ω

4∥A∥

)2i

δ2t2n

}
as desired.
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Combining the previous theorem with Corollary 5.3.5 we get convergence in probability
of the Jacobi matrices in the regime k = O(log n).

Proposition 5.3.13. Let the spectra µn of An converge to the spectrum µ of A in Kolmogorov
distance with rate O(1/ log n). Suppose µ has a nontrivial absolutely continuous part. Then
there exists c2 > 0 and a sequence kn ≥ c2 log n such that the Jacobi matrices Jkn output by
the Lanczos algorithm after kn iterations converge to entrywise in probability to deterministic
constants.

Proof. By Corollary 5.3.5, we have that µn is (δ, ω, k)-equidistributed for all k ≤ c1 log n.
Picking c2 < c1 and applying Theorem 1.5.4, for i ≤ c2 log n this yields the bound

P[|αi − α̃i| > t] ≤ exp{−δ2n/32}+ 2 exp

{
− 4

43
(ω/4)2c2 lognnt2

}
= exp{−δ2n/32}+ 2 exp

{
− 4

43
n2c2 log(ω/4)+1t2

}
so as long as 2c2 log(ω/4)+1 > 0, we have convergence in probability of the Jacobi coefficients
as n→∞. But this is certainly true for small enough c1. The βi have the same bound as
the αi, so we are done.

As mentioned in the introduction, convergence for fixed k to the infinite Jacobi matrix J
of µ for deterministic µn (with no hypothesis on the rate of convergence of µn) is proven in
[72, Theorem 4]. In Proposition 5.3.13 we leave it open to prove that the limit is actually
J , but if we reduce the number of iterations from k = O(log n) to k = O(

√
log n), we can

indeed prove that the limit is J . This is the content of Theorem 1.5.9, proven in Section 5.

5.3.3 Ritz Values

Theorem 1.5.4 yields concentration of the entries of the random matrix Jk(u). So to control
the Ritz values (which are the eigenvalues of Jk(u)) it is enough to apply Weyl’s inequality
(Lemma 1.1.5).

Following the notation in Theorem 1.5.4, let J̃k be the k × k Jacobi matrix with entries
α̃i and β̃i, and denote the eigenvalues of J̃k by r̃1 ≥ · · · ≥ r̃k.

Proposition 5.3.14 (Concentration of the Ritz values). Assume that the spectrum of A is
(δ, ω, k)-equidistributed for some δ, ω > 0 and k ∈ N. With the notation described above, let
r⃗ = (r̃1, . . . , r̃k) and let r⃗(u) = (r1(u), . . . , rk(u)) be the vector of Ritz values after k iterations.
Then the probability P[∥r⃗(u)− r⃗∥∞ ≥ t∥A∥] is bounded above by

4k

[
exp

{
−min{δ, 1/50}2

32
n

}
+ exp

{
− 1

192

(
ω

4∥A∥

)2k

δ2t2n

}]
.
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Proof. Since J̃k and Jk(u) are tridiagonal matrices, we may split Jk − J̃k into the sum of
three matrices consisting of the diagonal, the subdiagonal, and the superdiagonal and then
use the triangle inequality to obtain

∥Jk(u)− J̃k∥ ≤ max
0≤i≤k−1

{|αi(u)− α̃i|}+ 2 max
0≤i≤k−2

{|βi(u)− β̃i|}. (5.12)

Hence, we deduce that

P[∥r⃗(u)− r⃗∥∞ ≥ t] ≤ P[∥Jk(u)− J̃k∥ ≥ t]

≤ P
[

max
0≤i≤k−1

{|αi(u)− α̃i|}+ 2 max
0≤i≤k−2

{|βi(u)− β̃i|} ≥ t

]
,

where the first inequality follows from Lemma 1.1.5 and the second inequality from (5.12).
Now observe that the event {max0≤i≤k−1{|αi(u)− α̃i|}+ 2max0≤i≤k−2{|βi(u)− β̃i|} ≥ t} is
contained in the event{

max
0≤i≤k−1

{|αi(u)− α̃i|} ≥
t

3

}
∪
{

max
0≤i≤k−2

{|βi(u)− β̃i|} ≥
t

3

}
,

which in turn is contained in the event

k⋃
i=1

{
|αi(u)− α̃i| ≥

t

3

}⋃{
|βi(u)− β̃i| ≥

t

3

}
.

Using a union bound and applying Theorem 1.5.4, we obtain the desired result.

5.3.4 Ritz Vectors

Here we will use the same notation as in Section 5.3.3. Let w̃i be the eigenvector of J̃k
corresponding to r̃i and let wi(u) be the eigenvector of Jk(u) corresponding to ri(u). We
will use the fact that Jk(u) concentrates around J̃k, together with the Davis-Kahan theorem
(Lemma 1.1.6) to establish the concentration of the vectors wi(u).

Under the assumption that r̃i(u) is not close to the other Ritz values, we get the following
result.

Proposition 5.3.15 (Concentration of the Ritz vectors). Assume that the spectrum of A
is (δ, ω, k)-equidistributed for some δ, ω > 0 and k ∈ N and fix some i ∈ N with 1 ≤ i ≤ k.
With the notation described above, let θ ∈ [0, π/2] be the angle between wi(u) and w̃i and
let ε = minj:j ̸=i |r̃i − r̃j|. Then for any 0 ≤ c < 1/2, the probability P [sin θ ≥ 2∥A∥/εnc] is
bounded above by

4k

[
exp

{
−min{δ, 1/50}2

32
n

}
+ exp

{
− 1

192

(
ω

4∥A∥

)2k

δ2n1−2c

}]
.
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Note. The same result holds for the Ritz vectors, since these are obtained by applying an
isometry to the wi(u).

Proof. From Theorem 1.1.6 we have that

sin θ ≤ 2∥J̃k(u)− J̃k(u)∥
ε

and hence

P[sin θ ≥ t] ≤ P[∥Jk(u)− J̃k∥ ≥ t]

≤ P
[

max
0≤i≤k−1

{|αi(u)− α̃i|}+ 2 max
0≤i≤k−2

{|βi(u)− β̃i|} ≥ t

]
,

where the latter inequality was established in the proof of Proposition 5.3.14. Using the
bound obtained in the aforementioned proof and substituting t = 2

εnc we obtain the desired
result.

5.4 Location of the Output

5.4.1 Undetected Outliers

We now prove our theorem about the Lanczos algorithm missing outliers in the spectrum.
First we start by showing an asymtptotic version of this result.

Proposition 5.4.1. Let (An)
∞
n=1 be a sequence of n× n Hermitian matrices with uniformly

bounded norm. Assume their empirical spectral distributions µn converge in distribution to
a measure µ with nontrivial absolutely continuous part, and further assume Kol(µn, µ) =
O(1/ log n)2. Suppose there exists m ∈ N such that each An has at most m eigenvalues
(“outliers”) greater than R, where R denotes the right edge of the support of µ.

Then there exists c > 0 such that for every κ > 0, the Ritz values of Lanczos applied to
An after c log n iterations are bounded above by R + κ with overwhelming probability for n
sufficiently large (depending on how small the gap κ is chosen.)

Proof. By Proposition 5.3.4, we have that µn is (δ, ω, j)-equidistributed for some δ, ω > 0
and all j < c log n. Suppose u ∈ In(δ, ε), which happens with overwhelming probability
by Proposition 5.2.9. Then by Proposition 5.3.1, we have an upper bound on the leading
coefficient of the jth orthogonal polynomial: γj(u) ≤ 1

ωj
√
ε
. Equivalently, this is a lower bound

on the L2 norm of the jth monic orthogonal polynomial: ∥πuj ∥L2(µu) ≥ ωj
√
ε. As mentioned

in the preliminaries in Section 2, it is a classical fact that the monic orthogonal polynomial

2Here and in Chapter 5 we will use Kol(·, ·) to denote the Kolmogorov-Smirnov distance between two
measures.
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of any given degree has minimal L2 norm over all monic polynomials of that degree. Thus,
we in fact have ∫

q(x)2 dµu(x) ≥ εω2j (5.13)

for all monic polynomials q of degree j, with equality when q(x) is the kth orthogonal
polynomial puk(x).

For all unit vectors u, let ρ(u) denote the top Ritz value, i.e. the maximum root of puk(x).
We wish to show that ρ(u) < R + κ with high probability.

Take puk(x) and replace its top root by t to form the monic polynomial Pt. By the first-order
condition for the variational characterization of puk mentioned above, to show ρ(u) ≤ R+ κ it
suffices to show that ∥Pt∥L2(µu) is strictly increasing in t for t > R + κ. We have

∥Pt∥2L2(µu) =

∫ (
πuk (x)

x− ρ(u)
(x− t)

)2

dµu(x) =
k∑
i=1

u2i (λi − t)2
k∏
j=2

(λi − rj)2,

where we let r2, . . . , rk denote the roots of puk(x) besides the maximum root ρ(u), and we
omit the argument u for brevity. We calculate the derivative

d

dt
∥Pt∥2L2(µu) = −2

m∑
i=1

u2i (λi − t)
k−1∏
j=1

(λi − rj)2 − 2
n∑

i=m+1

u2i (λi − t)
k∏
j=2

(λi − rj)2.

We wish to show that this quantity is positive whenever t ≥ R + κ. We have assumed
that there are only m outliers, so assume λi ≤ R for all i > m. Then t − λi ≥ κ for every
m < i ≤ n.

Thus,

d

dt
∥Pt∥2L2(µu) ≥ −2

m∑
i=1

u2i (λi − t)
k−1∏
j=1

(λi − rj)2 + 2
n∑

i=m+1

u2iκ
k∏
j=2

(λi − rj)2

= −2
m∑
i=1

u2i (λi − t)
k∏
j=2

(λi − rj)2

+

[
2κ

∫ (
puk(x)

x− ρ(u)

)2

dµu(x)− 2
m∑
i=1

u2iκ

k∏
j=2

(λi − rj)2
]

≥ −2
m∑
i=1

u2i (λi − t)
k∏
j=2

(λi − rj)2 + 2κεω2(k−1) − 2
m∑
i=1

u2iκ
k∏
j=2

(λi − rj)2,

where in the last step we used the inequality (5.13) on the degree k−1 polynomial puk(x)/(x−
ρ(u)). Simplifying, we have
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d

dt
∥Pt∥2L2(µu) ≥ 2κεω2(k−1) − 2

m∑
i=1

u2i (λi + κ− t)
k∏
j=2

(λi − rj)2.

By uniform boundedness of the spectra, there exists M large such that λi − rj ≤M for all
1 ≤ i ≤ m. Let g be the maximum of the outlier gaps λi −R over all 1 ≤ i ≤ m. Recall that
t ≥ R+ κ, so λi + κ− t ≤ λi −R ≤ g for all 1 ≤ i ≤ m. Finally, we have with overwhelming
probability

∑m
i=1 u

2
i < n−c for any positive c < 1/2; we will defer the proof to Lemma 5.4.3

below. Putting this all together, we have

d

dt
∥Pt∥2L2(µu) ≥ 2κεω2k−2 − 2n−cM2k−2mg.

This quantity is strictly positive when

log κε+ (2k − 2) logω > −c log n+ (2k − 2) logM + logmg.

Rearranging, we get

(2k − 2) log(ω/M) > −c log n+ logmg − log κε

for n large. Note that ω < M , because ω is a lower bound on geometric means of distances
that are all less than M . In conclusion, with high probability, d

dt
∥Pt∥2L2(µu) > 0 for all

t > R + κ when

2k − 2 <
1

log M
ω

(
c log n+ log

κε

mg

)
. (5.14)

For n large, we may absorb the constants m, g, κ, ε, ω (which do not depend on n) into a
single constant c′ > 0, and we get the desired k ≤ c′ log n.

Remark 5.4.2. There are several parameters that can be tuned in the above proof. For
example, one could envision a situation in which κ converges to zero as n → ∞, at the
expense of some other parameter.

We now turn our attention towards proving Theorem 1.5.7. First we will need the following
mass concentration lemma.

Lemma 5.4.3. Let 0 < c < 1/2 and suppose m ≤ nα, where α < 1− c. Then
∑m

i=1 u
2
i < n−c

with overwhelming probability. To be precise,

P

[
m∑
i=1

u2i ≥ n−c

]
≤ exp

{
− 1

16

(
4nα − 4

√
2n

1
2
− c

2
+α

2 + 2n1−c
)}

+ exp

{
− 1

16
n1−2c

}
.
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Proof. We proceed just as in the proof of Proposition 5.2.9. Define Xi as in that proof. Then

P

[
m∑
i=1

u2i > n−c

]
≤ P

[
m∑
i=1

X2
i >

1

2
n−c

]
+ P

[
m∑
i=1

X2
i < −

1

2
n−c +

m∑
i=1

u2i

]
.

Using Lemma 5.2.11, we solve for the parameter
√
t = −2

√
m+

√
2n

1
2− c

2

4
(which requires α < 1−c)

and then we get

P

[
m∑
i=1

X2
i >

1

2
n−c

]
≤ exp

−
(
−2
√
m+

√
2n

1
2
− c

2

4

)2


= exp

{
− 1

16

(
4nα − 4

√
2n

1
2
− c

2
+α

2 + 2n1−c
)}

,

which is an overwhelmingly small probability because 1
2
− c

2
+ α

2
< 1− c when α < 1− c.

Now following the same coupling argument in the proof of Proposition 5.2.9 and using
Lemma 5.2.11 again, we get

P

[
m∑
i=1

X2
i < −

1

2
n−c +

m∑
i=1

u2i

]
≤ exp

{
− 1

16
n1−2c

}
.

We can now show Theorem 1.5.7.

Proof of Theorem 1.5.7. From the proof of Proposition 5.4.1, setting ε = δ/2 we have that
the Ritz values are contained in the desired interval for

k ≤ 1

2 log M
ω

(
c log n+ log

κδ

2mg

)
as long as k ≤ j, u ∈ In(δ, δ/2) and

∑m
i=1 u

2
i > n−c. Applying Corollary 5.2.10, the probability

that u violates either condition is at most

P[u ̸∈ In(δ, δ/2)] + P

[
m∑
i=1

u2i > n−c

]

≤ 2 exp

{
−min{δ, 1/50}2

32
n

}
+ P

[
m∑
i=1

u2i > n−c

]

≤ 2 exp

{
−min{δ, 1/50}2

32
n

}
+ 2 exp

{
− 1

16
n1−2c

}
,

where in the last step, we apply Lemma 5.4.3 and note that for n ≥ e
1

1−c−α we have
4
√
2n

1−c+α
2 ≤ n1−c.
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5.4.2 Asymptotic Locations of Ritz Values and Jacobi Coefficients

For C > 0 let PC denote the space of Borel probability measures supported on [−C,C]. In
order to prove Theorem 1.5.9 we will show that the Jacobi coefficients of a measure are
locally Lipschitz quantities on the space PC equipped with the Kolmogorov metric. Note
that in Section 3 similar results were obtained in the case in which the space of measures
in consideration is restricted to atomic measures supported on n fixed points, namely, the
eigenvalues of An. Since PC is a much larger and complicated space we are not able to obtain
results as strong as in Proposition 5.2.6. It remains an open question if a better rate can be
achieved at this level of generality; see the concluding remarks for some natural directions to
pursue.

We will use the following well known result which, for convenience of the reader, we
restate as it appears in Lemma 1.1 in [76].

Lemma 5.4.4. Let A and B be two k × k matrices. Then det(A+B) is equal to the sum of
the determinants of the 2k matrices obtained by replacing each subset of the columns of A by
the corresponding subset of the columns of B.

Proof. The result follows directly from the fact that the determinant is multilinear in the
columns of the matrix.

Lemma 5.4.5. Let A and B be two k × k matrices. For 1 ≤ i ≤ k, let A(i) and B(i) be the
ith columns of A and B, respectively. Let C, ε > 0 and assume that

∥A(i) −B(i)∥2 ≤ ε and max{∥A(i)∥2, ∥B(i)∥2} ≤ C. (5.15)

Then
| det(A)− det(B)| ≤ εk(C + ε)k−1.

Proof. By the assumption in (5.15) we can write B = A + E, where E is a matrix with
columns of norm less than or equal to ε. Then, using Lemma 5.4.4, the inequalities in (5.15),
and the fact that the determinant of a matrix is bounded by the product of the Euclidean
norms of its columns, we obtain

| det(A+ E)− det(A)| ≤
n∑
k=1

(
n

k

)
Cn−kεk = (C + ε)k − Ck ≤ εk(C + ε)k−1,

where the last inequality follows from the mean value theorem.

We now argue that the moments of a measure are Lipschitz quantities in PC , where the
constant is exponential in the order of the moment. With this end fix a Borel measure µ on
R and denote

mk(µ) =

∫
R
xkdµ(x).
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A standard application of Fubini’s theorem yields that if µ is a finite positive Borel measure
supported in [0,∞), then

mk(µ) = k

∫ ∞

0

xk−1µ(x,∞)dx. (5.16)

This identity is enough to obtain the following bound.

Lemma 5.4.6. Let µ, ν ∈ PC and k > 0, then |mk(µ)−mk(ν)| ≤ 2CkKol(µ, ν).

Proof. Start by decomposing µ into µ+ and µ− as follows:

µ+(A) = µ(A ∩ [0,∞)), µ−(A) = µ(−A ∩ (−∞, 0)) ∀A ∈ B(R).

Hence µ(A) = µ+(A)+µ−(−A). Define ν+ and ν− analogously. Note that these new measures
are supported on [0,∞).

Observe that mk(µ) = mk(µ+) + (−1)kmk(µ−) and that the analogous formula holds for
mk(ν). Hence

|mk(µ)−mk(ν)| ≤ |mk(µ+)−mk(ν+)|+ |mk(µ−)−mk(ν−)|.

Now, for t ≥ 0 define Fµ+(t) = µ+(t,∞) and Fν+(t) = ν+(t,∞). By definition of
Kolmogorov distance we have that

|Fµ+(t)− Fν+(t)| ≤ Kol(µ, ν).

On the other hand, by (5.16) we have that

|mk(µ+)−mk(ν+)| ≤ k

∫ ∞

0

xk−1|Fµ+(x)− Fν+(x)|dx

≤ kKol(µ, ν)

∫ C

0

xk−1dx

= CkKol(µ, ν).

In the exact same way we can bound |mk(µ−)−mk(ν−)| to conclude the proof.

Given µ ∈ PC we denote the (k + 1)× (k + 1) Hankel matrix of µ by Mk(µ) and define
Dk(µ) = detMk(µ). We will denote the Jacobi coefficients of µ by αµi and βµi . For the proof
of the following results, many of the facts stated in Section 2.1 will be used.

Proposition 5.4.7. Let µ, ν ∈ PC and let sk > 0 be constants satisfying

min{Dj(µ), Dj(ν)} ≥ sk

for j = 1, . . . , k. Then

|βµk − β
ν
k | ≤

exp{gk2}Kol(µ, ν)

s2k
for some g > 0 dependent of µ and ν but independent of k.
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Proof. To shorten notation let xj = Dj(µ) and yj = Dj(ν). Without loss of generality
C > 1. A direct application of Lemma 5.4.6 yields a rough bound between the distance in the
Euclidean norm of the corresponding columns of the matrices Mj(µ) and Mj(ν). Namely, the
columns are at distance less than

√
j + 1C2j−1Kol(µ, ν). The same reasoning yields that the

norm of any column in Mj(µ) or Mj(ν) is bounded by
√
j + 1C2j−1. Hence, using Lemma

5.4.5 we get

|xj − yj| ≤ (
√
j + 1)j+1j(C(2j−1) + ε)j+1Kol(µ, ν) ≤ exp{gj2}Kol(µ, ν)

for some g > 0 independent of k.
In what follows we will bound two other terms whose logarithm is also O(k2). The implied

constants depend only on µ and ν, so we can modify g to be big enough for the following
inequalities to hold as well. By the first expression in (5.3) we have that

|βµk − β
ν
k | =

∣∣∣∣√xk−1xk+1

xk
−
√
yk−1yk+1

yk

∣∣∣∣
≤ 1

xk
|√xk−1xk+1 −

√
yk−1yk+1|+

√
yk−1yk+1

∣∣∣∣ 1xk − 1

yk

∣∣∣∣ . (5.17)

To bound the first term on the right-hand side of the above inequality we see that

|√xk−1xk+1 −
√
yk−1yk+1| =

|xk−1xk+1 − yk−1yk+1|√
xk−1xk+1 +

√
yk−1yk+1

and

|xk−1xk+1 − yk−1yk+1| ≤ xk−1|xk+1 − yk+1|+ yk+1|xk−1 − yk−1|
≤ exp{ak2}Kol(µ, ν),

which yields
1

xk
|√xk−1xk+1 −

√
yk−1yk+1| ≤

exp{gk2}Kol(µ, ν)

2s2k
. (5.18)

On the other hand,

√
yk−1yk+1

∣∣∣∣ 1xk − 1

yk

∣∣∣∣ = √yk−1yk+1
|xk − yk|
xkyk

≤ exp{gk2}Kol(µ, ν)

2s2k
. (5.19)

The result then follows from combining the previous inequalities (5.17), (5.18), and (5.19).

Remark 5.4.8. The constants sk have already been studied with sophisticated techniques
for some families of measures; see [148] for an example. However, using results only from
Section 4 it will be easy to show that for measures with an absolutely continuous part we
have | log(sk)| = O(k2), where the implied constant depends only on µ, which is enough for
the proof of Theorem 1.5.9.

In a similar fashion we can show that the coefficients of pµk(x) are locally Lipschitz.
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Proposition 5.4.9. Fix a positive integer k. Let µ, ν and sk be as in Proposition 5.4.7.
Denote the coefficients of xi in pµk(x) and p

ν
k(x) by a

µ
i and aνi respectively. Then

|aµi − aνi | ≤
(

2

sk
+

1

s2k

)
Kol(µ, ν) exp{gk2}

for some g > 0 dependent on µ and ν but independent of k.

Proof. For 1 ≤ i ≤ k let M
(i)
k (µ) be the matrix obtained by removing the kth row and ith

column of Mk(µ) and let di(µ) = det(M
(i)
k (µ)). From identity (5.5) we have

aµi =
di(µ)√

Dk−1(µ)Dk(µ)
.

Using the same notation as in the proof of Proposition 5.4.7 we have that

|ai(µ)− ai(ν)| ≤
∣∣∣∣ di(µ)√
xk−1xk

− di(ν)√
yk−1yk

∣∣∣∣
≤ 1
√
xk−1xk

|di(µ)− di(ν)|+ di(ν)

∣∣∣∣ 1
√
xk−1xk

− 1
√
yk−1yk

∣∣∣∣ .
As before 1√

xk−1xk
≤ 1

sk
, while |di(µ) − di(ν)| ≤ 2Kol(µ, ν) exp{gk2} for some g > 0

dependent on µ and ν only. To bound the second term on the right-hand side of the above
inequality note that di(ν) ≤ exp{gk2} and that

1
√
xk−1xk

− 1
√
yk−1yk

= (xk−1xkyk−1yk)
− 1

2 |√xk−1xk −
√
yk−1yk|

≤ 1

s3k
exp{gk2}Kol(µ, ν),

where the last inequality is a consequence of (5.18). The result follows.

Corollary 5.4.10. Let µ, ν, sk be as in Proposition 5.4.7. Then

|αµk − α
ν
k| ≤

Kol(µ, ν) exp{gk2}
s3k

.

Proof. Recall that

αµk =

∫
xp2k(x)dµ(x) =

k∑
i,j=1

aµi a
µ
jmi+j+1(µ).

As mentioned above, the quantities aµi , a
ν
i , and mi(µ), ni(ν) are of size O(exp{gk2}). Putting

this together with Proposition 5.4.9 and Lemma 5.4.6 we get that

|aµi a
µ
jmi+j−1(µ)− aνi aνjmi+j−1(ν)| ≤

exp{gk2}
s3k

.

By adding over i, j and modifying g the result follows.
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In order to prove Theorem 1.5.9 and Proposition 1.5.10 we need one final lemma, which
states that with overwhelming probability, the random measure µun is close in Kolmogorov
distance to µn.

Lemma 5.4.11. For n large enough we have that

P[Kol(µun, µn) ≥ n− 1
4 ] ≤ exp{−n

1
4/8}.

Proof. We must show that ∣∣∣∣∣
k∑
i=1

u2i −
k

n

∣∣∣∣∣ ≤ n− 1
4

for all 1 ≤ k ≤ n with probability at least 1− exp{−n1/4/8}.
Fix 1 ≤ k ≤ n. As in Section 3.3 start by considering X1, . . . , Xk independent centered

Gaussian random variables of variance 1
n
and let Zk =

∑k
i=1X

2
i . Then by Lemma 5.2.11 we

have that

P
[
Zk ≥

k

n
+ n− 1

4

]
≤ e−t1 and P

[
Zk ≤

k

n
− n− 1

4

]
≤ e−t2 ,

where t1 and t2 are the solutions to

n− 1
4 =

2
√
kt1
n

and n− 1
4 =

2
√
kt2 + 2t2
n

, (5.20)

respectively. Since k ≤ n it is clear from (5.20) that min{t1, t2} ≥ n
1
4

4
. This implies that

P
[∣∣∣∣Zk − k

n

∣∣∣∣ ≥ n− 1
4

]
≤ exp{−n

1
4/4}.

Now, letting k run from 1 to n, a union bound yields that

P
[
max
1≤k≤n

∣∣∣∣Zk − k

n

∣∣∣∣ > n− 1
4

]
≤ n exp{−n

1
4/4} ≤ 1

2
exp{−n

1
4/8},

where the last equality holds for n large enough. Now, as in the proof of Proposition (5.2.9)
we can show by a standard coupling argument that if we take ui = Xi/

√
Zn, we will have

that

P

[
max
1≤k≤n

∣∣∣∣∣Zk −
k∑
i=1

u2i

∣∣∣∣∣ > n− 1
4

]
≤ 1

2
exp{−n

1
4/8}

and the result follows.

Proof of Theorem 1.5.9. From Lemma 5.4.11, for n large enough, we have that Kol(µu, µn) ≤
n− 1

4 with overwhelming probability. By the assumption Kol(µn, µ) = n−c we then have that
Kol(µu, µ) ≤ n−c′ also with overwhelming probability for c′ = min{1/4, c}. Hence, under the
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event {Kol(µu, µ) ≤ n−c′} we can apply Proposition 5.4.7 and Corollary 5.4.10 and use the
fact that the Jacobi matrices are tridiagonal to obtain that

∥Jkn(u)− Jkn(µ)∥ ≤
6C exp{d′k2}
nc′ min{s2k, s3k}

.

Since µ has an absolutely continuous part we know from Proposition 5.3.3 and Corollary
5.3.5 that | log(γµk )| = O(k). Hence, from (5.4) we get | log sk| = O(k2), which makes it clear
that there exists d > 0 and a sequence kn ≤ d

√
log n satisfying the theorem statement.

Proof of Proposition 1.5.10. As mentioned in Section 2, this proposition is a direct conse-
quence of Theorem 1.5.9 and Lemma 1.1.5.

Remark 5.4.12. Observe that the above proofs repeatedly use the fact that moments are
Lipschitz quantities on PC and that the Jacobi coefficients are an explicit function of the
moments. However, going from moments to Jacobi coefficients is an expensive process that we
pay for by getting a rate of O(

√
log n) instead of Θ(log n). At first glance, it may seem that

the results in Section 3.2 may be used in a similar fashion to obtain a better rate; however,
even if we have strong concentration results for the Jacobi coefficients of the random measures
µun, it is a difficult task to control the location of the medians (or means) of αj(u) and βj(u)
and hence it is hard to show that these quantities converge at a good enough rate to the
Jacobi coefficients of µ.
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[143] Piotr Śniady. “Random regularization of Brown spectral measure”. In: Journal of
Functional Analysis 193.2 (2002), pp. 291–313.

[144] Daniel A Spielman and Shang-Hua Teng. “Smoothed analysis of algorithms: Why the
simplex algorithm usually takes polynomial time”. In: Journal of the ACM (JACM)
51.3 (2004), pp. 385–463.

[145] Gilbert W Stewart. “A Krylov–Schur algorithm for large eigenproblems”. In: SIAM
Journal on Matrix Analysis and Applications 23.3 (2002), pp. 601–614.

[146] Ji-Guang Sun. “Perturbation bounds for the Cholesky and QR factorizations”. In:
BIT Numerical Mathematics 31.2 (1991), pp. 341–352.

[147] Stanislaw J. Szarek. “Condition numbers of random matrices”. In: Journal of Com-
plexity 7.2 (1991), pp. 131–149.
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Appendix A

Spectral Stability Under Complex
Ginibre Perturbations

Throughout this section we will use Gn to denote a complex normalized n×n Ginibre matrix.

A.1 Approach of Armentano et al.

There is an essentially different route (which can only be applied to the complex Gaussian
case) to the smoothed analysis of minimum eigenvalue gap and eigenvector condition number
discussed in Section 1.2. We’ll begin by recalling some notation from [3], and direct the
reader to their paper for an expanded treatment.

For any n let P(Cn) denote the projective space associated to Cn, and given A ∈ Cn×n,
λ ∈ C and v ∈ P(C), define Aλ,v : v⊥ → v⊥ by

Aλ,v := P⊥
v ◦ (A− λ)|v⊥

where v⊥ = {x ∈ Cn | ⟨x, v⟩ = 0} and Pv⊥ : Cn → v⊥ denotes the orthogonal projection.
With this in hand, [3] defines the condition number of a triple (A, λ, v) ∈ Cn×n × C× P(Cn)
as

µ(A, λ, v) :=

{
∥A∥F∥A−1

λ,v∥ if Aλ,v is invertible,

∞ otherwise.

They similarly define the mean square condition number of a matrix as

µF,av(A) :=

(
1

n

n∑
j=1

∥A∥2F∥∥A−1
λj ,vj
∥2F

) 1
2

,

where (λj, vj) are the eigenpairs of A. In particular, note that µF,av(A) <∞ only when A
has simple eigenvalues, and therefore µF,av(A) <∞ implies that A is diagonalizable.
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A.1.1 Controlling κV

To compare the notions of eigenvalue condition number and the condition number of a triple
we recall the following theorem from [3]:

Theorem A.1.1 (Part of Proposition 2.7 of [3]). Let V denote the solution variety for the
eigenpair problem, defined as

V = Vn := {(A, λ, v) ∈ Cn×n × C× P(C) | (A− λ)v = 0},

and let Γ : [0, 1]→ V, Γ(t) = (At, λt, vt) be a smooth curve such that At lies in the unit sphere
of Cn×n for all t. Then for all t ∈ [0, 1],

|λ̇t| ≤
√

1 + µ(At, λt, vt)2∥Ȧt∥.

Now recall that κ(λ) has the following variational description (see [80, Theorem 1], or
deduce from (1.7)) for any a simple eigenpair (λ, v) of A, in terms of the derivatives of smooth
curves going through the point (A, λ, v). Namely

κ(λ) = sup
Γ:[0,1]→V,Γ(0)=(A,λ,v)

|λ̇0|
∥Ȧ0∥

.

Hence, Theorem A.1.1 implies

κ(λ) ≤
√

1 + µ(A, λ, v)2. (A.1)

It is then clear that µF,av(A) can also be used to upper bound κV (A). In view of this, we
remind the reader of the following result from [3].

Theorem A.1.2 (Theorem 2.14 of [3]). Let Gn ∈ Cn×n denote a complex Ginibre matrix
with N (0, 1C/n) entries. For any A ∈ Cn×n and γ > 0, we have

E
[
µF,av(A+ γGn)

2

∥A+ γGn∥2F

]
≤ n2

γ2
.

One can use this to derive results of the eigenvector condition number of perturbations
of an arbitrary matrix, for example, the above directly implies Davies’ conjecture [44] (for
comparison, Theorem 1.1 of [15] is the same result but the exponent of n is 3/2 instead of
5/2.)

Proposition A.1.3. Suppose A ∈ Cn×n and γ ∈ (0, 1). Then there is a matrix E ∈ Cn×n

such that ∥E∥ ≤ γ∥A∥ and

κV (A+ E) ≤ C
n5/2

γ

where C is an absolute constant.
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Proof. Let λi, vi denote the (random) eigenvalues and eigenvectors of A+γGn. Let Br denote
the event ∥A+ γGn∥F < r. Because ∥Gn∥F < 2

√
n with probability at least some absolute

positive constant, for r = ∥A∥+ 2
√
n the event Br holds with that probability as well. Now

note that

E

[∑
i

κ(λi)
2 | Br

]
≤ E

[
n+

∑
i

µ(A+ γGn, λi, vi)
2 | Br

]
by (A.1)

≤ E
[
n+ nµF,av(A+ γGn)

2 | Br

]
≤ n+

n3r2

γ2P[Br]
, (A.2)

where in the last line we use Theorem A.1.2 and

E
[
µF,av(A+ γGn)

2

r2

∣∣∣∣Br

]
≤ E

[
µF,av(A+ γGn)

2

∥A+ γGn∥2F

∣∣∣∣Br

]
≤

E
[
µF,av(A+γGn)2

∥A+γGn∥2F

]
P[Br]

.

Using (1.8) we get

E[κV (A+ γGn)
2|Br] ≤ nE

[∑
i

κ(λi)
2|Br

]
.

So, when ∥A∥ = 1 and γ < 1, if we set r = ∥A∥+2
√
n as discussed above, the event Br occurs

with positive probability, and by (A.2) we know that nE [
∑
κ(λi)

2 | Br] ≤ Cn5

γ2
for some

constant C. It follows that there is some realization of Gn for which κV (A+ γGn)
2 ≤ Cn5

γ2
, as

we wanted to show.

One can also obtain tail bounds for κV (A+ γGn) of the sort discussed in Section 1.2, but
we will not pursue this here since (at least naively) this method does not yield a tail bound
as strong as that of Section A.2. However this method does yield the strongest known (left)
tail bound for gap(A+ γGn), as explained below.

A.1.2 Controlling gap

Let A ∈ Cn×n be any matrix, and let λ1, . . . , λn be its eigenvalues. Recall the notation

gapi(A) := min
j ̸=i
|λi − λj|.

We begin by comparing these quantities to the condition number of the corresponding triple.

Lemma A.1.4. Let A be a matrix with distinct eigenvalues and spectral decomposition
A =

∑n
i=1 λiviw

∗
i . Then, for every i = 1, . . . , n it holds that

µ(A, λi, vi)

∥A∥F
≥ 1

gapi(A)
.
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Proof. First we show that Λ(Aλi,vi) = Λ(A− λi) \ {0}. To see this, take any j ̸= i and note
that

w∗
jPv⊥i ◦ (A− λi)|v⊥i = (λj − λi)w∗

i ,

and hence λj − λi is an eigenvalue of Aλi,vi .
Now, using that the norm of a matrix is bigger than its spectral radius we get

∥A−1
λi,vi
∥ ≥ sup

λ∈Λ(Aλi,vi
)

1

|λ|

=
1

gapi(A)
because Λ(Aλi,vi) = Λ(A− λi) \ {0}.

The claim then follows from the definition of µ(A, λi, vi).

Using Theorem A.1.2 we get the following.

Proposition A.1.5. Let A ∈ Cn×n be an arbitrary matrix and let Gn be a normalized complex
Ginibre matrix. Then for any t, γ > 0

P[gap(A+ γGn) < tγ] ≤ n3t2.

Thus, gap(A+ γGn) = O(γ/n3/2) with probability bounded away from zero.

Proof. Using Lemma A.1.4 we get

1

gap(A+ γGn)2
= max

i

1

gapi(A+ γGn)2
≤ max

i

µ(A+ γGn, λi, vi)
2

∥A+ γGn∥2F
≤ n

µF,av(A+ γGn)
2

∥A+ γGn∥2F
.

Combining this with Theorem A.1.2 we obtain

E
[

1

gap(A+ γGn)2

]
≤ n3

γ2
.

The proof is then concluded using Markov’s inequality.

Remarkably, the γ dependence in the bound of Proposition A.1.5 is optimal, and stronger
than what can be proven using the techniques from Chapter 2. That said, this technique
heavily exploit that the random perturbation has a complex Gaussian distribution, and it
does not seem possible to extend these result to other distributions.

A.2 Tail Bounds for κV

Here we use a result from [15] to obtain the strongest known tail bound on κV (A+ γGn).
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Lemma A.2.1 (Eigenvector condition number). For any A ∈ Cn×n, γ ∈ (0, ∥A∥) and t > 0
satisfying

t <
γ

∥A∥n3/2
,

we have

P
[
κV (A+ γGn) ≥

1

t

]
≤ 2

(
2
√
2 +
∥A∥
γ

+

√
4 log(1/t)

n

)2

n3t2.

Proof. To simplify notation put M := A+ γGn and let λ1, . . . , λn be its random eigenvalues.
Then for any s, t > 0

P
[
κV (M) ≥ 1

t

]
= P

[
κV (M)2 ≥ 1

t2

]
≤ P

[ n∑
i=1

κ(λi)
2 ≥ 1

nt2

]
by (1.8)

≤ P[∥Gn∥ ≥ s] + P
[
∥Gn∥ ≤ s and

n∑
i=1

κ(λi)
2 ≥ 1

nt2

]
.

Moreover, from (3.7) we have P[∥Gn∥ ≥ s] ≤ 2 exp
(
− n(s− 2

√
2)2
)
. On the other hand

P

[
∥Gn∥ ≤ s and

n∑
i=1

κ(λi)
2 ≥ 1

nt2

]
≤ P

 ∑
λi∈D(0,∥A∥+sγ)

κ(λi)
2 ≥ 1

nt2


≤
(
∥A∥
γ

+ s

)2

n3t2,

where the last inequality follows from Lemma 1.2.9 and Markov’s inequality. Putting
everything together we get that

P
[
κV (M) ≥ 1

t

]
≤ 2 exp

(
− n(s− 2

√
2)2
)
+

(
∥A∥
γ

+ s

)2

n3t2.

Now, to simplify notation define P := ∥A∥
γ
n3/2t. Then choose s to be the solution of the

equation 2 exp
(
− n(s− 2

√
2)2
)
= P2, and plug it into the above inequality to obtain

P
[
κV (M) ≥ 1

t

]
≤ P2 +

(
∥A∥
γ

+ 2
√
2 +

1√
n
log(2/P2)

)2

n3t2

≤ 2

(
∥A∥
γ

+ 2
√
2 +

1√
n
log(2/P2)

)2

n3t2

≤ 2

(
∥A∥
γ

+ 2
√
2 +

2√
n
log(1/t)

)2

n3t2 2P−2 ≤ t−2.
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Appendix B

Appendix for Chapter 3

B.1 Analysis of SPLIT

Although it has many potential uses in its own right, the purpose of the approximate matrix
sign function in our algorithm is to split the spectrum of a matrix into two roughly equal
pieces, so that approximately diagonalizing A may be recursively reduced to two sub-problems
of smaller size.

First, we need a lemma ensuring that a shattered pseudospectrum can be bisected by a
grid line with at least n/5 eigenvalues on each side.

Lemma B.1.1. Let A have ϵ-pseudospectrum shattered with respect to some grid g. Then
there exists a horizontal or vertical grid line of g partitioning g into two grids g±, each
containing at least max{n/5, 1} eigenvalues.

Proof. We will view g as a s1 × s2 array of squares. Write r1, r2, ..., rs1 for the number of
eigenvalues in each row of the grid. Either there exists 1 ≤ i < s2 such that r1+ · · ·+ri ≥ n/5
and ri+1 + · · ·+ rs1 ≥ n/5—in which case we can bisect at the grid line dividing the ith from
(i+ 1)st rows—or there exists some i for which ri ≥ 3/5. In the latter case, we can always
find a vertical grid line so that at least n/5 of the eigenvalues in the ith row are on each of
the left and right sides. Finally, if n ≤ 5, we may trivially pick a grid line to bisect along so
that both sides contain at least one eigenvalue.

Proof of Theorem 3.5.2. The main observation is that, given any matrix X, we can determine
how many eigenvalues are on either side of any horizontal or vertical line by approximating
the sign function of a shift of the matrix. To be precise, in exact arithmetic Tr sgn(X − h) =
n+ − n−, where n± are the eigenvalue counts for X on either side of the line Re z = h. We
will now show that under the shattered pseudospectrum assumption, one can exactly compute
n+ − n− using the advertised precision.

Running SGN to a final accuracy of β,

|Tr SGN(M) + e4 − Tr sgn(M)|
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SPLIT

Input: Matrix A ∈ Cn×n, grid g = grid(z0, ω, s1, s2) pseudospectral guarantee ϵ, and a desired
accuracy ν.
Requires: Λϵ(A) is shattered with respect to g, and β ≤ 0.05/n.
Algorithm: (P̃+, P̃−, g+, g−) = SPLIT(A, g, ϵ, β)

1. h← Re z0 + ωs1/2

2. M ← A− h+ E2

3. α0 ← 1− ϵ
2 diam(g)2

4. ϕ← round (Tr SGN(M, ϵ/4, α0, β) + e4)

5. If |ϕ| < min(3n/5, n− 1)

a) g− = grid(z0, ω, s1/2, s2)

b) z0 ← z0 + h

c) g+ = grid(z0, ω, s1/2, s2)

d) (P̃+, P̃−) =
1
2(1± SGN(A− h, β))

6. Else, execute a binary search over horizontal grid-line shifts h until TrSGN(A−h, ϵ/4, α0, β) ≤
3n
5 , at which point output g±, the subgrids on either side of the shift h, and set

P̃± ← 1
2 (SGN(h−A, ϵ/4, α0, β)).

7. If this fails, set A← iA, and execute a binary search among vertical shifts from the original
grid.

Output: Sub-grids g±, approximate spectral projectors P̃±, and ranks n±.

Ensures: There exist true spectral projectors P± satisfying (i) P+ + P− = 1, (ii)rank(P±) =

n± ≥ n/5, (iii) ∥P± − P̃±∥ ≤ β, and (iv) P± are the spectral projectors onto the interiors of g±.

≤|Tr SGN(M)− Tr sgn(M)|+ |e4|
≤n
(
∥SGN(M)− sgn(M)∥+ ∥SGN(M)∥u

)
Using (3.2) to bound |e4|

≤n
(
β + (β + ∥sgn(M)∥)u

)
.

It remains to control ∥sgn(M)∥ and quantify the distance between sgn(M) = sgn(A−h+E2)
and sgn(A−h). We first do the latter. Since we need only to modify the diagonal entries of A
when creating M , the incurred diagonal error matrix E2 has norm at most umaxi |Ai,i − h|.
Using |Ai,i| ≤ ∥A∥ ≤ 4 and |h| ≤ 4, the fact that u ≤ ϵ/100n ≤ ϵ/16 ensures that the ϵ/2-
pseudospectrum of M will still be shattered with respect to g. We can then form sgn(A− h)
and sgn(M) by integrating around the boundary of the portions of g on either side of the
line Re z = h, then using the resolvent identity as in Section 3.4, and the fact that Λϵ(A) and
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Λϵ/2(M) are shattered we get

∥sgn(A)− sgn(M)∥ ≤ ∥E2∥
2π
· 1
ϵ
· 2
ϵ
ω(2s1 + 4s2) ≤

128u

ϵ2

where in the last inequality we have used that g has side lengths of at most 8 and ∥E2∥ ≤ 8u.
Now, using the contour integral again and the shattered pseudospectrum assumption

∥sgn(A− h)∥ ≤ 1

2π

1

ϵ
ω(2s1 + 4s2) ≤ 8/ϵ.

Combining the above bounds we get a a total additive error of n(β + βu+ 8u/ϵ) + 128u
ϵ2

in

computing the trace of the sign function. If β ≤ 0.1/n and u ≤ min{ϵ/100n, ϵ2

512
, this error

will strictly be less than 0.5 and we can round Tr SGN(A − h) to the nearest real integer.
Horizontal bisections work similarly, with iA− h instead.

Now that we have shown that it is possible to compute n+ − n− exactly, recall that from
the above discussion, the ϵ/2-pseudospectrum of M will still be shattered with respect to the
translation of the original grid g. Using Lemma 3.4.10 and the fact that diam(g)2 = 128, we
can safely call SGN with parameters ϵ0 = ϵ/4 and

α0 = 1− ϵ

256
.

Plugging these in to the Theorem 3.4.9 (ϵ < 1/2 so 1− α0 ≤ 1/100, and β ≤ 0.05/n ≤ 1/12
so the hypotheses are satisfied) for final accuracy β a sufficient number of iterations is

NSPLIT := lg
256

ϵ
+ 3 lg lg

256

ϵ
+ lg lg

4

βϵ
+ 7.59.

In the course of these binary searches, we make at most lg s1s2 calls to SGN at accuracy β.
These require at most

lg s1s2 TSGN

(
n, ϵ/2, 1− ϵ

2 diam(g)2
, β

)
arithmetic operations. In addition, creating M and computing the trace of the approximate
sign function cost us O(n lg s1s2) scalar addition operations. We are assuming that g has side
lengths at most 8, so lg s1s2 ≤ 12 lg 1/ω(g). Combining all of this with the runtime analysis
and machine precision of SGN appearing in Theorem 3.4.9, we obtain

TSPLIT(n, g, ϵ, β) ≤ 12 lg
1

ω(g)
·NSPLIT ·

(
TINV(n,u) +O(n2)

)
.
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B.2 Analysis of DEFLATE

The algorithm DEFLATE, defined in Section 3.5, can be viewed as a small variation of the
randomized rank revealing algorithm introduced in [53] and revisited subsequently in [9].
Following these works, we will call this algorithm RURV.

Roughly speaking, in finite arithmetic, RURV takes a matrix A with σr(A)/σr+1(A)≫ 1,
for some 1 ≤ r ≤ n − 1, and finds nearly unitary matrices U, V and an upper triangular
matrix R such that URV ≈ A. Crucially, R has the block decomposition

R =

(
R11 R12

R22

)
, (B.1)

where R11 ∈ Cr×r has smallest singular value close to σr(A), and R22 has largest singular
value roughly σr+1(A). We will use and analyze the following implementation of RURV.

RURV

Input: Matrix A ∈ Cn×n
Algorithm: RURV(A)

1. G← n× n complex Ginibre matrix +E1

2. (V,R)← QR(G)

3. B ← AV ∗ + E3

4. (U,R)← QR(B)

Output: A pair of matrices (U,R).

Ensures: ∥R22∥ ≤
√
r(n−r)
θ σr+1(A) with probability 1− θ2, for every 1 ≤ r ≤ n− 1 and θ > 0,

where R22 is the (n− r)× (n− r) lower-right corner of R.

As discussed in Section 3.5, we hope to use DEFLATE to approximate the range of a
projector P with rank r < n, given an approximation P̃ close to P in operator norm. We
will show that from the output of RURV(P̃ ) we can obtain a good approximation to such a

subspace. More specifically, under certain conditions, if (U,R) = RURV(P̃ ), then the first
r columns of U carry all the information we need. For a formal statement see Proposition
B.2.12 and Proposition B.2.18 below.

Since it may be of broader use, we will work in somewhat greater generality, and define
the subroutine DEFLATE which receives a matrix A and an integer r and returns a matrix
S ∈ Cn×r with nearly orthonormal columns. Intuitively, if A is diagonalizable, then under the
guarantee that r is the smallest integer k such that σk(A)/σk+1(A)≫ 1, the columns of the
output S span a space close to the span of the top r eigenvectors of A. Our implementation
of DEFLATE is as follows.
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DEFLATE

Input: Matrix Ã ∈ Cn×n and parameter r ≤ n
Requires: 1/3 ≤ ∥A∥, and ∥Ã − A∥ ≤ β for some A ∈ Cn×n with rank(A) = rank(A2) = r, as
well as β ≤ 1/4 ≤ ∥Ã∥ and 1 ≤ µMM(n), µQR(n), cN.

Algorithm: S̃ = DEFLATE(A, r).

1. (U,R)← RURV(A)

2. S̃ ← first r columns of U .

3. Output S̃

Output: Matrix S ∈ Cn×r.
Ensures: There exists a matrix S ∈ Cn×k whose orthogonal columns span range(A), such that

∥S̃ − S∥ ≤ η, with probability at least 1− (20n)3
√
β

η2σr(A)
.

Throughout this section we use rurv(·) and deflate(·, ·) to denote the exact arithmetic
versions of RURV and DEFLATE respectively. In Subsection B.2.1 we present a random
matrix result that will be needed in the analysis of DEFLATE. In Subsection B.2.3 we state
the properties of RURV that will be needed. Finally in Subsections B.2.4 and B.2.5 we prove
the main guarantees of deflate and DEFLATE, respectively, that are used throughout this
paper.

B.2.1 Smallest Singular Value of the Corner of a Haar Unitary

We recall the defining property of the Haar measure on the unitary group:

Definition B.2.1. A random n× n unitary matrix V is Haar-distributed if, for any other
unitary matrix W , VW and WV are Haar-distributed as well.

For short, we will often refer to such a matrix as a Haar unitary.
Let n > r be positive integers. In what follows we will consider an n× n Haar unitary

matrix V and denote by X its upper-left r× r corner. The purpose of the present subsection
is to derive a tail bound for the random variable σr(X). We begin by showing a fact that
allows us to reduce our analysis to the case when r ≤ n/2.

Observation B.2.2. Let n > r > 0 and V ∈ Cn×n be a unitary matrix and denote by V11
and V22 its upper-left r× r corner and its lower-right (n− r)× (n− r) corner respectively. If
r ≥ n/2, then 2r − n of the singular values of V11 are equal to 1, while the remaining n− r
are equal to those of V22.
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Proof. Decompose V as follows

V =

(
V11 V12
V21 V22

)
.

Since V is unitary V V ∗ = In, and looking at the upper-left corner of this equation we get
V11V

∗
11 + V12V

∗
12 = Ir. Then, since V11V

∗
11 = Ir − V12V ∗

12, we have Λ(V11V
∗
11) = 1− Λ(V12V

∗
12).

Now, looking at the lower-right corner of the equation V ∗V = In we get V ∗
12V12+V

∗
22V22 =

In−r and hence Λ(V ∗
22V22) = 1− Λ(V ∗

12V12).
Now recall that for any two matrices X and Y , the symmetric difference of the sets Λ(XY )

and Λ(Y X) is {0}, with multiplicity equal to the difference between the dimensions. Hence
Λ(V12V

∗
12) = Λ(V ∗

12V12)∪{0} where the multiplicity of 0 is r−(n−r) = 2r−n. Combining this
with Λ(V11V

∗
11) = 1− Λ(V12V

∗
12) and Λ(V ∗

22V22) = 1− Λ(V ∗
12V12) we get the desired result.

Proposition B.2.3 (σmin of a submatrix of a Haar unitary). Let n > r > 0 and let V be an
n× n Haar unitary. Let X be the upper left r × r corner of V . Then, for all θ ∈ (0, 1]

P
[

1

σr(X)
≤ 1

θ

]
= (1− θ2)r(n−r). (B.2)

In particular, for every θ ∈ (0, 1] we have

P

[
1

σr(X)
≤
√
r(n− r)
θ

]
≥ 1− θ2. (B.3)

This exact formula for the CDF of the smallest singular value of X is remarkably simple,
and we have not seen it anywhere in the literature. It is an immediate consequence of
substantially more general results of Dumitriu [60], from which one can extract and simplify
the density of σr(X). We will begin by introducing the relevant pieces of [60], deferring the
final proof until the end of this subsection.

Some of the formulas presented here are written in terms of the generalized hypergeometric
function which we denote by 2F

β
1 (a, b; c; (x1, . . . , xm)). For our application it is sufficient to

know that

2F
β
1 (0, b; c, (x1, . . . , xm)) = 1, (B.4)

whenever c > 0 and 2F1 is well defined. The above equation can be derived directly from the
definition of 2F

β
1 (see Definition 13.1.1 in [67] or Definition 2.2 in [60]).

The generic results in [60] concern the β-Jacobi random matrices, which we have no cause
here to define in full. Of particular use to us will be [60, Theorem 3.1], which expresses
the density of the smallest singular value of such a matrix in terms of the generalized
hypergeometric function:

Theorem B.2.4 ([60]). The density of the probability distribution of the smallest eigenvalue
λ, of the β-Jacobi ensembles of parameters a, b and size m, which we denote by fλmin

(λ), is
given by

Cβ,a,b,mλ
β
2
(a+1)−1(1− λ)

β
2
m(b+m)−1
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· 2F 2/β
1

(
1− β(a+ 1)

2
,
β(b+m− 1)

2
;
β(b+ 2m− 1)

2
+ 1; (1− λ)m−1

)
, (B.5)

for some normalizing constant Cβ,a,b,m.

For a particular choice of parameters, the above theorem can be applied to describe the
the distribution of σ2

r (X). The connection between singular values of corners of Haar unitary
matrices and β-Jacobi ensembles is the content of [65, Theorem 1.5], which we rephrase below
to match our context.

Theorem B.2.5 ([65]). Let V be an n× n Haar unitary matrix and let r ≤ n
2
. Let X be the

r× r upper-left corner of V . Then, the eigenvalues of XX∗ distribute as the eigenvalues of a
β−Jacobi matrix of size r with parameters β = 2, a = 0 and b = n− 2r.

In view of the above result, Theorem B.2.4 gives a formula for the density of σ2
r(X).

Corollary B.2.6 (Density of σ2
r (X)). Let V be an n×n Haar unitary and X be its upper-left

r × r corner with r < n, then σ2
r(X) has the following density

fσ2
r
(x) :=

{
r(n− r) (1− x)r(n−r)−1 if 0 ≤ x ≤ 1,

0 otherwise.
(B.6)

Proof. If r > n/2, since we care only about the smallest singular value of X, we can use
Observation B.2.2 to analyse the (n−r)×(n−r) lower right corner of V instead. Hence, we can
assume without loss of generality that r ≤ n/2. Now, substitute β = 2, a = 0, b = n−2r,m = r
in Theorem B.2.4 and observe that in this case

fλmin
(x) = C(1− x)r(n−r)−1

2F
1
1 (0, n− r − 1;n; (1− x)r−1) = C(1− x)r(n−r)−1 (B.7)

where the last equality follows from (B.4). Using the relation between the distribution of
σ2
r(X) and the distribution of the minimum eigenvalue of the respective β-Jacobi ensemble

described in Theorem B.2.5 we have fσ2
r
(x) = fλmin

(x). By integrating on [0, 1] the right side
of (B.7) we find C = r(n− r).

Proof of Proposition B.2.3. From (B.6) we have that

P
[
σ2
r(X) ≤ θ

]
= r(n− r)

∫ θ

0

(1− x)r(n−r)−1dx = 1− (1− θ)r(n−r),

from where (B.2) follows. To prove (B.3) note that g(t) := (1− t)r(n−r) is convex in [0, 1],
and hence g(t) ≥ g(0) + tg′(0) for every t ∈ [0, 1].



APPENDIX B. APPENDIX FOR CHAPTER 3 253

B.2.2 Sampling Haar Unitaries in Finite Precision

It is a well-known fact that Haar unitary matrices can be numerically generated from complex
Ginibre matrices. We refer the reader to [64, Section 4.6] and [108] for a detailed discussion.
In this subsection we carefully analyze this process in finite arithmetic.

The following fact (see [108, Section 5]) is the starting point of our discussion.

Lemma B.2.7 (Haar from Ginibre). Let Gn be a complex n× n Ginibre matrix and U,R ∈
Cn×n be defined implicitly, as a function of Gn, by the equation Gn = UR and the constraints
that U is unitary and R is upper-triangular with nonnegative diagonal entries1. Then, U is
Haar distributed in the unitary group.

The above lemma suggests that QR(·) can be used to generate random matrices that are
approximately Haar unitaries. While doing this, one should keep in mind that when working
with finite arithmetic, the matrix G̃n passed to QR is not exactly Ginibre-distributed, and
the algorithm QR itself incurs round-off errors.

Following the discussion in Section 3.2.1 we can assume that we have access to a random
matrix G̃n, with

G̃n = Gn + E,

where Gn is a complex n× n Ginibre matrix and E ∈ Cn×n is an adversarial perturbation
whose entries are bounded by 1√

n
cNu. Hence, we have ∥E∥ ≤ ∥E∥F ≤

√
ncNu.

In what follows we use QR(·) to denote the exact arithmetic version of QR(·). Furthermore,
we assume that for any A ∈ Cn×n, QR(A) returns a pair (U,R) with the property that R

has nonnegative entries on the diagonal. Since we want to compare QR(Gn) with QR(G̃n) it
is necessary to have a bound on the condition number of the QR decomposition. For this, we
cite the following consequence of a result of Sun [146, Theorem 1.6]:

Lemma B.2.8 (Condition number for the QR decomposition [146]). Let A,E ∈ Cn×n

with A invertible. Furthermore assume that ∥E∥∥A−1∥ ≤ 1
2
. If (U,R) = QR(A) and

(Ũ , R̃) = QR(A+ E), then

∥Ũ − U∥F ≤ 4∥A−1∥∥E∥F .

We are now ready to prove the main result of this subsection. As in the other sections
devoted to finite arithmetic analysis, we will assume that u is small compared to µQR(n);
precisely, let us assume that

uµQR(n) ≤ 1. (B.8)

Proposition B.2.9 (Guarantees for finite-arithmetic Haar unitary matrices). Suppose that
QR satisfies the assumptions in Definition 3.2.4 and that it is designed to output upper
triangular matrices with nonnegative entries on the diagonal2. If (V,R) = QR(G̃n), then there

1Gn is almost surely invertible and under this event U and R are uniquely determined by these conditions.
2Any algorithm that yields the QR decomposition can be modified in a stable way to satisfy this last

condition at the cost of O∗(n log(1/u)) operations
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is a Haar unitary matrix U and a random matrix E such that Ṽ = U + E. Moreover, for
every 1 > α > 0 and t > 2

√
2 + 1 we have

P

[
∥E∥ < 8tn

3
2

α
cNµQR(n)u+

10n2

α
cNu

]
≥ 1− 2eα2 − 2e−t

2n.

Proof. From our Gaussian sampling assumption, G̃n = Gn + E where ∥E∥ ≤
√
ncNu. Also,

by the assumptions on QR from Definition 3.2.4, there are matrices
˜̃
Gn and Ṽ such that

(Ṽ , R) = QR(
˜̃
Gn), and

∥Ṽ − V ∥ < µQR(n)u

∥˜̃Gn − G̃n∥ ≤ µQR(n)u∥G̃n∥ ≤ µQR(n)u
(
∥Gn∥+

√
ncNu

)
.

The latter inequality implies, using (B.8), that

∥˜̃Gn −Gn∥ ≤ µQR(n)u
(
∥Gn∥+

√
ncNu

)
+
√
ncNu ≤ µQR(n)u∥Gn∥+ 2

√
ncNu. (B.9)

Let (U,R′) := QR(Gn). From Lemma B.2.7 we know that U is Haar distributed on the
unitary group, so using (B.9) and Lemma B.2.8, and the fact that ∥M∥ ≤ ∥M∥F ≤

√
n∥M∥

for any n× n matrix M , we know that

∥U − V ∥ − µQR(n)u ≤ ∥U − V ∥ − ∥Ṽ − V ∥
≤ ∥U − Ṽ ∥
≤ 4
√
ncNµQR(n)u∥Gn∥∥G−1

n ∥+ 10ncNu∥G−1
n ∥. (B.10)

Now, from ∥G−1
n ∥ = 1/σn(Gn) and from (1.17) we have that

P
[
∥G−1

n ∥ ≥
n

α

]
≤ (
√
2eα)2 = 2eα2.

On the other hand, from Lemma 2.2 of [15] we have P
[
∥Gn∥ > 2

√
2 + t

]
≤ e−nt

2
. Hence,

under the events ∥G−1
n ∥ ≤ n

α
and ∥Gn∥ ≤ 2

√
2 + t, inequality (B.10) yields

∥U − V ∥ ≤ 4n
3
2

α
cNµQR(n)u

(
2
√
2 + t+ 1

)
+

10n2

α
cNu.

Finally, if t > 2
√
2 + 1 we can exchange the term 2

√
2 + t + 1 for 2t in the bound. Then,

using a union bound we obtain the advertised guarantee.
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B.2.3 Preliminaries of RURV

Let A ∈ Cn×n and (U,R) = rurv(A). As will become clear later, in order to analyze
DEFLATE(A, r) it is of fundamental importance to bound the quantity ∥R22∥, where R22 is
the lower-right (n− r)× (n− r) block of R. To this end, it will suffice to use Corollary B.2.11
below, which is the complex analog to the upper bound given in equation (4) of [9, Theorem
5.1]. Actually, Corollary B.2.11 is a direct consequence of Lemma 4.1 in the aforementioned
paper and Proposition B.2.3 proved above. We elaborate below.

Lemma B.2.10 ([9]). Let n > r > 0, A ∈ Cn×n and A = PΣQ∗ be its singular value
decomposition. Let (U,R) = rurv(A), R22 be the lower right (n− r)× (n− r) corner of R,
and V be such that A = URV . Then, if X = Q∗V ∗,

∥R22∥ ≤
σr+1(A)

σr(X11)
,

where X11 is the upper left r × r block of X.

This lemma reduces the problem to obtaining a lower bound on σr(X11). But, since V is
a Haar unitary matrix by construction and X = Q∗V with Q∗ unitary, we have that X is
distributed as a Haar unitary. Combining Lemma B.2.10 and Proposition B.2.3 gives the
following result.

Corollary B.2.11. Let n > r > 0, A ∈ Cn×n, (U,R) = rurv(A) and R22 be the lower right
(n− r)× (n− r) corner of R. Then for any θ > 0

P

[
∥R22∥ ≤

√
r(n− r)
θ

σr+1(A)

]
≥ 1− θ2.

B.2.4 Exact Arithmetic Analysis of DEFLATE

It is a standard consequence of the properties of the QR decomposition that if A is a matrix
of rank r, then almost surely deflate(A, r) is a n× r matrix with orthonormal columns that
span the range of A. As a warm-up let’s recall this argument.

Let (U,R) = rurv(A) and V be the unitary matrix used by the algorithm to produce this
output. Since we are working in exact arithmetic, V is a Haar unitary matrix, and hence it is
almost surely invertible. Therefore, with probability 1 we have that rank(AV ∗) = r and that
the first r columns of AV ∗ are linearly independent, so since UR is the QR decomposition of
AV ∗, almost surely, R22 = 0 and R11 ∈ Cr×r, where R11 and R22 are as in (B.1). Writing

U =

(
U11 U12

U21 U22

)
for the block decomposition of U with U11 ∈ Cr×r, note that

AV ∗ = UR =

(
U11R11 U11R12 + U12R22

U21R11 U21R12 + U22R22

)
. (B.11)
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On the other hand, almost surely the first r columns of AV ∗ span the range of A. Using the
right side of equation (B.11) we see that this subspace also coincides with the span of the
first r columns of U , since R11 is invertible.

We will now prove a robust version of the above observation for a large class of matrices,
namely those A for which rank(A) = rank(A2).3 We make this precise below and defer the
proof to the end of the subsection.

Proposition B.2.12 (Main guarantee for deflate). Let β > 0 and A, Ã ∈ Cn×n be such that

∥A− Ã∥ ≤ β and rank(A) = rank(A2) = r. Denote S := deflate(Ã, r) and T := deflate(A, r).
Then, for any θ ∈ (0, 1), with probability 1− θ2 there exists a unitary W ∈ Cr×r such that

∥S − TW ∗∥ ≤

√
8
√
r(n− r)

σr(T ∗AT )
·
√
β

θ
. (B.12)

Remark B.2.13 (The projector case). In the case in which the matrix A of Proposition
B.2.12 is a (not necessarily orthogonal) projector, T ∗AT = Ir, and the σr term in the
denominator of (B.12) becomes a 1.

We begin by recalling a result about the stability of singular values which will be important
throughout this section. This fact is a consequence of Weyl’s inequalities; see for example
[89, Theorem 3.3.16] .

Lemma B.2.14 (Stability of singular values). Let X,E ∈ Cn×n. Then, for any k = 1, . . . , n
we have

|σk(X + E)− σk(X)| ≤ ∥E∥.

We now show that the orthogonal projection P := deflate(Ã, r)deflate(Ã, r)∗ is close to a
projection onto the range of A, in the sense that PA ≈ A.

Lemma B.2.15. Let β > 0 and A, Ã ∈ Cn×n be such that rank(A) = r and ∥A− Ã∥ ≤ β.

Let (U,R) := rurv(Ã) and S := deflate(Ã, r). Then, almost surely

∥(SS∗ − In)A∥ ≤ ∥R22∥+ β, (B.13)

where R22 is the lower right (n− r)× (n− r) block of R.

Proof. We will begin by showing that ∥(SS∗ − In)Ã∥ is small. Let V be the unitary matrix
that was used to generate (U,R). As deflate(·, ·) outputs the first r columns of U , we have
the block decomposition U =

(
S U ′), where S ∈ Cn×r and U ′ ∈ Cn×(n−r).

On the other hand we have Ã = URV , so

(SS∗ − In)Ã = (SS∗ − I)
(
S U ′)RV =

(
0 −U ′)RV =

(
0 −U ′R2,2

)
V.

3For example, diagonalizable matrices satisfy this criterion.
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Since ∥U ′∥ = ∥V ∥ = 1 from the above equation we get ∥(SS∗ − In)Ã∥ ≤ ∥R22∥. Now we can
conclude that

∥(SS∗ − In)A∥ ≤ ∥(SS∗ − In)Ã∥+ ∥(SS∗ − In)(A− Ã)∥ ≤ ∥R22∥+ β.

The inequality (B.13) can be applied to quantify the distance between the ranges of

deflate(Ã, r) and deflate(A, r) in terms of ∥R22∥, as the following result shows.

Lemma B.2.16 (Bound in terms of ∥R22∥). Let β > 0 and A, Ã ∈ Cn×n be such that

rank(A) = rank(A2) = r and ∥A− Ã∥ ≤ β. Denote by (U,R) := rurv(Ã), S := deflate(Ã, r)
and T := deflate(A, r). Then, almost surely there exists a unitary W ∈ Cr×r such that

∥S − TW ∗∥ ≤ 2

√
∥R22∥+ β

σr(T ∗AT )
, (B.14)

where R22 is the lower right (n− r)× (n− r) block of R.

Proof. From Lemma B.2.15 we know that almost surely ∥(SS∗ − In)A∥ ≤ ∥R22∥ + β. We
will use this to show that ∥T ∗SS∗T − Ir∥ is small, which can be interpreted as S∗T being
close to unitary. First note that

∥T ∗SS∗T − Ir∥ = sup
w∈Cr,∥w∥=1

∥T ∗(SS∗ − Ir)Tw∥ = sup
w∈range(A),∥w∥=1

∥T ∗(SS∗ − Ir)w∥. (B.15)

Now, since rank(A) = rank(A2), if w ∈ range(A) then w = Av for some v ∈ range(A). So by
the Courant-Fischer formula

∥w∥
∥v∥

=
∥Av∥
∥v∥

≥ inf
u∈range(A)

∥Au∥
∥u∥

= σr(T
∗AT ).

We can then revisit (B.15) and get

sup
w∈range(A),∥w∥=1

∥T ∗(SS∗ − Ir)w∥ = sup
v∈range(A),∥v∥≤1

∥T ∗(SS∗ − Ir)Av∥
σr(T ∗AT )

≤ ∥T
∗(SS∗ − Ir)AT∥
σr(T ∗AT )

.

(B.16)
On the other hand ∥T ∗(SS∗ − Ir)AT∥ ≤ ∥(SS∗ − Ir)A∥ ≤ ∥R22∥+ β, so combining this

fact with (B.15) and (B.16) we obtain

∥T ∗SS∗T − Ir∥ ≤
∥R22∥+ β

σr(T ∗AT )
.

Now define X := S∗T , β′ := ∥R22∥+β
σr(T ∗AT )

and let X = W |X| be the polar decomposition of X.
Observe that

∥|X| − Ir∥ ≤ σ1(X)− 1 ≤ |σ1(X)2 − 1| = ∥X∗X − Ir∥ ≤ β′.
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Thus ∥S∗T −W∥ = ∥X −W∥ = ∥(|X| − In)W∥ ≤ β′. Finally note that

∥S − TW ∗∥2 = ∥(S∗ −WT ∗)(S − TW ∗)∥
= ∥2Ir − S∗TW ∗ −WT ∗S∥
= ∥2Ir − S∗T (T ∗S +W ∗ − T ∗S)− (S∗T +W − S∗T )T ∗S∥
≤ 2∥Ir − S∗TT ∗S∥+ ∥S∗T (W ∗ − T ∗S)∥+ ∥(W − S∗T )T ∗S∥ ≤ 4β′,

which concludes the proof.

Note that so far our results have been deterministic. The possibility of failure of the
guarantee given in Proposition B.2.12 comes from the non-deterministic bound on ∥R22∥.

Proof of Proposition B.2.12. From Lemma B.2.14 we have σr+1(Ã) ≤ β. Now combine
Lemma B.2.16 with Corollary B.2.11.

B.2.5 Finite Arithmetic Analysis of DEFLATE

In what follows we will have an approximation Ã of a matrix A of rank r with the guarantee
that ∥A− Ã∥ ≤ β.

For the sake of readability we will not present optimal bounds for the error induced by
roundoff, and we will assume that

4∥A∥ ·max{cNµMM(n)u, cNµQR(n)u} ≤ β ≤ 1

4
≤ ∥A∥ and 1 ≤ min{µMM(n), µQR(n), cN}.

(B.17)
We begin by analyzing the subroutine RURV in finite arithmetic. This was done in [53,

Lemma 5.4]. Here we make the constants arising from this analysis explicit and take into
consideration that Haar unitary matrices cannot be exactly generated in finite arithmetic.

Lemma B.2.17 (RURV analysis). Assume that QR and MM satisfy the guarantees in
Definitions 3.2.2 and 3.2.4. Also suppose that the assumptions in (B.17) hold. Then, if
(U,R) := RURV(A) and V is the matrix used to produce such output, there are unitary

matrices Ũ , Ṽ and a matrix Ã such that Ã = ŨRṼ and the following guarantees hold:

1. ∥U − Ũ∥ ≤ µQR(n)u.

2. Ṽ is Haar distributed in the unitary group.

3. For every 1 > α > 0 and t > 2
√
2 + 1, the event:{

∥Ṽ − V ∥ < 8tn
3
2

α
cNµQR(n)u+

10n2

α
u and

∥A− Ã∥ < ∥A∥

(
9tn

3
2

α
cNµQR(n)u+ 2µMM(n)u+

10n2

α
cNu

)}
(B.18)

occurs with probability at least 1− 2eα2 − 2e−t
2n.
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Proof. By definition V = QR(G̃n) with G̃n = Gn + E, where Gn is an n× n Ginibre matrix
and ∥E∥ ≤

√
nu. A direct application of the guarantees on each step yields the following:

1. From Proposition B.2.9, we know that there is a Haar unitary Ṽ and a random matrix
E0, such that V = Ṽ + E0 and

P

[
∥E0∥ <

8tn
3
2

α
cNµQR(n)u+

10n2

α
cNu

]
≥ 1− 2eα2 − 2e−t

2n. (B.19)

2. If B := MM(A, V ∗) = AV ∗ + E1, then from the guarantees for MM we have ∥E1∥ ≤
∥A∥∥V ∥µMM(n)u. Now from the guarantees for QR we know that V is µQR(n)u away
from a unitary, and hence

∥V ∥µMM(n)u ≤ (1 + µQR(n)u)µMM(n)u ≤
5

4
µMM(n)u

where the last inequality follows from the assumptions in (B.17). This translates into

∥B∥ ≤ ∥A∥∥V ∥+ ∥E1∥ ≤ (1 + µQR(n)u)∥A∥+ ∥E1∥ ≤
5

4
∥A∥+ ∥E1∥.

Putting the above together and using (B.17) again, we get

∥E1∥ ≤
5

4
∥A∥µMM(n)u and B ≤ 5

4
∥A∥(1 + µMM(n)u) < 2∥A∥. (B.20)

3. Let (U,R) = QR(B). Then there is a unitary Ũ and a matrix B̃ such that U = Ũ +E2,

B = B̃+E3, and B̃ = ŨR, with error bounds ∥E2∥ ≤ µQR(n)u and ∥E3∥ ≤ ∥B∥µQR(n)u.
Using (B.20) we obtain

∥E3∥ ≤ ∥B∥µQR(n)u < 2∥A∥µQR(n)u. (B.21)

4. Finally, define Ã := B̃Ṽ . Note that Ã = ŨRṼ and

Ã = B̃Ṽ = (B − E3)Ṽ = (AV ∗ + E1 − E3)Ṽ = (A(Ṽ + E0)
∗ + E1 − E3)Ṽ ,

and the latter is equal to A+ (AE∗
0 + E1 − E3)Ṽ , which translates into

∥A− Ã∥ ≤ ∥A∥∥E0∥+ ∥E1∥+ ∥E3∥.

Hence, on the event described in the left side of (B.19), we have

∥A− Ã∥ ≤ ∥A∥

(
8tn

3
2

α
cNµQR(n)u+

10n2

α
cNu+

5

4
µMM(n)u+ 2µQR(n)u

)
,

and using some crude bounds, the above inequality yields the advertised bound.
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We can now prove a finite arithmetic version of Proposition B.2.12.

Proposition B.2.18 (Main guarantee for DEFLATE). Let n > r be positive integers, and

let β, θ > 0 and A, Ã ∈ Cn×n be such that ∥A − Ã∥ ≤ β and rank(A) = rank(A2) = r.

Let S := DEFLATE(Ã, r) and T := deflate(A, r). If QR and MM satisfy the guarantees in
Definitions 3.2.2 and 3.2.4, and (B.17) holds, then, for every t > 2

√
2 + 1 there exist a

unitary W ∈ Cr×r such that

∥S − TW ∗∥ ≤ µQR(n)u+ 12

√
tn2
√
r(n− r)

σr(T ∗AT )
.

√
β

θ2
, (B.22)

with probability at least 1− 7θ2 − 2e−t
2n.

Proof. Let (U,R) = RURV(Ã). From Lemma B.2.17 we know that there exist Ũ ,
˜̃
A ∈ Cn×n,

such that ∥U− Ũ∥ and ∥Ã− ˜̃A∥ are small, and (Ũ , R) = rurv(
˜̃
A) for the respective realization

of an exact Haar unitary matrix. Then, from ∥Ã∥ ≤ ∥A∥+ β and (B.18), for every 1 > α > 0
and t > 2

√
2 + 1 we have∥∥∥∥A− ˜̃A∥∥∥∥ ≤∥∥∥∥˜̃A− Ã∥∥∥∥+ ∥Ã− A∥

≤(∥A∥+ β)

(
9tn

3
2

α
µQR(n)cNu+ 2µMM(n)u+

10n2

α
cNu

)
+ β, (B.23)

with probability 1− 2eα2 − 2e−t
2n.

Now, from (B.17) we have u ≤ β ≤ 1
4
and cN∥A∥µu ≤ β for µ = µQR(n), µMM(n), so we

can bound the respective terms in (B.23) by β:

(∥A∥+ β)

(
9tn

3
2

α
cNµQR(n)u+ 2µMM(n)u+

10n2

α
cNu

)
+ β

≤(1 + β)

(
9tn

3
2

α
β + 2β +

10n2

α
β

)
+ β

≤(12t+ 16)

α
n2β, (B.24)

where the last crude bound uses 1 ≤ n
3
2 ≤ n2, 1 + β ≤ 5

4
and t > 2.

Observe that S̃ = deflate(
˜̃
A, r) is the matrix formed by the first r columns of Ũ , and that

by Proposition B.2.12 we know that for every θ > 0, with probability 1− θ2 there exists a
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unitary W such that

∥S̃ − TW ∗∥ ≤

√
8
√
r(n− r)

σr(T ∗AT )
.

√√√√√
∥∥∥∥A− ˜̃A∥∥∥∥

θ
. (B.25)

On the other hand, S is the matrix formed by the first r columns of U . Hence

∥S − S̃∥ ≤ ∥U − Ũ∥ ≤ µQR(n)u.

Putting the above together we get that under this event

∥S − TW ∗∥ ≤ ∥S − S̃∥+ ∥S̃ − TW ∗∥ ≤ µQR(n)u+

√
8
√
r(n− r)

σr(T ∗AT )
.

√√√√√
∥∥∥∥A− ˜̃A∥∥∥∥

θ
. (B.26)

Now, taking α = θ, we note that both events in (B.23) and (B.25) happen with probability
at least 1− (2e+ 1)θ2 − 2e−t

2n. The result follows from replacing the constant 2e+ 1 with
7, using t > 2

√
2 + 1 and replacing 8(12t + 16) with 144t, and combining the inequalities

(B.23), (B.24) and (B.26).

We end by proving Theorem 3.5.3, the guarantees on DEFLATE that we will use when
analyzing the main algorithm.

Proof of Theorem 3.5.3. As Remark B.2.13 points out, in the context of this theorem we are
passing to DEFLATE an approximate projector P̃ , and the above result simplifies. Using this
fact, as well as the upper bound r(n− r) ≤ n2/4, we get that

∥S − TW ∗∥ ≤ µQR(n)u+
12
√
tn3β

θ
.

with probability at least 1 − 7θ2 − 2e−t
2n for every t > 2

√
2. If our desired quality of

approximation is ∥S − TW ∗∥ = η, then some basic algebra gives the success probability as at
least

1− 1008
n3tβ

(η − µQR(n)u)2
− 2e−t

2n.

Since β ≤ 1/4, we can safely set t =
√

2/β, giving

1− 1426
n3
√
β

(η − µQR(n)u)2
− 2e−2n/β.

To simplify even further, we’d like to use the upper bound 2e−2n/β ≤ n3
√
β

(η−µQR(n)u)2
. These two

terms have opposite curvature in β on the interval (0, 1), and are equal at zero, so it suffices
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to check that the inequality holds when β = 1. The terms only become closer by setting
n = 1 everywhere except in the argument of µQR(·), so we need only check that

2

e2
≤ 1

(η − µQR(n)u)2
.

Under our assumptions η, µQR(n)u ≤ 1, the right hand side is greater than one, and the left
hand less. Thus we can make the replacement, use u ≤ η

2µQR(n)
, and round for readability to

a success probability of no worse than

1− 6000
n3
√
β

η2
;

the constant here is certainly not optimal.
Finally, for the running time, we need to sample n2 complex Gaussians, perform two QR

decompositions, and one matrix multiplication; this gives the total bit operations as

TDEFLATE(n) = n2TN + 2TQR(n) + TMM(n).

Remark B.2.19. Note that the exact same proof of Theorem 3.5.3 goes through in the more
general case where the matrix in question is not necessarily a projection, but any matrix close
to a rank-deficient matrix A. In this case an extra σr(T

∗AT ) term appears in the probability
of success (see the guarantee given in the box for the Algorithm DEFLATE that appears in
this appendix).
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Appendix C

Appendix for Chapter 4

C.1 Deferred Proofs from Section 4.2.4

Proof of Lemma 4.2.8. For the purpose of the analysis, let us define H̃0 := H − s and for
each i = 1, ..., n− 1, denote by H̃i the matrix R̃ as it stands at the end of line 2(c) on the the
ith step of the loop. Additionally, write Gi for the unitary matrix which applies giv(X1:2,i)
to the span of ei and ei+1 and is the identity elsewhere. We will show that the unitary
Q̃ := Q̃n−1 satisfies the guarantees of IQR. We then have

H̃i = G∗
i H̃i−1 + E2,i,

where E2,i is the structured error matrix which in rows (i : i+ 1) is equal to(
E2,i,c

0
E2,i,b

)
and is zero otherwise. From the discussion at the beginning of this appendix, we know that each
entry of E2,i,b has size at most 8∥H̃i−1∥u and similarly that |E2,i,c| ≤ 2∥X1:2,i∥u ≤ 8∥H̃i−1∥u.
Thus ∥E2,i∥ ≤ 8

√
n∥H̃i−1∥u, and inductively we have

∥H̃i∥ ≤ ∥H̃i−1∥+ ∥E2,i∥
≤ ∥H̃i−1∥

(
1 + 8

√
nu
)

≤ ∥H̃0∥
(
1 + 8

√
nu
)n

≤ ∥H̃0∥ exp
(
8n3/2u

)
≤ 2∥H − s∥ i = 1, ..., n− 1.

Since Q̃ and every Gi is unitary, this gives

∥H − s− Q̃R̃∥ = ∥Q̃∗H̃0 − R̃∥ ≤
∑

i∈[n−1]

∥E2,i∥ ≤ 16n3/2u · ∥H − s∥.
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A similar inductive argument applied to line 4 gives that ∥E4,i∥ ≤ 16
√
nu · ∥H − s∥ for every

i ∈ [n− 1], and thus that the H̃ output by IQR(H, s) satisfies

H̃ − s = R̃Q̃+ E4,n−1(G1 · · ·Gn−2) + · · ·+ E4,2G1 + E4,1

= Q̃∗(H − s)Q̃+ E4,n−1(G1 · · ·Gn−2) + · · ·+ E4,2G1 + E4,1

+ (G∗
n−2 · · ·G∗

1)E2,1Q̃+ (G∗
n−3 · · ·G∗

1)E2,2Q̃+ · · ·+G∗
1E2,n−1Q̃,

meaning
∥H̃ − Q̃∗HQ̃∥ ≤ 32n3/2u · ∥H − s∥

and
∥H̃∥ ≤ ∥H∥+ 32n3/2∥H − s∥u,

as desired.
In terms of arithmetic operations, it costs n to compute R̃ from H in line 1. In line 2(b),

computing ∥X1:2,i∥ costs 4, computing giv(X1:2,i) given this norm costs another 2, zeroing out

R̃i+1,i costs 1, replacing R̃i,i with ∥X1:2,i∥ costs one, and applying the rotation to R̃i:i+1,i+1:n

costs 4(n− i+1). We do this for each of i = 1, 2, ...n−1, giving 6(n−1)+2(n−1)+2n(n−1).
In line 4, assuming we have stored each Givens rotation, applying them again requires
2n(n+1)− 4. Finally, in line 5 we pay another n to re-apply the shift. Thus in total we have

n+ 6(n− 1) + 2(n− 1) + 2n(n− 1) + 2n(n+ 1)− 4 + n = 4n2 + 12n− 12 ≤ 7n2 n ≥ 2.

Proof of Lemma 4.2.9. Let H̃1 = H, and for each ℓ ∈ [m − 1], let [H̃ℓ+1, R̃ℓ] = IQR(H̃ℓ, rℓ)

and Q̃ℓ be as guaranteed by Definition 4.1.2. We have

∥H̃2 − Q̃1 ∗ H̃1Q̃1∥ ≤ ∥H̃1 − s1∥νIQR(n)u ≤ (1 + C)∥H∥νIQR(n)u,

and inductively, assuming that

∥H̃ℓ − Q̃∗
ℓ−1H̃ℓ−1Q̃ℓ−1∥ ≤ (1 + C)∥H∥(νIQR(n)u+ · · ·+ (νIQR(n)u)

ℓ),

we have

∥H̃ℓ+1 − Q̃∗
ℓH̃ℓQ̃ℓ∥ ≤ ∥H̃ℓ − sℓ∥νIQR(n)u

≤ ∥H∥(1 + (1 + C)(νIQR(n)u+ · · ·+ (νIQR(n)u)
ℓ) + C)νIQR(n)u

≤ (1 + C)∥H∥(νIQR(n)u+ · · ·+ (νIQR(n)u)
ℓ+1).

This gives the first asserted bound, since

∥H̃ − Q̃∗H̃Q̃∥ ≤
∑

ℓ∈[m−1]

∥H̃ℓ+1 − Q̃∗
ℓH̃ℓQ̃ℓ∥ ≤ (1 + C)∥H∥ mνIQR(n)u

1− νIQR(n)u
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and 1
1−νIQR(n)u

≤ 4/3 ≤ 1.4.

For the second assertion, we will mirror the proof of Lemma 4.2.5, using backward stability
guarantees on a single IQR step from Definition 4.1.2. In particular, in view of the definition
and the above bound, we can write

H̃ℓ − sℓ = Q̃ℓR̃ℓ + Eℓ ∥Eℓ∥ ≤ (1 + C)∥H∥ νIQR(n)u

1− νIQR(n)u

H̃1Q̃ℓ · · · Q̃1 = Q̃ℓ · · · Q̃1H̃ℓ+1 + ∥∆ℓ+1∥ ∆ℓ+1 ≤ (1 + C)∥H∥ νIQR(n)u

1− νIQR(n)u

so that

p(H) = p(H̃1)

= (H̃1 − sm) · · · (H̃1 − s1)
= (H̃1 − sm) · · · (Q̃1R̃1 + Q̃∗

1E1)

= (H̃1 − sm) · · · (H̃1 − s2)Q̃1(R̃1 + Q̃∗
1E1)

= (H̃1 − sm) · · · Q̃1(H̃2 − s2 +∆2)(R̃1 + Q̃∗
1E1)

= (H̃1 − sm) · · · (H̃1 − s3)Q̃1Q̃2(R̃2 + Q̃∗
2E2 + Q̃∗

2∆2)(R̃1 + Q̃∗
1E1)

= Q̃1 · · · Q̃m(R̃m + Q̃∗
mEm + Q̃∗

m∆m) · · · (R̃2 + Q̃∗
2E2 + Q̃∗

2∆2)(R̃1 + Q̃∗
1E1).

Thus, using the bounds on Eℓ and ∆ℓ, and the fact that ∥R̃ℓ∥ = ∥H̃ℓ − sℓ∥ ≤ (1+C)∥H∥
1−νIQR(n)u

,

∥p(H)− Q̃1 · · · Q̃mR̃m · · · R̃1∥
=∥R̃m · · · R̃1 − (R̃m + Q̃∗

mEm + Q̃∗
m∆m) · · · (R̃2 + Q̃∗

2E2 + Q̃∗
2∆2)(R̃1 + Q̃∗

1E1)∥

≤
∏
ℓ∈[m]

(
∥R̃ℓ∥+ 2(1+C)∥H∥

1−νIQR(n)u

)
−
∏
ℓ∈[m]

∥R̃ℓ∥

≤
(

(1+C)∥H∥
1−νIQR(n)u

)m
((1 + 2νIQR(n)u)

m − 1)

≤4
(
2(1 + C)∥H∥

)m
νIQR(n)u;

in the final line we are using again that νIQR(n)u ≤ 1/4 and thus that ((1+2νIQR(n)u)
m−1) ≤

(3/2)mνIQR(n)u/4, whereas (1− νIQR(n)u)
−m ≤ (4/3)m

C.2 Proof of Lemma 4.3.30

Proof of Lemma 4.3.30. First, if we take t1 := φ1/2γ√
2n3/2 and apply Proposition A.1.5 we get

that
P[gap(A+ γGn) ≥ t1] ≥ 1− φ/2.
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Then, taking t2 =
γφ1/2

60∥A∥ log(1/φ)n3/2 and applying Lemma A.2.1 we get

P[κV (A+ γGn) ≥ 1/t2] ≤ 2

(
2
√
2 +
∥A∥
γ

+
2√
n
log(1/t2)

1/2

)2

n3t22

≤ 6

(
8 +
∥A∥2

γ2
+

4

n
log(1/t2)

)
n3t22 AM-QM

≤ φ/6 + φ/6 + φ/6

yielding
P[κV (A+ γGn) ≤ 1/t2] ≥ 1− φ/2.

Now define ζ = t1/3 and ϵ = t1t2/3. By the tail bounds obtained above we have the event
{gap(A+γGn) ≥ t1 and κV (A+γGn) ≤ 1/t2} occurs with probability 1−φ, and, by Lemma
1.1.9, under this event we have that Λϵ(A+ γGn) is ζ-shattered, as we wanted to show.
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